用户名: 密码: 验证码:
交直流系统故障相互作用分析计算模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国直流工程建设的快速推进,南方电网和华东电网已经形成了复杂的多馈入直流输电系统(multi-infeed direct current,MIDC)。在含有多条直流馈入的交直流混联大电网中,交直流系统间以及各馈入直流系统间所存在的极其复杂的相互作用关系,在故障情况下显得越发突出,其机理的揭示及相关问题的研究对于确保交直流混联大电网的安全稳定运行具有重要的理论和实用价值。本文围绕交流电网故障时,交直流系统间故障稳态相互作用分析计算方法和故障暂态过程对交流电网保护的影响机理展开研究工作。针对故障稳态,分析建立不引起换相失败的交流故障情况下直流系统等值模型,并基于其提出一种MIDC系统受端交流电网故障分析及谐波计算方法;研究直流输电系统谐波不稳定的机理以及提出直流谐波保护新判据。针对故障暂态,分析建立换相失败情况下直流系统等值工频及工频变化量电流动态相量模型,并基于其分析直流换相失败对交流电网继电保护的影响机理。主要内容如下:
     1.在分析交流系统故障情况下换流器动态开关特性和直流控制系统响应特性的基础上,建立了计及直流控制特性的直流系统等值模型。该模型反映了交流系统故障时由直流系统决定的直流系统注入交流系统电流的工频及各次谐波分量与换流母线电压的工频及各次谐波分量之间的关系,提供了多直流馈入交流电网故障分析所需的交直流系统间的接口模型。
     2.基于计及直流控制特性的直流系统等值模型,结合受端交流电网的拓扑结构和交流不对称故障的边界条件,提出了一种多直流馈入交流电网故障分析和谐波计算方法,能有效提高各种运行工况下直流系统注入交流系统电流以及换流母线电压的工频和各次谐波分量的计算精度。以CIGRE标准测试系统为基础搭建三馈入直流输电系统模型,将所提方法用于该模型的故障分析和谐波计算,并与PSCAD/EMTDC电磁暂态仿真软件的仿真结果相比较,结果表明所提方法计算简单,可靠收敛,精度较高,为MIDC系统故障分析、谐波抑制、滤波装置的配置和继电保护的整定配合等提供了定量分析依据。
     3.高压直流换流器谐波调制特性和换流变压器饱和特性的共同作用可以导致谐波不稳定现象的发生。对换流器的谐波调制特性和换流变压器饱和时的谐波变换特性进行分析,基于谐波在饱和换流变压器以及换流器交直流侧的闭环传变特性,提出了一种换流变压器铁心饱和型谐波不稳定判据。基于该判据,对换流器运行参数、换流变压器参数和交直流系统等值阻抗等影响因素进行了理论分析。利用电磁暂态仿真软件PSCAD/EMTDC建立测试模型证明了该判据简单,物理意义清晰,参数易得,且可定量评估换流变压器铁心饱和型谐波不稳定发生的程度,为高压直流输电系统谐波不稳定的风险评估和抑制措施等提供了理论依据。
     4.针对直流100Hz保护逻辑中存在识别换流阀故障和交流不对称故障的难题,在详细分析换流阀故障和交流不对称故障导致换流器电流开关函数产生工频负序分量机理不同的基础上,提出了利用两种故障情况下换流站6脉动换流器电流开关函数工频负序分量幅值比的不同来识别换流阀故障和交流不对称故障的新方法。该方法不仅能正确识别换流阀故障和交流不对称故障,而且能实现换流阀故障时故障桥的定位。基于贵广II回HVDC系统详细模型对该方法进行了仿真验证。结果表明,该方法简单可靠,具有工程实用价值。
     5.在交直流互联系统中,交流电网故障引发的直流换相失败可导致交流电网保护不正确动作。分析建立了换相失败情况下逆变器的开关函数模型和直流电流暂态变化模型;根据调制理论及卷积定理,推导出了换相失败情况下直流系统的等值工频及工频变化量电流的动态相量模型;通过分析表明该等值工频及工频变化量电流的变化特性有别于纯交流系统,可能造成交流电网故障引发换相失败时交流电网保护的不正确动作;最后,结合两种具体的交流电网保护,分析了直流换相失败导致交流电网保护不正确动作的机理,为交直流系统继电保护策略研究提供了理论基础。
With the rapid advance of HVDC projects construction, the complex multi-infeed directcurrent (MIDC) system has been formed in China Southern Power Grid and East China PowerGrid. For MIDC system, especially in the case of ac faults, the interactions between ac systemand dc system and the interactions among each dc system are extremely complicatedprocesses. The mechanism of those processes and the study of related issue can provideimportant theoretical and practical value for the safe and stable operation of large scale ac/dchybrid system. Therefore, fault steady state interaction analysis and calculation method ofac/dc system and mechanism analysis of fault transient processes influence on ac powernetwork relay protection under ac network faults are studied in this dissertation. For faultsteady state, a dc system equivalent model under no commutation failure condition isestablished. And base on it, a MIDC system ac power network fault analysis and harmoniccalculation method is proposed. Besides, the mechanism of harmonic instability and the newcriterion of dc harmonic protections in HVDC transmission system are studied. For faulttransient processes, the dynamic phasor model of dc system equivalent power-frequencycurrent and equivalent power-frequency variation current under commutation failurecondition is deduced. And based on it, the mechanism of HVDC commutation failureinfluence on ac power network relay protection is analyzed.
     The main work is summarized as following:
     1. By consider the dynamic switching characteristics of inverter and the steady-stateresponse characteristics of dc control system under various fault-types comprehensively, a dcsystem equivalent model which considering the dc control characteristic is established. Themodel reflects the relationship between each order current which injected by dc system andeach order converter bus voltage, which determined by dc system. It provides the interfacemodel for MIDC system ac power network fault analysis and harmonic calculation.
     2. Base on the dc system equivalent model which considering the dc controlcharacteristic, a MIDC system ac power network fault analysis and harmonic calculationmethod is proposed with the topology structure of receiving-end ac system and the boundaryconditions of ac asymmetric fault. It can improve the computational accuracy of each ordercurrent which injected by dc system and each order converter bus voltage effectively. Basedon CIGRE model, a three-infeed HVDC power transmission model is built and the methodhas been tested widely for fault analysis and harmonic calculation. The results are comparedwith those obtained by simulation using PSCAD/EMTDC software. It is shown that the proposed method is accurate and effective, and provides the analysis basis of harmonicmitigation and protection analysis in MIDC system.
     3. The combined action of HVDC converter harmonic modulation characteristics andconverter transformer saturation characteristic can lead to converter transformer coresaturation instability. The author analyses harmonic modulation characteristics of converterand the frequency transformation feature of saturation converter transformer. Based on theclosed-loop variable characteristics of harmonic transfer back and forth through saturationconverter transformer and converters in the ac side and dc side, a new criterion to determinewhether the core saturation instability occurs is proposed. Based on the criterion, the effect ofthe inverter operation parameters, the parameters of the converter transformer and ac/dcsystem impedance on the core saturation instability is theoretically analyzed. The criterion isverified by dynamic simulation of several systems using PSCAD/EMTDC software. Thestudy results indicate that the proposed criterion simple, physical meaning clear, parametersaccessible, which can quantitative evaluation of harmonic instability degree of convertertransformer core saturation instability, and provides the theory basis for risk evaluation andsuppression measures of HVDC system harmonic instability.
     4. Discrimination between converter valve fault and ac asymmetric fault has been achallenging issue in dc100Hz protections. Based on the different mechanism in generatingpower frequency negative sequence component of converter current switching functionbetween converter valve fault and ac asymmetric fault, a new method based on powerfrequency negative sequence component amplitude ratio of converter station six-pulse bridgecurrent switching function is proposed to discriminate the converter valve fault and the acasymmetric fault. The proposed new method is not only can discriminate the converter valvefault and the ac asymmetric fault, but also can achieve the fault converter bridge locationunder converter valve fault condition. The method has been tested widely based on GuiguangII HVDC system. Result show that the proposed method is simple, reliable and has well usevalue.
     5. In the ac/dc interconnection system, the dc commutation failure caused by ac powernetwork fault can lead to maloperation of ac power network protection. In this paper, underthe commutation failure condition, a switching function model of inverters and a transientchange model of dc current are established. According to modulation theory and convolutiontheorem, the dynamic phasor model of dc system equivalent power-frequency current andequivalent power-frequency variation current are deduced. The analysis shows that thevariation characteristics of the equivalent power-frequency current and equivalent power-frequency variation current are different from those of pure ac system, which may leadto maloperation of ac power network protection under the dc commutation failure caused byac power network fault. At last, combining the two specific ac power network protection, themechanism for maloperation of ac power network protection caused by dc commutationfailure is analyzed, which provides a theoretical basis for research on protection strategy ofac/dc interconnection system.
引文
[1]浙江大学发电教研组直流输电科研组.直流输电[M].杭州:浙江大学出版社,1982.
    [2]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [3]李兴源.高压直流输电系统的运行和控制[M].北京:科学技术出版社,1998.
    [4]刘振亚.特高压直流输电技术研究成果专辑[M].北京:中国电力出版社,2005.
    [5]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2005.
    [6] J. Arrillaga. High Voltage Direct Current Transmission[M]. London: Institution ofElectrical Engineers,1998.
    [7] K. R. Padiyar. HVDC power transmission systems: technology and systeminteractions[C]. New Age International,1990.
    [8]汪秀丽.特高压输电技术的发展[J].水利电力科技,2006,32(2):6-16.
    [9]周孝信.我国电网技术的现状与未来[J].电网技术,1995,19(2):1-4.
    [10]林伟芳,汤涌,卜广全.多馈入交直流系统短路比的定义和应用[J].中国电机工程学报,2008,28(31):1-8.
    [11]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术,2005,29(3):1-4.
    [12]郭强,张运洲,吕健.我国未来同步电网构建研究[J].电网技术,2005,29(22):14-18.
    [13]舒印彪,刘泽洪,高理迎,等.800kV、6400MW特高压直流输电工程设计初探[J].电网技术,2006,30(1):1-8.
    [14]郭强,申洪,周勤勇,等.2015年国家电网主网架结构稳定性研究与评估[R].北京:中国电力科学研究院,2010.
    [15]郭小江,邵瑶,周勤勇,等.多馈入直流地区电网安全稳定性研究[R].北京:中国电力科学研究院,2010.
    [16]邵瑶,汤涌.多馈入交直流混合电力系统研究的综述[J].电网技术,2009,33(17):24-30.
    [17]林凌雪,张尧,钟庆,等.多馈入直流输电系统中换相失败研究综述[J].电网技术,2006,30(17):40-46.
    [18]杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题[J].电网技术,2000,24(8):13-17.
    [19] CIGRE Working Group B4.41.Systems with multiple DC infeed[R].Paris:CIGRE,2008.
    [20] Ferreira D J,Freris J M,Freris S,et al.Describing function applied to HVDC systemsharmonic instability[J].IEE Proceedings:Generation,Transmission and Distribution,1987,134(2):131-137.
    [21]夏道止.高压直流输电系统的谐波分析及滤波[M].北京:水利水电出版社,1994.
    [22]余江,周红阳,黄佳胤等.影响直流100Hz保护的交流系统故障范围分析[J].电力系统自动化,2008,32(3):48-51.
    [23]刘强,蔡泽样,刘为雄,等.交直流互联电网暂态功率倒向及对继电保护的影响[J].电力系统自动化,2007,31(7):34-38.
    [24] Andersson F, Juhlin L E, Jones T. AC line protect ion operating conditions in the nearvicinity of HVDC installations [C]. Proceedings of Fifth International Conference onDevelopments in Power System Protection. York, U K,1993:119-122.
    [25]李海锋,张璞,王钢,等.直流馈入下的工频变化量方向纵联保护动作特性分析(一)直流系统等值工频变化量阻抗模型[J].电力系统自动化,2009,33(9):41-46.
    [26]邵震,王柄炎.直流输电换相失败对交流侧继电保护的影响[J].高电压技术,2006,32(9):42-45.
    [27]刘之尧,唐卓尧,张文峰,等.直流换相失败引起继电保护误动分析[J].电力系统自动化,2006,30(19):104-107.
    [28] Zhou Changchun,Xu Zheng.Study on commutation failure of multi-infeed HVDCsystem[C].Proceedings of International Conference on Power System Technology,2002,4:2462-2466.
    [29]何朝荣,李兴源.影响多馈入高压直流换相失败的耦合导纳研究[J].中国电机工程学报,2008,28(7):51-57.
    [30]何仰赞,温增银.电力系统分析(上册)[M].武汉:华中科技大学出版社.
    [31]戚庆茹,焦连伟,陈寿孙,等.高压直流输电动态相量建模与仿真[J].中国电机工程学报,2003,23(12):28-32.
    [32]杨秀,陈陈.基于采样数据模型的高压直流输电动态特性分析[J].中国电机工程学报,2005,25(10):7-11.
    [33]周长春,徐政.直流输电准稳态模型有效性的仿真验证[J].中国电机工程学报,2003,23(12):33-36.
    [34]毛晓明,张尧,张艳.高压直流建模研究的相关问题[J].电力自动化设备,2007,12(27):14-17.
    [35] HU Lihua, YACAMINI R. Harmonic transfer through converters and HVDC links.IEEE Trans on Power Electronics,1992,7(3):514-525.
    [36]孙栩,孔力.VSC-HVDC系统的动态相量法建模仿真分析.电力系统自动化,2008,32(11):44-47.
    [37] WOOD AR, ARRILLAGA J. HVDC convertor waveform distortion: afrequency-domain analysis. IEE Proceedings: Generation, Transmission andDistribution,1995,142(1):88-96.
    [38] HU Lihua, MORRISON RE. The use of modulation theory to calculate the harmonicdistortion in HVDC systems operating on an unbalanced supply. IEEE Trans on PowerElectronics,1997,12(2):973-980.
    [39]李志铿,王钢,李海峰,等.交流不对称情况下交直流系统谐波分析计算方法[J].电力系统自动化,2010,30(1):42-47.
    [40]马玉龙,肖湘宁,姜旭.交流系统接地故障对HVDC的影响分析[J].中国电机工程学报,2006,26(11):144-149.
    [41] SMITH BC, WATSON NR, WOOD AR, et al. Steady state model of the AC/DCconverter in the harmonic domain[J]. IEE Proc. Gener. Transm.,1995,142(2):109-118.
    [42] SMITH BC, WATSON N R, WOOD AR, et al. A newton solution for the harmonicphasor analysis of AC-DC converters[J]. IEEE Trans. on Power Delivery,1996,11(2):965-971.
    [43] CALLAGHAN CD, ARRILLAGA J. Double iterative algorithm for the analysis ofpower and harmonic flows at AC-DC converter terminals [J]. IEE Proc. Pt. C, Gener.Transm. Distrib.,1989,136(6):319-324.
    [44] CarPinelli G, Gagliardi F, Russo M, etal. Generalized converter models for iterativeharmonic analysis in Powers ystems[J]. IEE Proeeedings-Generation, Transmissionand Distribution,1994,141(5):445-451.
    [45] Slnith BC, Arrillaga J, Wood AR, etal. Review of iterative harmonic analysis forAC-DC Power systems[J]. IEEE Transon Power Delivery,1998,13(1):180-185.
    [46]曾艳,任震,余涛.基于调制迭代谐波分析法的交直流混联输电系统多谐波源研究[J].电网技术,2006,30(11):26-29.
    [47]史丹,任震,余涛.高压直流输电系统的谐波分析方法综述[J].电力自动化设备,2006,4(26):93-97.
    [48] Krishayya PCS,Adapa R,Holm M,et al. IEEE guide for planning DC linksterminating at AC locations having low short-circuit capacities.Part I:AC/DC systeminteraction phenomena[R].CIGRE and IEEE,1997.
    [49] Ainsworth JD. Harmonic instability between controlled static convertors and A.C.network. IEE Proc.1967,114(7):949-957.
    [50] Ainsworth JD. The phase-locked oscillator-a new control system for controlled staticconvertors. IEEE Trans on Power Apparatus and Systems,1968,87(3):850-865.
    [51] Sucena Paiva J P, Freris L L. Stability of rectifiers with voltage-controlled oscillator.IEE Proceedings,1973,120(6):667-673.
    [52] Yacamini R, De Oliveira JC. Instability in h.v.d.c schemes at low-order integerharmonics. IEE Proceedings, Pt. C,1980,127(3):179-188.
    [53] Yacamini R, De Oliveira JC. Comprehensive calculation of convertor harmonics withsystem impedances and control representation. IEE Proceedings, Part B: ElectricPower Applications,1986,133(2):95-102.
    [54] STEMMLER H. HVDC back-to-back interties on weak AC systems//Proceedings ofCIGRE Symposium on AC/DC Transmission Interactions and Comparisons, Sept28-30,1987, Boston, MA, USA.1987:300-308.
    [55] Chen S, Wood AR, Arrillaga J. HVDC converter transformer core saturation instability:a frequency domain analysis. IEE Proceedings,1996,143(1):75~81.
    [56] BURTON RS, FUCHSHUBER C, WOODFORD D A, et al. Prediction of coresaturation instability at an HVDC converter. IEEE Trans on Power Delivery,1996,11(4):1961-1969.
    [57]杨小兵,李兴源,金小明,等.云广特高压直流输电系统换流变压器铁心饱和不稳定分析[J].电网技术,2008,32(19):5-9.
    [58]杨小兵,李兴源,金小明,等.基于调制理论的换流变压器铁心饱和不稳定分析[J].电网技术,2009,33(20):50-53.
    [59]任景,李兴源,金小明等.多馈入高压直流输电系统中逆变站滤波器投切引起的换相失败仿真研究[J].电网技术,2008,,32(12):17-22.
    [60]郝巍,李兴源,金小明,等.直流输电引起的谐波不稳定及其相关问题[J].电力系统自动化,2006,30(19):94-99.
    [61]孙志媛,梁小冰,孙艳.基于EMTDC的多馈入直流输电系统仿真研究[J].电力系统自动化,2006,30(S):295-298.
    [62]傅闯,饶宏,黎小林.交直流混合电网中直流50Hz和100Hz保护研究[J].电力系统自动化,2008,32(12):57-60.
    [63]周红阳,余江,黄佳胤,等.南方电网直流100Hz保护的改进措施[J].电力自动化设备,2007,27(12):96-100.
    [64]张翔,田杰,李海英,等.适用于直流融冰装置的基频保护[J].中国电机工程学报,2010,30(34):99-104.
    [65] JONSSON Karl-ola. Technical report of DC system protection of Three Gorges-Guangdong±500kV DC t ransmission project[R]. Sweden: ABB,2004.
    [66] JONSSON Karl-ola. Technical report of DC system protection of ThreeGorges-Shanghai±500kV DC t ransmission project [R]. Sweden: ABB,2004.
    [67] ESTERS. DC protection software design report (TSQ)[R]. Germany: Siemens,1998.
    [68] PRIEBE. DC protection software design report(GG1)[R]. Germany: Siemens,2004.
    [69] PRIEBE. Study report of DC protection coordination (GG1)[R].Germany: Siemens,2003.
    [70]张璞,王钢,李海锋.直流馈入下的输电线路距离保护动作特性分析[J].电力系统自动化,2012,36(6):56-62.
    [71]张璞,王钢,李海锋,朱革兰.直流馈入下的输电线路电流差动保护动作特性分析[J].电力系统自动化,2010,38(10):1-5.
    [72]李海锋,王钢,朱革兰,等.直流馈入下的工频变化量方向纵联保护动作特性分析:(二)故障线路的方向保护.电力系统自动化,2009,33(10):47-53.
    [73]李海锋,王钢,朱革兰,等.直流馈入下的工频变化量方向纵联保护动作特性分析:(三)非故障线路的方向保护.电力系统自动化,2009,33(11):43-48.
    [74]张健康,索南加乐,焦在滨,粟小华.交直流混联电网突变量选相元件动作性能分析[J].电力系统自动化,2011,35(17):76-80.
    [75]张健康,索南加乐,何方明,粟小华等.交直流混联电网工频变化量距离保护动作特性分析[J].电力系统自动化,2012,36(?):1-6.
    [76]王钢,李志铿,李海锋,等.交直流系统的换流器动态相量模型[J].中国电机工程学报,2010,30(1):59-64.
    [77] Stankovic A M, Aydin T. Analysis of asymmetrical faults in power systems usingdynamic phasors[J]. IEEE Trans on Power Systems,2000,15(3):1062-1068.
    [78]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004:61-66.
    [79]杨汾艳,徐政.直流输电系统典型暂态响应特性分析[J].电工技术学报,2005,20(3):45-52.
    [80] KUNDUR P.电力系统稳定与控制[M].北京:中国电力出版社:2002:379-381.
    [81]张伯明,陈寿孙,严正.高等电力网络分析[M].北京:清华大学出版社,2007:127-136.
    [82]马志强.变压器直流偏磁原理性仿真.广东电力,2004,17(2):5-9.
    [83] Lahtinen M, Elovaara J. GIC occurrences and GIC test for400kV system transformer.IEEE Transactions on Power Delivery,2002,17(2):555-561.
    [84] Bolduc L, Langlois P, Boteler D et al. A study of geomagnetic disturbances inQuebec1,General Results. IEEE Transactions on Power Delivery,1998,13(4):1251-1256.
    [85] Bolduc L, Langlois P, Boteler D et al. A study of geomagnetic disturbances inQuebec2,Detailed Analysis of a Large Event. IEEE Transactions on Power Delivery,2000,15(1):272-278.
    [86]钟连宏,陆培均,仇志成等.直流接地极电流对中性点直接接地变压器影响.高电压技术,2003,29(8):8-12.
    [87]尚春. HVDC地中电流对交流变压器影响的抑制措施[J].高电压技术,2004,30(11):52-54.
    [88]桂重.高压直流输电系统铁芯饱和型谐波不稳定性研究[D].华中科技大学,2007.
    [89]辜承林,陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2001.
    [90]《电力变压器手册》编写组.电力变压器手册.沈阳:辽宁科学技术出版社,1990.
    [91]李晓萍,文习山,陈慈萱.单相变压器直流偏磁励磁电流仿真分析.高电压技术,2005,31(9):8-10.
    [92]樊丽娟,穆子龙,金小明等.高压直流输电系统送端谐波不稳定问题的判据[J].电力系统自动化,36(4):62-67.
    [93]晏小彬,刘天琪,李兴源等.送端多直流落点谐波耦合引发铁心饱和不稳定的研究[J].电力系统保护与控制,40(16):1-7.
    [94] Xiao Jiang, A.M. Gole. A frequency scanning method for the identification ofharmonic instabilities in HVDC systems. IEEE Transactions on Power Delivery,1995,10(4):1875-1881.
    [95]曾勇刚,李建设,唐红兵,等.中国南方电网2007年年度运行方式[R].广州:中国南方电网电力调度通信中心,2007.
    [96]余江,黄佳胤.高压直流输电的保护系统研究[R].广州:中国南方电网电力调度通信中心,2006.
    [97] YU Jiang, ZHOU Hong-yang, HUANG Jia-yin, et al. A Practical Method to Analyzethe Operation of100Hz Protection during AC System Fault in Multi-feed HVDCSystem [C], Proceeding of2007HVDC Users Conference, Yichang, China,2007.
    [98]傅闯, PRIEBE T, KUMAR D.高压直流输电系统100Hz保护研究报告[R].广州:中国南方电网技术研究中心,2007.
    [99]余江,黄佳胤,陈朝晖.多馈入直流系统100Hz保护交流故障时动作特性研究[R].广州:中国南方电网电力调度通信中心,2007.
    [100]余江,黄佳胤.高压直流输电的保护系统研究———技术报告[R].广州:中国南方电网电力调度通信中心,2006.
    [101]蒋金山,何春雄,潘少华.最优化计算方法[M].华南理工大学出版社出版,2008.
    [102]王俊波,田源,任章.基于最优化问题的混合再入制导方法[J].北京航空航天大学学报,2010,36(6):737-740.
    [103] Bianchini M, Fanelli S, Gori M. Optimal Algorithms forWell-conditioned NonlinearSystems of Equations[J].IEEE Trans on Computers,2001,50(7):689-698.
    [104] Eberhart RC, Shi Y. Comparing Inertia Weights and Constriction Factors in ParticleSwarm Optimization[A]. In: Piscataway ed. Proc Congress on EvolutionaryComputation[C]. San Diego, CA, NJ: IEEE Press,2000.84-88.
    [105] Kennedy J, Eberhart R, Particle Swarm Optimization[A]. In:Proceedings of IEEEInternational Conference on Neural Networks[C]. Perth, Australia:1995.1942-1948.
    [106] Van Den Bergh F, Engelbrent A P. A New Locally Convergent Particle SwarmOptimizer[A]. In: Proceedings of IEEE Conference on Systems, Man, andCybernetics[C]. Hammamet, Tunisia:2002.96-101.
    [107] Mattavelli P, Stankovic A.M, Verghese G C. SSR Analysis with dynamic phasor modelof thyristor-controlled series capacitor. IEEE Transactions on PowerSystems[J],1999,14(1):200-208.
    [108] Grcar B, Znidaric M, Stankovic A M. Dynamic phasors in power system analysis andprotection design[J].12-th Intl.Conf.on Power System Protection,2000, Bled,Slovenia, Sep.2000,207-212.
    [109]鄂志君,应迪生,陈家荣,等.动态相量法在电力系统仿真中的应用[J].中国电机工程学报,2008,28(31):42-47.
    [110] Stankovic A M, Mattavelli P, Caliskan V, et al. Modeling and Analysis of FACTSDevices with Dynamic Phasors. In: Proceedings of PES Winter Meet[J]. Singapore:2000.1440-1446.
    [111]黄胜利.时变动态相量理论在电力系统分析中的应用[D].中国电力科学研究院,2002.
    [112]刘百芬,张利华.信号与系统[M].人民邮电出版社,2012.
    [113]郑传材,黄立滨,管霖,等.800kV特高压直流换相失败的RTDS仿真及后续控制保护特性研究[J].电网技术,2009,23(18):14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700