用户名: 密码: 验证码:
配电线路在线故障识别与诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力线路是电网运行的命脉,它在输送电能的同时又相当脆弱,任何来自外力的破坏以及工作人员的错误操作,都有可能造成大面积停电,甚至电网瓦解,给社会经济和人民群众的生活带来巨大危害。因此,开展电力线路在线检测与诊断方法研究,对于及时处理故障,恢复系统正常运行,维护电力系统安全和用户经济利益都有非常重要的意义。
     国内外对输电线路的在线检测与诊断研究较多,而对配电线路研究较少,并且偏重于线路发生故障后的诊断与定位,属于离线故障诊断。现有的监测装置和定位装置不能对配电线路的运行状态做到实时监测,也不能对线路的瞬时故障和特征不明显的高阻抗故障做到有效检测和诊断,更不具备对线路早期故障作出预报的功能。配电线路的一些早期故障若不能及时排除,很可能发展成为短路故障,给电力系统的安全运行造成危害。
     针对目前没有配电线路在线监测、诊断及故障预报系统的情况,根据配电线路运行的稳态信息和暂态信息,本文提出了一套配电线路在线故障监测、诊断及预报系统的方案,并研发出监测装置,进行了挂网运行测试。主要研究内容包括:电压电流信息获取监测装置的研制;基于希尔伯特-黄变换的故障特征量抽取方法研究;提出了基于HPL方法的故障初步分类和详细分类方法;最后提出了根据零序瞬时功率方向定位故障线路的方法,并将故障诊断的结果通过无线网络传送给电力调度人员,为其制定应对措施提供决策依据。
     具体内容和主要成果如下:
     (1)利用配电线路故障信号包含的非基频暂态信息,结合希尔伯特-黄变换适用于非线性、非平稳信号分析的特点,提出了一套完整的配电线路在线监测和诊断方法。
     (2)首次提出了基于希尔伯特-黄变换的故障特征向量抽取方法来提取配电线路故障信号暂态信息,把零序电压的一阶本征模态分量的瞬时幅值在一个周波内的采样值之和作为判断故障的依据。研究结果表明:这种方法不仅能够检测单相接地、两相短路接地等故障,也可以有效检测出配电线路中难以提取故障特征的高阻故障和间歇性故障。
     (3)首次提出了HPL方法用于线路故障初步分类和详细分类。首先通过对三相电压和三相电流信号进行希尔伯特-黄变换,分别提取出故障三相电压和三相电流信号的高频成分;再利用其一阶和二阶本征模态分量的瞬时幅值构造出故障特征向量;然后采用主成分分析方法对故障特征向量实施降维,抽取出故障特征向量的主成分;最后基于最小二乘支持向量机对各种故障特征进行辨识,判断出配电线路故障类型。研究结果表明:该方法不仅能够有效辨识配电线路的高阻故障、间歇性故障和低阻故障,而且能对低阻故障的单相接地、两相短路、两相短路接地、三相短路或三相短路接地故障以较高的正确率进行分类。
     (4)首次提出了根据零序瞬时功率方向定位故障线路的方法。首先抽取线路故障的零序电压和零序电流暂态分量,再计算零序瞬时功率,最后根据零序瞬时功率方向定位故障线路。通过仿真和现场测试表明:该方法能有效定位发生高阻故障或间歇性故障的线路,并根据线路故障类型做出两种决策:①对于接地或短路故障,隔离故障线路、传送故障位置;②对于高阻故障或间歇性故障,传送故障位置。大大缩短了故障查找时间,降低了线路故障所造成的影响。
     (5)利用仿真数据和故障录波数据对文中所提出的配电线路故障检测的模型、方法,配电线路故障分类方法和故障线路定位方法进行了验证,PSCAD和Matlab仿真软件的仿真结果表明本文提出的算法正确可靠。进一步研制出监测装置进行挂网测试,受条件限制,只对高阻故障进行了现场试验,试验结果表明监测装置能较好地检测故障并定位故障线路,本文提出的配电线路在线监测、识别与诊断系统的方案可行。
Power line is very important in power system, and it takes the task of electricpower transmission. At the same time, power line is quite fragile, any damage fromoutside forces and wrong operation from staff, may cause widespread blackouts, andeven power grid collapse, which will bring great harm to the local economicdevelopment, people's life and social stability. Therefore, rapid detection and faultdiagnosis of power line fault has important significance for treating failure, restoring thenormal operation of power system, maintaining the security of power system andeconomic interests of users.
     Fault detection and diagnosis for transmission line and distribution line is alwaysan interesting topic for power engineering personnel. More researches are placed ontransmission lines at home and abroad, and neglected distribution line. At present, thestudy of distribution line emphasis on diagnosis and location of line failure, whichbelong to offline fault diagnosis. Existing monitoring devices and positioning devicescan not monitor real-time situation.of distribution line, can not detect transient faultsand high impedance faults, and can not predict early failure of distribution line. If earlyfaiure can not be ruled out, it will develop into short-circuit fault, which will bring harmto safe operation of power system.
     Online monitoring, diagnosis and fault prediction system of distribution lines is notrun in real system, in this case, this paper proposed a set of system solution includingonline state monitoring, diagnosis and foresting using the steady-state characteristicsand transient characteristics of distribution line fault information. A monitoring device,which is installed in the main line branch, is developed together with company. Themain contents of research include: The fault feature vectors are extracted byHilbert-Huang transform from voltage and current information; In order to determinefault type, HPL method is proposed to carry on preliminary classification and detailedclassification; Finally, zero-sequence instantaneous power direction is used to identifythe fault line, the results of fault diagnosis are transmitted by a wireless to powerdispatch staff, this results provide the basis for decision making. Details and mainresults are as follows:
     (1) According to two facts that distribution line fault signal contains thenon-fundamental frequency transient information and Hilbert-Huang transform is applicable to analysize nonlinear, non-stationary signals, this paper proposed a systemfor online monitoring, classification, recognition of distribution line.
     (2) The paper first proposed the use of Hilbert-Huang Transform method toextract transient information of the distribution line fault signal, that is, decompose thezero sequence voltage signal into intrinsic mode functions, obtain instantaneousamplitude of the first order intrinsic mode fuction using Hilbert transform, calculate thesummation of sampling value in one cycle, which is considered as criterion to judge linefault in distribution system. The results showed that: this method is not only able todetect high impedance fault and intermittent fault, which is difficult to effectivelyextract the fault characteristics of distribution line, it is effective to single phase toground, the two-phase short-circuit grounding fault and so on.
     (3) This paper first proposed HPL method, which is used to premiliaryclassification and detailed classification for distribution line fault type. Three-phasevoltage and three-phase current are obtained from monitoring device. Once fault occurs,the high frequency components of fault signal are extracted from three-phase voltageand three-phase current using Hilbert-Huang transform, respectively. The instantaneousamplitude of the first two-order intrinsic mode fuction are used to form fault featurevectors, the dimensionality reduction of fault feature vectors is implemented byprincipal component analysis approach, the principal component obtained are used asthe input vector to least squares support vector machines for various fault featuresidentification, determine the fault type of the distribution line. The results show that:this method can not only recognize high impedance faults, intermittent faults and lowresistance faults, but also recognize single-phase short-circuit fault, two-phaseshort-circuit, two-phase short circuit to ground, three-phase short-circuit or three-phaseshort-circuit ground fault.
     (4) This paper first proposed zero-sequence instantaneous power direction in theincipient fault diagnosis of distribution lines, main lines branch of zero-sequencevoltage and zero-sequence current of main line branches are used to extract the transientcomponent of fault, calculate the zero-sequence instantaneous power. According to thezero sequence instantaneous power direction, the fault line is identified. The simulationand field test results show that: this method can effectively identify high impedancefaults and intermittent faults, and give two operating options:①For grounding orshort-circuit fault, isolate the fault line and give the fault position at the same time.②For high impedance fault and intermittent fault, transmit fault location. The method greatly reduces maintenance time and lower fault impact.
     (5) The proposed algorithms are verified by using the simulation data andmeasured data. The field test is carried out together with company. The methology offault detection, classification and recognition is validated by using simulation softwareof PSCAD and Matlab under the conditions of high impedance fault, intermittent faultand low resistance fault, the simulation results verify the correctness of the proposedmethod; Because some key techniques are not resolved in the application, this paperonly validates high impedance in field test, the result also shows the effectiveness of theproposed method.
引文
[1]张帆.基于单端暂态行波的接地故障测距与保护研究[D].山东大学,2008.
    [2]苗友忠.配电系统馈线整体化暂态保护与分布智能故障定位的研究[D].天津大学,2004.
    [3]何正友.配电网故障诊断[M].成都:西南交通大学出版社,2011.
    [4] L.Xu, M.Y.Chow. A classification approach for power distribution systems fault causeidentification[J]. IEEE Transactions on Power Systems,2006,21(1):53-60.
    [5] Ekici, Sami. Multi-class support vector machines for classification of transmission linefaults[J]. Energy Education Science and Technology Part a-Energy Science and Research,2012,28(2):1015-1026.
    [6] Z. He, L. Fu, S. Lin, Z. Bo. Fault Detection and Classification in EHV Transmission LineBased on Wavelet Singular Entropy[J]. IEEE Transactions on Power Delivery,2010,25(4):2156-2163.
    [7] A.A.Yusuff, A.A.Jimoh, J.L.Munda. Determinant-based feature extraction for fault detectionand classification for power transmission lines[J]. IET Generation Transmission&Distribution,2011,5(12):1259-1267.
    [8]杨光亮,乐全明,郁惟镛.基于小波神经网络和故障录波数据的电网故障类型识别[J].中国电机工程学报,2006,26(10):99-103.
    [9]段建东,张保会,周艺.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6.
    [10]董新洲,贺家李,葛耀中.基于小波变换的行波故障选相研究,第2部分:仿真实验结果[J].电力系统自动化,1999,23(1):20-22.
    [11] M. T. L. R. U. AL-Dabbagh. High impedance fault detector (Austrialian).1992.
    [12] A. Nikander, P.Jarventausta. Methods for earth fault identification and distance estimation ina compensated medium voltage distribution network[J]. Proceedings of the energymanagement and power delivery,1998:595-600.
    [13] J.Carr. Detection of high impedance fault on multi-grounded primary distribution systems[J].IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(4):2008-2016.
    [14] S. Hanninen, M. Lehtonen. Method for detection and location of very high resistive earthfaults[J]. European Transactions on Electrical Power,1999,9:285-291.
    [15] F. M. Uriarte. Modeling, Detection, and Localization of high impedance faults inlow-voltage distribution feeders[D]. Virginia Polytechnic Institute and State University,2003.
    [16] D.I.Jeerings, I.R.Linders. A practical protective relay for down conductor faults[J]. IEEETransactions on Power Delivery,1991, PWRD-6(2):565-574.
    [17] J.Reason. Relay detects down wires by fault current harmonics[J]. Electrical World,1994,208(12):58-59.
    [18] X. Zeng, K.K.Li, W.L.Chan, X. Yin. Novel techniques for earth fault feeder detection basedon negative sequence current in industry power systems. In Thirty-sixth IAS AnnualMeeting, pp.1831-1837.2001.
    [19] S.J.Basler, K. A. Clements, D.J.Lawrence. A microprocessor based technique for detectionof high impedance faults[J]. IEEE Transactions on Power Delivery,1986,PWRD-1(3):252-258.
    [20] H.L.Graham, A.J.Carlson, T.A.Granberg. Broken conductor and high impedance faultdetection by high frequency impedance monitoring. In IEEE PES Winter Meeting(Vancouver).1980.
    [21] P.W.Carswell. The detection of high impedance faults using random fault behavior[D]. TexasA&M University,1988.
    [22] B.D.Russell, B.M.Aucion. Energy analysis fault detection system (U.S.Patent).1996.
    [23] M.Al-Dabbagh, R.Daoud, R.Coulter. Improved microprocessor based distribution feederearth fault protection using pattern recognition. In Fourth International Conference onDevelopments in power protection, pp.172-176.1989.
    [24] P.R.Silva, A.S.Jr, W.C.Boaventura, G.C.Miranda, J.A.Scott. Impulsive response analysis of areal feeder for high impedance fault detection. In IEEE Transmission and DistributionConference (Chicago).1994.
    [25] A.A.Girgis, W.Chang, E.B.Makram. Analysis of high impedance fault generated signalsusing a kalman filtering approach[J]. IEEE Transactions on Power Delivery,1990,PWRD-5(4):1714-1724.
    [26] R. H. Salim, K. R. C. de Oliveira, A. D. Filomena, M. Resener, A. S. Bretas. Hybrid faultdiagnosis scheme implementation for power distribution systems automation[J]. IEEETransactions on Power Delivery,2008,23(4):1846-1856.
    [27] S. A. Probert, Y. H. Song. Detection and classification of high frequency transients usingwavelet analysis. In2002IEEE Power Engineering Society Summer Meeting, Vols1-3,Conference Proceedings, pp.801-806.2002.
    [28] U.D.Dwivedi, S.N.Singh, S.C.Srivastava. A wavelet based approach for classification andlocation of faults in distribution systems. In INDICON2008. IEEE India Conference andExhibition on Control, Communications and Automation.2008.
    [29]杜红卫,孙雅明,刘弘靖,董伟.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,(05):52-55.
    [30]天津大学.电力系统继电保护原理[M].北京:电力工业出版社,1980.
    [31] K. Karthikeyan. Power System fault detection and classification by wavelet transforms andadaptive resonance theory neural networks[D]. University of Kentucky,2007.
    [32] S. R. Samantaray, P. K. Dash, S. K. Upadhyay. Adaptive Kalman filter and neural networkbased high impedance fault detection in power distribution networks[J]. InternationalJournal of Electrical Power&Energy Systems,2009,31(4):167-172.
    [33]赵智,王艳松,鲍兵.基于小波神经网络的配电网故障类型识别[J].电力系统及其自动化学报,2007,19(6):93-96.
    [34] V. Ziolkowski, I. Nunes da Silva, R. Flauzino, J. A. Ulson. Fault identification in distributionlines using intelligent systems and statistical methods.Paper, Circuits and Systems for SignalProcessing, Information and Communication Technologies, and Power Sources and Systems,Vol1and2, Proceedings.2006.
    [35] K. L.Butler, J. A.Momoh. A neural net based approach for fault diagnosis in distributionnetworks.Paper,2000IEEE Power Engineering Society Winter Meeting-Vols1-4,Conference Proceedings.2000.
    [36] J. H. Ko, J. C. Shim, C. W. Ryu, C. G. Park, W. Y. Yim. Detection of high impedance faultsusing neural nets and chaotic degree.Paper, Proceedings of Empd '98-1998InternationalConference on Energy Management and Power Delivery, Vols1and2and Supplement.1998.
    [37]郭创新,朱传柏,曹一家,吴欣.电力系统故障诊断的研究现状与发展趋势[J].电力系统自动化,2006,(08):98-103.
    [38]钱涛.粗糙集及神经网络在配电网故障诊断中的应用研究[D].南京理工大学,2006.
    [39] W.-H. Chen, C.-W. Liu, M.-S. Tsai. On-line fault diagnosis of distribution substations usinghybrid cause-effect network and fuzzy rule-based method[J]. IEEE Transactions on PowerDelivery,2000,15(2).
    [40] B.Das. Fuzzy logic-based fault-type identification in unbalanced radial power distributionsystem[J]. IEEE Transactions on Power Delivery,2006,21(1):278-285.
    [41] M. J. Mousavi, K. L. Butler-Purry. A Novel Condition Assessment System for UndergroundDistribution Applications[J]. IEEE Transactions on Power Systems,2009,24(3):1115-1125.
    [42]刘学民.基于Hilbert-Huang变换的配电网电缆接地故障定位研究[D].中国石油大学,2010.
    [43]王艳松,谭志勇,刘学民.基于小波奇异熵和支持向量机的配电网故障类型识别[J].电力系统保护与控制,2011,39(23):16-20.
    [44] D. Hou, N.Fischer. Deterministic high-impedance fault detection and phase selection onungrounded distribution systems. In2007IEEE Industrial&Commercial Power SystemTechnical Conference.2007.
    [45] M. Togami, N. Abe, T. Kitahashi, H. Ogawa. ON the application of a machine learningtechnique to fault-diagnosis of power distribution lines[J]. IEEE Transactions on PowerDelivery,1995,10(4):1927-1936.
    [46]贾清泉,陈丽,袁野.应用相平面和分层聚类的配电网单相接地故障特征分类[J].电力系统自动化,2009,(08):68-71.
    [47] T. Cui, X. Dong, Z. Bo, A. Juszczyk. Hilbert-transform-based transient/intermittent earthfault detection in noneffectively grounded distribution systems[J]. IEEE Transactions onPower Delivery,2011,26(1):143-151.
    [48]徐青山.电力系统故障诊断及故障恢复[M].北京:中国电力出版社,2007.
    [49] A.Warrington. Protective relays, their theory and practice[M].Klewer publishers,1978.
    [50] P. S. R. Committee. IEEE Guide for Determining Fault Location on AC Transmission andDistribution Lines (IEEE Std).2004.
    [51] T. Takagi, Y. Yamakoshi, J. Baba, K. Uemura, T. Sakaguchi. A new algorithm of an accuratefault location for EHV-UHV transmission-lines-.1. Fourier transformation method[J]. IEEETransactions on Power Apparatus and Systems,1981,100(3):1316-1323.
    [52]吴振升.配电网接地故障定位传递函数法理论研究[D].清华大学,2003.
    [53]李孟秋,王耀南,王辉.小电流接地系统单相故障点探测方法的研究[J].中国电机工程学报,2001,21(10):6-9.
    [54]冯文胜.电缆故障指示器的应用[J].广东电力,2002,15(5):66-68.
    [55] E.Aikawa, A.Ueda, W.Matanabe, H.Takahashi, M.Imataki. Development of new conceptoptical zero-sequence current voltage transducers for distribution network[J]. IEEETransactions on Power Delivery,1991,6(1):414-420.
    [56] Y. Yang, D.Divan, R.G.Harley, T.G.Habetler. Power line sensornet-a new concept for powergrid monitoring. In2006IEEE Power Engineering Society General Meeting.2006.
    [57]徐汝俊,严凤.10kV配电网单相接地故障定位方法综述[J].中国电子商情:通信市场,2009,(6):133-137.
    [58]刘健,倪建立,杜宇.配电网故障区段判断和隔离的统一矩阵算法[J].电力系统自动化,1999,23(1):31-33.
    [59]朱发国,孙德胜,姚玉斌.基于现场监控终端的线路故障定位优化矩阵算法[J].电力系统自动化,2000,24(8):42-44.
    [60]季涛.中性点非有效接地系统行波故障测距技术[M].北京:北京理工大学出版社,2008.
    [61] Z.Q.Bo, G.Weller, M. A.Redfern. Accurate fault location technique for distribution systemusing fault-generated high-frequency transient voltage signals[J]. IEEProceedings-Generation Transmission and Distribution,1999,146(1):73-79.
    [62] J. Mora-Florez, J. Melendez, G. Carrillo-Caicedo. Comparison of impedance based faultlocation methods for power distribution systems[J]. Electric Power Systems Research,2008,78(4):657-666.
    [63] R.Das. Determining the locations of faults in distribution systems[D]. University ofSaskatchewan,1998.
    [64]杨凌霄,牛惠平.基于双端阻抗法的配电网故障定位研究[J].工矿自动化,2008,5:30-32.
    [65]于盛楠.配电网故障定位的实用方法研究[D].华北电力大学(北京),2007.
    [66] F. H. Magnago, A. Abur. Fault location using wavelets[J]. IEEE Transactions on PowerDelivery,1998,13(4):1475-1480.
    [67] X. a. Qin, X. Zeng, X. Zhang, Z. Li. Traveling wave based distribution lines fault locationusing Hilbert-Huang transform.Paper,2008IEEE Industry Applications Society AnnualMeeting.2008.
    [68]季涛,孙同景,徐丙垠,陈平,薛永端.配电混合线路双端行波故障测距技术[J].中国电机工程学报,2006,(12):89-94.
    [69]严凤,杨奇逊,齐郑.基于行波理论的配电网故障定位方法的研究[J].中国电机工程学报,2004,24(9):37-43.
    [70]庞清乐.小电流接地故障选线与定位技术[M].北京:电子工业出版社,2010.
    [71]桑在中,潘贞存,丁磊,张慧芬.“S注入法”选线定位原理及应用[J].中国电力,1997,(06):44-45+62.
    [72]桑在中,潘贞存,李磊,张慧芬.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术,1997,(10):50-52+55.
    [73]戚宇林.中压配电网单相接地故障定位的研究与实现[D].华北电力大学,2007
    [74] M.Mirzaei, M. Z. A. A. Kadir, E.Moazami, H.Hizam. Review of fault location methods fordistribution power system[J]. Australian Journal of Basic and Applied Sciences,2009,3(3):2670-2676.
    [75] M. A. Al-shaher, M. M. Sabry, A. S. Saleh. Fault location in multi-ring distribution networkusing artificial neural network[J]. Electric Power Systems Research,2003,64(2):87-92.
    [76]廖大发,刘会金,傅志伟.基于神经网络模式的故障定位[J].湖北电力,2004,28(1):9-11.
    [77] D. Thukaram, H. P. Khincha, H. P. Vijaynarasimha. Artificial neural network and supportvector machine approach for locating faults in radial distribution systems[J]. IEEETransactions on Power Delivery,2005,20(2):710-721.
    [78] D. Thukaram, U. J. Shenoy, H. Ashageetha, IEEE. Neural network approach for faultlocation in unbalanced distribution networks with limited measurements.Paper,2006IEEEPower India Conference, Vols1and2.2006.
    [79]韩叙.基于Hilbert-Huang变换的电力系统故障行波定位研究[D].燕山大学,2010.
    [80]余晓丹,刘众仆,王钢,贺家李.应用模糊神经网络实现故障测距[J].中国电力,1998,(03):10-13.
    [81]卫志农,何桦,郑玉平.配电网故障区间定位的高级遗传算法[J].中国电机工程学报,2002,(04):128-131.
    [82]李超文,何正友,张海平,高辉.基于二进制粒子群算法的辐射状配电网故障定位[J].电力系统保护与控制,2009,(07):35-39.
    [83]束洪春,孙向飞,司大军.基于故障投诉电话信息的配电网故障定位粗糙集方法[J].电网技术,2004,(01):64-66+70.
    [84]刘淑萍,韩正庆,高仕斌.基于多Agent的配电网故障处理方案的研究[J].继电器,2004,32(22):39-43.
    [85]黄新波,陈荣贵,王孝敬,孙钦东,蔡伟,章云.输电线路在线监测与故障诊断[M].北京:中国电力出版社,2008.
    [86]于永源,杨绮雯.电力系统分析[M].北京:中国电力出版社,2007.
    [87]周庆峰.配电网接地故障定位研究[D].天津大学,2010.
    [88] S. R. Nam, J. K. Park, Y. C. Kang, T. H. Kim, I. IEEE. A Modeling method of a highimpedance fault in a distribution system using two series time-varying resistances inEMTP[M].2001.
    [89] N. I. Elkalashy, M. Lehtonen, H. A. Darwish, M. A. Izzularab, A. I. Taalab, IEEE. Modelingand experimental verification of a high impedance arcing fault in MV networks[M].2006.
    [90] N. I. Elkalashy, M. Lehtonen, H. A. Darwish, M. A. Izzularab, A.-M. I. Taalab. Modelingand experimental verification of high impedance arcing fault in medium voltage networks[J].IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(2):375-383.
    [91] A.E.Emanuel, D.Cyganski, J.A.Orr, S.Shiller, E.M.Gulachenski. High impedance faultarcing on sandy soil in15kV distribution feeders-contributions to the evaluation of thelow-frequency spectrum[J]. IEEE Transactions on Power Delivery,1990,5(2):676-686.
    [92] S. R. Samantaray, B. K. Panigrahi, P. K. Dash. High impedance fault detection in powerdistribution networks using time-frequency transform and probabilistic neural network[J].IET Generation Transmission&Distribution,2008,2(2):261-270.
    [93] M. M. Alamuti, H. Nouri, R. M.Ciric, V. Terzija. Intermittent Fault Location in DistributionFeeders[J]. IEEE Transactions on Power Delivery,2012,27(1):96-103.
    [94]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [95]徐红梅.内燃机振声信号时频特性分析及源信号盲分离技术研究[D].浙江大学,2008.
    [96] N.E.Huang, Z.Shen, S.R.Long. A new view of nonlinear water waves: The Hilbertspectrum[J]. Annual Review of Fluid Mechanics,1999,31:417-457.
    [97] N.E.Huang, Z.Shen, S.R.Long, M.L.C.Wu, H.H.Shih, Q.N.Zheng, N.C.Yen, C.C.Tung,H.H.Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear andnon-stationary time series analysis[J]. Proceedings of the Royal Society of London Seriesa-Mathematical Physical and Engineering Sciences,1998,454(1971):903-995.
    [98]黄元庆.基于Hilbert-Huang变换的绝缘子泄漏电流信号分析[D].华北电力大学(河北),2009.
    [99]王学敏.基于Hilbert-Huang变换的桥梁监测信号分析与处理和时变模态参数识别[D].中南大学,2008.
    [100] J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, R. B. Perez. A CriticalComparison Between DWT and Hilbert-Huang-Based Methods for the Diagnosis of RotorBar Failures in Induction Machines[J]. IEEE Transactions on Industry Applications,2009,45(5):1794-1803.
    [101] N.E.Huang, Z. Wu. A review on Hilbert-Huang transform: method and its applications togeophysical studies[J]. Reviews of Geophysics,2008,46(2).
    [102] Z. K. Peng, P. W. Tse, F. L. Chu. A comparison study of improved Hilbert-Huang transformand wavelet transform: Application to fault diagnosis for rolling bearing[J]. MechanicalSystems and Signal Processing,2005,19(5):974-988.
    [103]徐振洋.小波分析方法和hht法在友谊隧道爆破振动信号分析中的研究与应用[D].昆明理工大学,2010.
    [104]赵海峰.基于hht的往复压缩机故障诊断研究[D].东北石油大学,2011.
    [105]束洪春.电力工程信号处理应用[M].北京:科学出版社,2009.
    [106]李丹丹.基于hht与遗传算法的配电网单相接地故障测距研究[D].中国石油大学,2011.
    [107]马宏忠.电机状态监测与故障诊断[M].北京:机械工业出版社,2007.
    [108] J. Chen, Y. H. Wang, S. L. Weng. Research on fault detection and identification of gasturbines sensors based on wavelet entropy[J]. Journal of the Energy Institute,2010,83(4):202-209.
    [109] D. Y. Jung, S. M. Lee, H. M. Wang, J. H. Kim, S. H. Lee. Fault detection method with PCAand LDA and its application to induction motor[J]. Journal of Central South University ofTechnology,2010,17(6):1238-1242.
    [110] K. Salahshoor, M. Kordestani, M. S. Khoshro. Fault detection and diagnosis of an industrialsteam turbine using fusion of SVM (support vector machine) and ANFIS (adaptiveneuro-fuzzy inference system) classifiers[J]. Energy,2010,35(12):5472-5482.
    [111] G. Stefatos, A. Ben Hamza. Dynamic independent component analysis approach for faultdetection and diagnosis[J]. Expert Systems with Applications,2010,37(12):8606-8617.
    [112]董新洲,耿中行,葛耀中.小波变换用于电力系统故障信号分析初探[J].中国电机工程学报,1997,17(6):421-424.
    [113]张兆宁,毛鹏,孙雅明.电力系统故障暂态信号的小波奇异性检测[J].继电器,2000,28(4):24-27.
    [114] M. Aktas, V. Turkmenoglu. Wavelet-based switching faults detection in direct torque controlinduction motor drives[J]. IET Science Measurement&Technology,2010,4(6):303-310.
    [115] J. R. Millan-Almaraz, R. J. Romero-Troncoso, R. A. Osornio-Rios, A. Garcia-Perez.Wavelet-based Methodology for Broken Bar Detection in Induction Motors withVariable-speed Drive[J]. Electric Power Components and Systems,2011,39(3):271-287.
    [116] A. A. Moghadas, M. Shadaram. Fiber Bragg Grating Sensor for Fault Detection in Radialand Network Transmission Lines[J]. Sensors,2010,10(10):9407-9423.
    [117]王成山,王继东.基于小波包分解的电能质量扰动分类方法[J].电网技术,2004,28(15):58-82.
    [118] S. Mohammadzadeh, S. S. Mortazavi, M. Ahmadzadeh. Electric Power Quality DisturbanceAssessment Using Wavelet Transform Analysis[J]. International Review of ElectricalEngineering-Iree,2010,5(6):2907-2913.
    [119] N. C. F. Tse, L. Zhou, L. L. Lai. Wavelet-based algorithm for power quality analysis[J].European Transactions on Electrical Power,2010,20(7):952-964.
    [120]尚婕,姜文刚,邓志良.基于小波变换模极大值的行波奇异性检测[J].华东船舶工业学院学报,2005,19(4):57-59.
    [121]张兆宁.电力系统故障暂态信号分析中的新数学方法研究[D].天津大学,1998.
    [122]何正友,钱清泉.电力系统暂态信号的小波分析方法及其应用[J].电力系统及其自动化学报,2002,14(4):1-5.
    [123] S. P. Valsan, K. S. Swarup. High-Speed Fault Classification in Power Lines: Theory andFPGA-Based Implementation[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1793-1800.
    [124]张宗包,袁荣湘,倪林.配电网混合线路单相弧光接地故障检测新方法[J].南方电网技术,2011,(05):81-85.
    [125]尤智文.上海10kv配网小电阻接地系统间歇性接地故障分析[D].上海交通大学,2011.
    [126]金国彬,李玲,黄绍平,李靖.基于AOKTFR理论的电力系统暂态信号分析新方法[J].电力自动化设备,2008,28(5):63-67.
    [127]张钧,何正友,谭熙静.一种基于anfis的配电网故障分类方法及其适应性分析[J].电力系统保护与控制,2011,(04):23-29.
    [128]张钧,李小鹏,何正友.采用自适应神经模糊推理系统的配电网故障分类方法[J].中国电机工程学报,2010,(25):87-93.
    [129] X. Long, Y. W. Li, W. Xu, C. Lerohl. A New Technique to Detect Faults in De-EnergizedDistribution Feeders-Part II: Symmetrical Fault Detection[J]. IEEE Transactions on PowerDelivery,2011,26(3):1902-1910.
    [130] X. Long, W. Xu, Y. W. Li. A New Technique to Detect Faults in De-Energized DistributionFeeders-Part I: Scheme and Asymmetrical Fault Detection[J]. IEEE Transactions on PowerDelivery,2011,26(3):1893-1901.
    [131] A. F. Naiem, Y. Hegazy, A. Y. Abdelaziz, M. A. Elsharkawy. A Classification Technique forRecloser-Fuse Coordination in Distribution Systems With Distributed Generation[J]. IEEETransactions on Power Delivery,2012,27(1):176-185.
    [132] N. Perera, A. D. Rajapakse. Development and Hardware Implementation of a FaultTransients Recognition System[J]. IEEE Transactions on Power Delivery,2012,27(1):40-52.
    [133]杨燕.基于主分量和独立分量分析的结构信号处理和损伤识别研究[D].武汉理工大学,2008.
    [134] R. Aguilar, F. Perez, E. Orduna. High-speed transmission line protection using principalcomponent analysis, a deterministic algorithm[J]. IET Generation Transmission&Distribution,2011,5(7):712-719.
    [135] J. H. Chen, T. Y. Hsu, C. C. Chen, Y. C. Cheng. Online Predictive Monitoring UsingDynamic Imaging of Furnaces with the Combinational Method of Multiway PrincipalComponent Analysis and Hidden Markov Model[J]. Industrial&Engineering ChemistryResearch,2011,50(5):2946-2958.
    [136] S. Gosav, M. Praisler, M. L. Birsa. Principal Component Analysis Coupled with ArtificialNeural Networks-A Combined Technique Classifying Small Molecular Structures Using aConcatenated Spectral Database[J]. International Journal of Molecular Sciences,2011,12(10):6668-6684.
    [137] L. Hao, P. L. Lewin, J. A. Hunter, D. J. Swaffield, A. Contin, C. Walton, M. Michel.Discrimination of Multiple PD Sources Using Wavelet Decomposition and PrincipalComponent Analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(5):1702-1711.
    [138] D. S. Javan, H. R. Mashhadi, S. A. Toussi, M. Rouhani. On-line Voltage and Power FlowContingencies Rankings Using Enhanced Radial Basis Function Neural Network and KernelPrincipal Component Analysis[J]. Electric Power Components and Systems,2012,40(5):534-555.
    [139]刘小龙.配电网运行经济性评价的研究[D].华北电力大学,2011.
    [140] Y. P. Gu, W. J. Zhao, Z. S. Wu. Online adaptive least squares support vector machine and itsapplication in utility boiler combustion optimization systems[J]. Journal of Process Control,2011,21(7):1040-1048.
    [141] R. J. Liao, J. P. Bian, L. J. Yang, S. Grzybowski, Y. Y. Wang, J. Li. Forecasting dissolvedgases content in power transformer oil based on weakening buffer operator and least squaresupport vector machine-Markov[J]. IET Generation Transmission&Distribution,2012,6(2):142-151.
    [142] P. K. Wong, C. M. Vong, H. C. Wong, K. Li. Modelling and Prediction of Spark-ignitionEngine Power Performance Using Incremental Least Squares Support Vector Machines[M].2010.
    [143] M. A. Kumar, R. Khemchandani, M. Gopal, S. Chandra. Knowledge based Least SquaresTwin support vector machines[J]. Information Sciences,2010,180(23):4606-4618.
    [144]宋雪雷.基于小波变换和支持向量机的电能质量扰动分析方法[D].哈尔滨工业大学,2007.
    [145] A. Van Messem, A. Christmann. A review on consistency and robustness properties ofsupport vector machines for heavy-tailed distributions[J]. Advances in Data Analysis andClassification,2010,4(2-3):199-220.
    [146] Y. H. Zhong, L. Zhao, Z. B. Liu, Y. Xu, R. Li. Using a support vector machine method topredict the development indices of very high water cut oilfields[J]. Petroleum Science,2010,7(3):379-384.
    [147]孙波,孙同景,薛永端,徐丙垠,季涛.基于暂态信息的小电流接地故障区段定位[J].电力系统自动化,2008,(03):52-55.
    [148]郑涛,刘万顺,吴春华,刘建飞,焦邵华.基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法[J].电力系统自动化,2003,27(23):51-55.
    [149] F. de Leon, J. Cohen. AC Power Theory From Poynting Theorem: Accurate Identification ofInstantaneous Power Components in Nonlinear-Switched Circuits[J]. IEEE Transactions onPower Delivery,2010,25(4):2104-2112.
    [150] M. Tanahashi, H. Ochiai. On the Distribution of Instantaneous Power in Single-CarrierSignals[J]. IEEE Transactions on Wireless Communications,2010,9(3):1207-1215.
    [151]康忠健,于伟.基于暂态高频零序瞬时功率的配电网故障选线方法[J].继电器,2007,(01):21-25.
    [152]王艳松,张萌萌.基于暂态分量的配电网单相接地故障选线新方法[J].中国石油大学学报,2006,30(3):135-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700