用户名: 密码: 验证码:
电力网一、二次系统可靠性分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
客观定量地评估电力系统可靠性能探明电力系统的薄弱环节,从提高系统可靠性的角度指明电力系统规划/优化的方向,以期实现电力系统安全、稳定、可靠等运行目标,达到可靠性与经济性的有机统一。为防止各种事故的发生,保证电力系统安全、稳定和经济运行,不但需要有性能稳定可靠的一次设备及其构成的一次系统,而且对各级二次设备和系统的可靠性也提出了很高的要求。多起大停电事故也警醒人们:电力系统是含一二次系统在内的系统工程。而长期以来电力系统可靠性评估理论在研究对象丰富程度、模型精细度和评估效率等方面都未能满足电力系统发展的要求。特别是在我国社会与经济快速协调发展的条件下,对电网一二次系统可靠性评估进行科学系统的研究分析更具现实迫切性以及重要的理论意义和工程应用价值。为此,本文针对新科学技术手段先后应用的现实和电网一二次系统的新特性,围绕电网一二次系统可靠性分析与应用问题开展研究工作,主要体现在以下几个方面:
     通过方差分析和正交设计,采用最小二乘法拟合缺陷率-使用年限曲线,发现二次设备使用年限对缺陷率有一般显著影响;针对电力系统二次设备运行特点和缺陷规律,建立了基于改进马尔可夫模型求解二次设备可靠性指标;对影响二次设备最优检修周期的各种参数进行灵敏度分析,表明自检系数、检修成功系数、保护装置故障率对最优检修周期的影响程度最强。
     针对电力自动化系统复杂性和特殊性,提出可定制自动化系统的概念,并试点建设;建立基于二元决策的故障树模型,将故障树分析法和重要度因子相结合,定量分析评估变电站自动化系统的可靠性,并采用灵敏度分析法探寻关键设备冗余配置的可靠性增强措施,并通过实际算例的评估验证了方法的有效性。
     作为现代电网的重要组成,数字化变电站是典型的多阶段任务系统。综合考虑数字化变电站中二次设备和通信系统的可靠性,建立了数字化变电站的多阶段任务系统故障树可靠性模型,实现由一、二次系统构成的可靠性综合评估方法,通过工程算例验证了所提模型和方法。
     基于模糊理论和概率论的云理论,提出了基于云理论的地区电网安全风险评估模型,提供了一种定性概念与定量数值分布之间的转换;通过实际电网仿真计算,有效证明了云理论在电力系统运行风险评估中的适用性。
     针对南方电网已形成具有特高压直流输电、多馈入直流的―八交五直‖交直流混合大电网的特点,通过可靠性指标的计算和灵敏度分析,探明了南方电网―十一五‖原规划电网的薄弱环节。以提高电网西电东送通道的输送能力,加强送端与受端的电气联系,提高系统的稳定水平为出发点,确定优化方案。计算分析表明:提出的优化措施大幅提高电网的暂态安全性水平,优化效果十分显著。
Objective and quantitative evaluation of power system reliability can explore theweakness and point out a way for power system planning/optimization from the view ofimproving reliability, in order to achieve the goal of keep security, stability and reliability ofpower system operation. To avoid accidents and keep security, stability and economic,primary devices and its system of stable and reliable performance are not only needed,reliability of different levels of secondary systems are also put forward very high demand.Multiple cases of blackout wake the people: power system is a systemic project, includingprimary and secondary systems. For a long time, power system reliability evaluation cannotsatisfy the development of power system in the way of object richness, model fineness andevaluation efficiency. Particularly, with the development of economy and society of China,power system reliability evaluation is of the great practical significance and engineering value.For this reason, the dissertation discussed reliability analysis and application of primary andsecondary system in power grid, according to the new characteristics of primary andsecondary systems. The main work is as follows:
     Least square method is used to fit defect rate with respect to service life, based onvariance analysis and orthogonal design. It is found that service life of secondary device hasgeneral significant influence on the defect rate; in accordance to the features of secondarysystem and the defect laws, reliability indices of secondary devices are proposed; sensitivityanalysis of influencing factors contributed to optimum maintenance cycle indicateself-checking factor, overhaul success factor, protection failure rate affects most.
     Aiming at complexity and particularity of automation system, binary decision fault treemodel are built, combing fault tree analysis and importance factor. And the approach isapplied to evaluation the reliability of substation automation system. Sensitivity analysismethod is employed to explore the enhance measures of key devices redundancy. Theengineering cases validated the availability of the approach.
     As part of the modern power grid, digital substation is typical phased-mission system.Considering the reliability of secondary devices and communication system, fault tree modelof phased-mission system is proposed, achieved comprehensive reliability assessment ofprimary and secondary system. The engineering cases validated the availability of theapproach.
     The cloud theory based on the traditional fuzzy set theory and the probability theory haspotential to solve both of them at the same time. Therefore, operational risk assessment of regional power grid is proposed, which provides an uncertain transformation model betweensome qualitative concepts described by natural language terms and some quantitative valuesdistributions. The numerical results of Guangzhou grid typical operation mode demonstratethe practicability and maneuverability of the approach proposed.
     According to the characteristics of China south grid which is an AC/DC hybridtransmission system with ultra high voltage direct current transmission system, multi-infeedhigh voltage direct current, the weakness of original planned grid are found by reliabilityevaluation and sensitivity analysis. In order to improve the transmission capacity, strengthenelectrical contact between send and receive terminals, increase system stable level, theoptimization scheme is determined. The results show that the proposed optimization schemecan advance the transient stability greatly, and the optimization effect is very significant.
引文
[1]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用.北京:水利电力出版社.1986
    [2]郭永基.电力系统可靠性分析.北京:清华大学出版社,2003
    [3]印永华,郭剑波,赵建军,卜广全.美加―8.14‖大停电事故初步分析以及应吸取的教训.电网技术,2003,27(10):8-11
    [4]刘永奇,谢开.从调度角度分析8.14美加大停电.电网技术,2004,28(8):10-15
    [5]编辑部.北美历次大停电比较及影响可靠性因素的变化.国际电力,2004,8(1):19-19
    [6] Richard E. Mathematical theory of reliability: A historical perspective. IEEE Trans. onReliability.1984,33(1):16-20
    [7] Desieno C. F, Stine L.L. Probability Method for Determining the Reliability of ElectricPower Systems. IEEE Trans. on PAS,1964:174-179
    [8] U.S.-Canada Power System Outage Task Force, Final report on the August14,2003Blackout in the United States and Canada: Causes and Recommendations,Available:.https://reports.energy.gov/BlackoutFinal-Web. pdf.
    [9] I. Dobson, B.A. Carreras, D.E. Newman, Branching process models for the exponentially increasing portions of cascading failure blackouts,38th Hawaii InternationalConference on System Sciences, January2005, Hawaii.
    [10] Dobson I, Carreras B A, Newman D E, A probabilistic loading-dependent model ofcascading failure and possible implications for blackouts. in Proc.35th HawaiiInternational Conference on System Sciences, pp.1-8,2002
    [11] B. Gou, H. Zheng, W. Wu, X. Yu, Probability distribution of power system blackouts.IEEE Power Engineering Society General Meeting, Tampa FL2007.
    [12] R.C. Hardiman, M.T. Kumbale, Y.V. Makarov, An advanced tool for analyzingmultiple cascading failures. Eighth International Conference on Probability MethodsApplied to Power Systems, Ames Iowa, September2004.
    [13] C.L. DeMarco, A phase transition model for cascading network failure. IEEE ControlSystems Magazine, December2001, pp.40-51.
    [14] M.E.J. Newman, The structure and function of complex networks. SIAM Review,vol.45, no.2,2003, pp.167-256.
    [15] Brown H. The use of digital computer in a generator reserve requirement study.AIEE Trans on PAS.1958,77:82-85
    [16] Ralperin H.Adler H. A determination of reserve--generating capability. AIEE Trans.on PAS.1958,77:530-544
    [17]别朝红,王锡凡.蒙特卡洛法在评估电力系统可靠性中的应用.电力系统及其自动化,1997,21(6):68-75
    [18]丁明,张瑞华.发输电组合系统可靠性评估的蒙特卡罗模拟.电网技术,2003,24(3):9-12
    [19]黄雯莹,任震.高压直流输电系统可靠性评估的FD法.重庆大学学报,1985,8(1):9-19
    [20]何建军,任震,王官洁等.变电站主接线可靠性评估的逐次FD法.电力系统及其自动化学报,1998,10(1):1-6
    [21] Chen C, Chen J. A. Neural network approach for evaluation distribution systemreliability. Electric power system research,1993:225-229
    [22]陈举华,赵建国,郭毅之.电力系统可靠性研究的灰关联和模糊贴近度分析方法.中国电机工程学报,2002,22(1):59-63
    [23] C. Singh and A.D. Patton. Protection system reliability modeling: Unreadinessprobability and mean duration of undetected faults. IEEE Trans. Rel., vol. R-29, pp.339-340, Oct.1980
    [24] P.M. Anderson, G.M. Chintalur, S.M.Maghbuhat, and R.F. Ghajar. An improvedreliability model for redundant protections–Markov models. IEEE Trans. Power Syst.,vol.12, pp.573-578, May1997
    [25] J.J. Kumm, M.S Weber, D. Hou, and E.O. Schweiter,―Predicting the optimumroutine test interval for protective relays,‖IEEE Trans. on Power Delivery, vol.10, pp.659-665, April1995
    [26] R. Billinton, M. Fotuhi-Firuzabad, and T.S. Sidhu. Determination of the optimumroutine test and self-checking intervals in protective relaying using a reliability model.IEEE Trans. Power Systems,2002, vol.17, pp.663-669, August2002
    [27]李永丽,李致中.继电保护装置可靠性及其最佳检修周期的研究.中国电机工程学报,2001,21(6):63-64
    [28]陈少华,马碧燕,雷宇等.综合定量计算继电保护系统可靠性.电力系统自动化,2007,31(15):111-115
    [29] Elizondo D C, Ree J. Analysis of hidden failures of protection schemes in largeinterconnected power system. IEEE Power Engineering Society General Meeting [C/CD].USA: IEEE,2004
    [30]韩平,赵勇,李晓朋等,继电保护状态检修的实用化尝试.电力系统保护与控制,2010,38(19)
    [31]王春芸,继电保护二次回路状态检测与评估.浙江:浙江大学,2009
    [32]江涛,继电保护状态检修实际应用的研究.浙江:浙江大学,2008
    [33]高翔,刘韶俊,继电保护状态检修及实施探讨.继电器,2005.10.16,33(20)
    [34] WangL, Gelberger, P.P, Ramani N. Reliability assessment of the operationalfunctions of a power system control center. Third International Conference onProbabilistic Methods Applied to Electric Power Systems,1991:229–234
    [35]谭文恕.测试SCADA系统性能的参考数据雪崩(RDA).电网技术,1999,23(2):42-45
    [36]刘清瑞.关于建立对电力调度自动化主站系统进行总体测试评价体系探讨[J]..电力自动化设备,2002,22(3):68-70
    [37] Chun-Lien Su, Ya-Chin Chang. A SCADA system reliability evaluation consideringperformance requirement.2004International Conference on Power System Technology-POWERCON,2004,1:574-579
    [38]沈殿凤,朱正磊.电网安全管理现状及美加停电事件的启示.安全电力技术,2005,2(7):8-9.
    [39] Bruce A.G. Reliability analysis of electric utility SCADA systems. IEEETransactions on Power Systems,1998,13(3):844-849
    [40] Hamoud G. Chen R.L, Bradley I. Risk assessment of power systems SCADA. IEEEPower Engineering Society General Meeting,2003,2:13-17
    [41] DagleJ.E, Widergren S.E, Johnson, J.M. Enhancing the security of supervisorycontrol and data acquisition (SCADA) systems: the lifeblood of modern energyinfrastructures. IEEE Power Engineering Society Winter Meeting,2002,1:27-31
    [42]徐立子.变电站自动化系统的可靠性分析.电网技术,2002,26(8):68-72.
    [43] Castro Ferreira L.R, Crossley P.A, Allan R.N. The impact of functional integrationon the reliability of substation protection and control systems, IEEE Transactions onPower Delivery,2001,16(1):83-88
    [44] Brown H. The use of digital computer in a generator reserve requirement study.AIEE Trans on PAS.1958,77:82-85
    [45] Ralperin H.Adler H. A determination of reserve--generating capability. AIEE Trans.on PAS.1958,77:530-544
    [46]肖炎,郭永基,席勇健,杨惠义.一种评估大规模电力系统可靠性的新算法.清华大学学报(自然科学版),1999,39(1):12-15
    [47] Desieno C. F, Stine L.L. Probability Method for Determining the Reliability ofElectric Power Systems. IEEE Trans. on PAS,1964:174-179
    [48] Billinton R, Bollinger K.E. Transmission System Reliability Evaluation UsingMarkov Processes. IEEE. Trans on PAS.1968:538-547
    [49] M T Schiling, M B D G Filho, A M L D Silva. An integrated approach to powersystem reliability assessment. Electrical power and energy system.199517(6):381-390
    [50]任震,何建军,湛军,黄雯莹,李本河.交直流网络系统可靠性评估的混合法.电网技术,2000,24(5):13-19
    [51]万国成,任震,吴日昇,何毅思.混合法在复杂配电网可靠性评估中的应用.中国电机工程学报,2004,24(9):92-98
    [52] Chen C, Chen J. A. Neural network approach for evaluation distribution systemreliability. Electric power system research,1993:225-229
    [53]陈举华,赵建国,郭毅之.电力系统可靠性研究的灰关联和模糊贴近度分析方法.中国电机工程学报,2002,22(1):59-63
    [54]孙洪波,秦翼鸿,徐国禹.发输电组合系统的模糊可靠性评估.电力系统及其自动化学报.1996,8(1):28-32
    [55] Mak, S.T. A synergistic approach to implement demand response, asset managementand service reliability using smart metering, AMI and MDM systems. Power&EnergySociety General Meeting,2009. PES09. IEEE,26-30July2009, Page(s):1-4
    [56] Lin T, Cheng Z J. Optimal inspection policy for deteriorating system based onrisk.Systems Engineering,2009,29(9):12-17
    [57] CRS report for congress. Energy Independence and Security Act of2007: ASummary of Major Provisions. December21,2007
    [58] Lin T, Cheng Z J. Optimal inspection policy for deteriorating system based onrisk.Systems Engineering,2009,29(9):12-17
    [59] N Gupta, T S Ramu. Estimating of Partial Discharge Parameters in GIS UsingAcoustic Emission Techniques. Journal of Sound and Vibration,2001,247(2):243-260.
    [60] Isotupa K P S. Markovian inventory system with lost sales and two demand classes.Mathematical and Computer Modeling,2006,43:687-694
    [61] Hill R M. Continuous-review, lost-sales inventory models with Poisson demand, afixed lead time and no fixed order cost. European Journal of Operational Research,2007,176:956-963
    [62]熊浩、孙才新、张昀、等,电力变压器运行状态的灰色层次评估模型.电力系统自动化,2007,31(7):55-60
    [63]廖瑞金、王谦、骆思佳、等,基于模糊综合评判的电力变压器运行状态评估模型.电力系统自动化,2008,32(3):70-75
    [64] Lee D S S, Lighgrow B J, Morrison R E, New fault diagnosis of circuit breaker,IEEE Trans. on Power Delivery,2003,18:454-459
    [65] Su Q.Insulation Condition Assessment of HV Cables.Abu Dhabi,UAE: PetroleumInstitute,2008
    [66] Billinton R, Fotuhi-Firuzabad M, Sidhu T.S. Determination of the optimum routinetest and self-checking intervals in protective relaying using a reliability model. IEEETransactions on Power Systems,2002,17(3):663–669
    [67] DagleJ.E, Widergren S.E, Johnson, J.M. Enhancing the security of supervisorycontrol and data acquisition (SCADA) systems: the lifeblood of modern energyinfrastructures. IEEE Power Engineering Society Winter Meeting,2002,1:27-31
    [68] Divan, D.; Johal, H. A Smarter Grid for Improving System Reliability and AssetUtilization, Power Electronics and Motion Control Conference,2006. IPEMC2006.CES\IEEE5th International, Volume1,14-16Aug.2006Page(s):1-7
    [69] Tie-yuan Xiang; Liang Cai, Coordination strategy between power system planningand asset management, Advances in Power System Control, Operation and Management.ASDCOM2003. Sixth International Conference on (Conf. Publ. No.497), Volume1,11-14Nov.2003Page(s):135–140
    [70] Mak, S.T. A synergistic approach to implement demand response, asset managementand service reliability using smart metering, AMI and MDM systems. Power&EnergySociety General Meeting,2009. PES09. IEEE,26-30July2009, Page(s):1-4
    [71] Kezunovic, M. Automated fault analysis in a smart grid. Transmission&DistributionConference&Exposition: Asia and Pacific,2009,26-30Oct.2009, Page(s):1-3
    [72] Berende, M.J.C.; Slootweg, J.G.; Kuiper, J.; et al. Asset management arguments forsmart grids Smart Grids for Distribution,2008. IET-CIRED. CIRED Seminar,23-24June2008, Page(s):1-4
    [73] Shahidehpour, M.; Ferrero, R. Time management for assets: chronological strategiesfor power system asset management. Power and Energy Magazine, IEEE, Volume3,Issue3, May-June2005Page(s):32-38
    [74] Li Lei, QuJunhua. Design and realization of enterprise asset management system inpower plants. Automation of Electric Power Systems,2005,29(13):80-83
    [75]西安交通大学.电力系统计算.北京:水利电力出版社,1978
    [76] NI Ming, MCCALEY J D, VITTAL V, et al. Online risk-based securityassessment.IEEE Trans on Power Systems,2003,18(1):258-265
    [77] Billinton R,Wenyuan Li.Reliability assessment of electric power system usingMonte Carlo methods.New York and London:Plenum Press,1994
    [78]宋云亭,郭永基,程林.大规模发输电系统充裕度评估的蒙特卡罗仿真.电网技术,2003,27(8):24-28
    [79]程林,孙元章,郑望其,晁剑.超大规模发输电系统可靠性充裕度评估及其应用.电力系统自动化,2004,28(11):75-78
    [80]程林,郭永基.发输电系统充裕度和安全性算法研究.电力系统自动化,2001,25(19):23-26
    [81]孙元章,刘海涛,程林,王鹏.运行可靠性在线短期评估方案.电力系统自动化,2008,32(2):4-8
    [82]王成亮,赵渊,周家启,刘威,韩松柏.基于日发电计划的电力系统运行风险概率评估.电力系统自动化,2008,32(4):6-10
    [83]任震,冉立,李正然.交直流并联系统可靠性与概率动态安全分析(I)-可靠性的概念指标及模型,华南理工大学学报(自然科学版),1997,25(6):1-5
    [84]任震,冉立,李正然.交直流并联系统可靠性与概率动态安全分析(II)-可靠性的概念指标及模型,华南理工大学学报(自然科学版),1997,25(6):6-11
    [85]丁明,黄凯,李生虎.交直流混合系统的概率稳定性分析[J],中国电机工程学报,2002,22(8):11-16
    [86]陈永进,任震,基于功率协调的交直流并联系统可靠性评估,中国电力,2004,37(8):48-51
    [87]任震,梁振生,黄雯莹.交直流混合输电系统可靠性指标的灵敏度分析,电力系统自动化,2004,28(14):33-36,40
    [88]陈华,周家启.大型网络可靠性评估的增流减流交叉网流法.重庆大学学报.1990,13(4):2-6
    [89] Li W, Mansour Y, Korczynski J K, et al. Application of transmission reliabilityassessment in probabilistic planning of BC Hydro Vancouver South Metro system. IEEETransactions on Power Systems.1995,10(2):964-970
    [90]刘海涛,程林,孙元章.等.交直流系统可靠性评估.电网技术.2004,28(23):27-30
    [91]王超,徐政,高慧敏.基于TPLAN的中国南方电网可靠性与经济性评估.继电器.2006,34(16):61-67
    [92] J. J. Meeuwsen, W. L. Kling, W. A. G. A. Ploem. The influence of protection systemfailures and preventive maintenance on protection systems in distribution systems.Power Delivery, IEEE Transactions on,1997,12(1):125-133
    [93]王钢,丁茂生,李晓华,等.数字继电保护装置可靠性研究.中国电机工程学报,2004,24(7):47-52
    [94] J. D. McCalley, Fu Weihui. Reliability of special protection systems. IEEETransactions on Power Systems,1999,14(4):1400-1406
    [95] A. I. Shalin, A. V. Sholokhov. Methods of calculation of reliability of protectiverelay devices. Sholokhov AV. Science and Technology,2000KORUS2000ProceedingsThe4th Korea-Russia International Symposium on,2000:265-270vol.262
    [96] P. M. Anderson, G. M. Chintaluri, S. M. Magbuhat. An improved reliability modelfor redundant protective systems-Markov models. Power Systems, IEEE Transactions on,1997,12(2):573-578
    [97]孙福寿,汪雄海.一种分析继电保护系统可靠性的算法.电力系统自动化,2006,30(16):32-35
    [98]陈少华,马碧燕,雷宇,等.综合定量计算继电保护系统可靠性.电力系统自动化,2007,31(15):111-115
    [99] M. Sanaye-Pasand, B. Arya, M. R. Dadashzadeh. Reliability evaluation oftransmission line protective schemes using static fault tree. Universities PowerEngineering Conference,2004:800-804
    [100]王超,高鹏,徐政,等. GO法在继电保护可靠性评估中的初步应用.电力系统自动化,2007,31(024):52-56
    [101]李永丽,李致中,杨维.继电保护装置可靠性及其最佳检修周期的研究.中国电机工程学报,2001,21(6):63-65
    [102]温鹏,李燕,瞿坦,等.分布式电力监控系统的建模问题研究及可靠性分析.信息与控制,1993,22(5):316-320
    [103]马益平.变电站自动化系统的应用体会和探讨.电力自动化设备,2005,25(10):88-92
    [104]雷宇,李涛.变电站综合自动化系统可靠性的定量评估.电力科学与工程,2009,25(6):37-40
    [105]吴利军.330kV变电站采用自动化系统的可行性.继电器,2000,28(11):36-38
    [106]王显平,田勇.变电站综合自动化系统及其应用.电力建设,2003,24(5):33-35
    [107]管荑.调度自动化系统远动技术网络化的研究与实现.硕士学位论文,济南:山东大学,2008
    [108]张锋.浅谈电力系统调度自动化及其发展方向.广东科技,2008,(8):115-117
    [109]罗鹏程,金光,周经伦.等.通信网可靠性研究综述.小型微型计算机系统,2008,21(10):1073-1077
    [110]韩小涛,尹项根,张哲.故障树分析法在变电站通信系统可靠性分析中的应用.电网技术,2004,28(1):56-59
    [111]张森.基于故障树的地铁综合监控系统可靠性分析方法研究与软件研制.硕士学位论文,成都:西南交通大学,2007
    [112]李旸.基于智能粒度计算的计算机网络可靠性分析研究.计算机技术与发展,2006,16(8):77-79
    [113]高翔,张沛超.数字化变电站的主要特征和关键技术.电网技术,2006,30(23):67-71
    [114]苏盛.数字化电力系统若干问题研究:博士学位论文.华中科技大学,2009
    [115]杜振华,王建勇,罗奕飞,等.基于MMS与GOOSE网合一的数字化网络保护设计.电力系统保护与控制,2010,38(24):178-181
    [116]徐天奇.基于IEC61850的数字化变电站信息系统构建及可靠性研究:博士学位论文.华中科技大学,2009
    [117]邢涛.多阶段任务系统可靠性建模研究.海军航空工程学院学报,2006,21(1):172-174
    [118]王松,陆承宇.数字化变电站继电保护的GOOSE网络方案.电力系统自动化,2009,33(3):51-54
    [119]段献忠,何飞跃,辛建波,等.基于信息网络综合传输的电力系统运行与控制.电网技术,2004,28(9):38-41
    [120]侯伟宏,张沛超,胡炎.数字化变电站系统可靠性与可用性研究.电力系统保护与控制,2010,38(14):34-38
    [121]辛建波,上官帖.数字化变电站的分布式连锁功能安全性研究.电力自动化设备,2007,27(6):99-103
    [122] CIGRE Task Force3803.12.Power system security assessment.a positionpaper.Electra,1997,(175):49-77
    [123] McCalley J D, Vittal V.Abi Samra N.An overview of risk based security assessment.IEEE Power Engineering Society summer meeting.1999.1:173-178
    [124]中国南方电网公司,南方电网安全风险量化评估管理办法,广州,2009
    [125]陆波,唐国庆.基于风险的安全评估方法在电力系统中的应用.电力系统自动化,2000:61-64
    [126]潘轩.基于风险评估的电力系统脆弱性分析.北京:华北电力大学,2008
    [127]蒋建兵,梁家荣,江伟,顾志鹏.基于云理论的学习评价模型研究.计算机与现代化,2008,151(3):17~19
    [128]吕辉军,王晔,李德毅,等.逆向云在定性评价中的应用.计算机学报,2003,26(8):1009-1014
    [129]李德毅,孟海军,史雪梅.隶属云和隶属云发生器.计算机研究和发展,1995,32(6):6-21
    [130]李德毅,刘常昱.论正态云模型的普适性.中国工程科学,2004,6(8):28-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700