用户名: 密码: 验证码:
纳米磷酸钙、硅酸钙及其复合生物与环境材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在制备磷酸钙(β-Ca_3(PO_4)_2,β-TCP;Ca_(10)(PO_4)_6(OH)_2,HAp)纳米粉体、水合硅酸钙(Ca_5Si_6O_(16)(OH)_2·4H_2O,Tobermorite;Ca_6Si_6O_(17)(OH)_2,Xonotlite)纳米线、硅酸钙(CaSiO_3,CS)超细粉体和纳米线、β-TCP/CS和HAp/CS纳米复合粉体的基础上,研究了水合硅酸钙Tobermorite纳米线的体外生物活性和降解性;研究了磷酸钙和硅酸钙纳米粉体的烧结性能和烧结体的相关性能;研究了β-TCP/CS和HAp/CS纳米复合生物陶瓷的制备及复合比例对材料的力学性能、生物活性和降解性的影响规律;探索了高强度大孔β-TCP和CS陶瓷支架材料的制备技术、具有天然松质骨结构的β-TCP和CS陶瓷支架材料的制备技术,并研究了多孔支架材料的生物相容性、生物活性、降解性和骨修复性能;最后还探索了HAp对水溶液中酚类化合物吸附性能。具体研究内容和结果如下:
     1、(1)应用化学沉淀法、水热微乳液法、超声化学法和水热均相沉淀法,并通过控制工艺条件可以制备得到不同形貌、结晶度、颗粒尺寸和比表面积的HAp纳米粉体;(2)采用化学沉淀法可以规模化制备得到颗粒尺寸约80~100nm的β-TCP纳米粉体;(3)采用水热微乳液法制备得到分散性良好的、颗粒细小且晶粒尺寸分布窄的Tobermorite纳米线,纳米线的直径约30~50nm,长度最高达10多微米;(4)采用简单的水热处理法制备了分散性良好的Xonotlite纳米线,粉体直径约10~30nm、长度可以达10多微米,Xonotlite纳米线于800℃煅烧2h获得CS纳米线,粉体的形貌和尺寸基本保持不变;(5)采用两步化学沉淀法制备得到复合比例可控的、分散性良好的β-TCP/CS和HAp/CS纳米复合粉体,粉体颗粒尺寸分别为20~80nm和10~30nm。
     2、研究了Tobermorite纳米线的体外生物活性和降解性。研究表明Tobermorite纳米线在模拟体液(Simulated body fluid,SBF)中具有良好的生物活性(诱导沉积类骨HAp的能力)和降解性。在SBF中浸泡3d,表面即完全被类骨HAp覆盖;14d的降解率达24.5wt.%。Tobermorite纳米线降解后溶液介质的pH明显升高,该性能使其可被应用于中和聚酯类生物高分子的酸性降解产物,以避免这类传统高分子材料因降解产生的酸性产物而引发的无菌性炎症反应。研究结果显示Tobermorite纳米线有望作为良好的可降解生物活性增强体应用于制备生物活性复合材料。
     3、以纳米粉体为原料,采用干压、冷等静压成型技术,通过控制烧结工艺制备了磷酸钙和硅酸钙生物陶瓷材料。研究表明纳米粉体具有良好的烧结活性,并可以制备得到晶粒细小的、高致密度的烧结体,从而获得力学性能良好的磷酸钙和硅酸钙生物陶瓷材料:(1)采用常规无压烧结工艺制备了高强度的β-TCP生物陶瓷,其抗弯强度高达200MPa,是微米粉体烧结体的2倍,且明显高于文献报道的结果。(2)采用放电等离子体烧结工艺(Spark PlasmaSintering,SPS)制备得到透明β-TCP生物陶瓷,平均晶粒尺寸约250 nm,具有良好的透光性能、最大透光率约52%(1mm厚)。细胞相容性研究结果表明,透明β-TCP生物陶瓷对骨髓间质干细胞的增殖作用明显高于常规的通用聚乙烯培养板,可望作为新型的细胞培养载体材料和医学窗口材料。(3)常压下,采用简单的两步烧结工艺(Two-step Sintering Method,TSM)制备得到平均晶粒尺寸为193nm的致密HAp纳米生物陶瓷材料,其晶粒尺寸明显低于传统的无压烧结工艺(高达765nm),TSM制备得到的HAp纳米生物陶瓷材料的韧性达1.18MPa·m~(1/2),较无压烧结工艺提高了约60%。(4)采用CS纳米线于1100℃无压烧结3h可以获得抗弯强度约146MPa、与人体皮质骨强度的上限值相当,其强度较CS超细粉体烧结体提高了约53%,而弹性模量也与人体致密骨相当。研究结果表明采用纳米线有望获得力学强度较好的CS生物陶瓷材料。(5)CS生物陶瓷具有良好的生物活性、降解性和细胞相容性,在SBF中浸泡1d后即可在表面沉积一层类骨HAp层,表明材料具有良好的生物活性,在Tris-HCl缓冲液浸泡28d的降解率达27.85%、远高于β-TCP的降解率(仅2.51%),骨髓间质干细胞的贴壁和增殖实验表明CS陶瓷具有良好的生物相容性。研究结果表明CS生物陶瓷材料有望作为新型的可降解生物活性骨修复材料。
     4、以纳米复合粉体为原料,采用干压、冷等静压成型技术,并采用无压烧结工艺制备了β-TCP/CS纳米复合生物陶瓷材料。研究表明复合生物陶瓷的力学性能、生物活性和降解性可以通过复合比例加以有效调控。当β-TCP的复合比例高于50wt.%时,即可制备得到力学强度与人体皮质骨相当的复合生物陶瓷材料,且强度随β-TCP复合比例的提高明显升高;而当CS的复合比例超过30wt.%时,材料即显示优越的生物活性,在SBF中浸泡1d即完全被类骨HAp层覆盖,且复合陶瓷的生物活性和降解性随CS组分的含量增加而提高。
     5、以纳米复合粉体为原料,采用干压、冷等静压成型技术,并采用无压烧结工艺制备了CS/HAp纳米复合生物陶瓷材料。研究表明复合生物陶瓷的力学性能、生物活性和降解性可以通过复合比例加以有效调控。通过调节复合比例,CS/HAp复合陶瓷的抗弯强度可以控制在98.06~221.30MPa,当CS复合比例高于50wt.%时,材料的强度显著高于人体皮质骨,而弹性模量与人体致密骨相当。复合陶瓷的生物活性和降解性随CS组分含量的提高而增强。
     6、采用添加造孔剂法、注浆成型工艺和泡沫浸渍工艺制备了多孔β-TCP和CS生物陶瓷支架材料。实验表明采用添加造孔剂法和注浆成型工艺制备得到的材料力学强度较好,采用注浆成型工艺和泡沫浸渍工艺可以获得孔连通性良好的多孔陶瓷支架材料,而采用泡沫浸渍工艺还可以获得与天然松质骨结构相类似的多孔陶瓷支架材料。同时,采用纳米粉体可以制备得到力学强度良好的β-TCP多孔陶瓷支架材料。SBF浸泡实验表明,CS支架在SBF中浸泡1d表面就全部被类骨HAp层覆盖住,同时支架材料具有良好的降解性,气孔率为63.1%的支架材料7d的降解率达7.14%。研究结果表明多孔CS生物陶瓷支架材料有望作为新型的可降解生物活性骨修复材料和骨组织工程支架材料。
     7、研究了多孔β-CS和CS生物陶瓷支架材料的非骨性环境下的生物学行为、以及兔子颅骨的缺损修复性能。研究表明,多孔CS生物陶瓷在早期血管化、新生组织长入、材料降解性和骨修复能力等方面均较传统的β-TCP生物陶瓷具有明显优势。动物植入实验还表明细胞调节作用参与了CS材料的体内降解过程;SEM和EDS分析结果表明新生骨生成于CS材料诱导沉积的类骨HAp层表面,而不是直接作用于CS材料表面,表明生成的类骨HAp层对新骨的生成、以及材料同骨组织的键合作用起关键作用。动物植入试验研究结果表明,多孔CS陶瓷材料有望作为可降解生物活性材料应用于硬组织修复和骨组织工程材料领域。
     8、以HAp纳米粉体为吸附剂,研究了HAp纳米粉体对水溶液中酚类物质的吸附分离性能。探讨了吸附时间、pH值、苯酚初始浓度、吸附剂浓度、吸附温度和吸附剂煅烧温度对苯酚吸附效果的影响规律;研究了取代基对吸附效果的影响规律,以及吸附动力学、吸附等温线方程和吸附热力学。研究结果表明HAp材料可以较好地吸附去除溶液中的酚类化合物,有望作为一种新型的、生物相容性和环境友好的酚类污染物吸附分离试剂,具有良好的应用前景。
     以上研究结果显示,采用纳米粉体可以制备得到力学性能良好的磷酸钙、硅酸钙及其复合生物陶瓷材料;通过改变磷酸钙和硅酸钙的复合比例,可以对磷酸钙/硅酸钙纳米复合陶瓷材料的力学性能、生物活性和降解性进行调节;多孔硅酸钙生物陶瓷材料具有良好的力学性能、生物相容性、生物活性、体内降解性和骨修复性能,有望用于硬组织修复和骨组织工程用支架领域;纳米HAp粉体对酚类物质具有良好的吸附分离性能,有望作为一种新型的、生物相容性和环境友好的酚类污染物吸附分离试剂,并具有良好的应用前景。
In this study,theβ-tricalcium phosphate(β-Ca_3(PO_4)_2,β-TCP)nanopowders, hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2,HAp)nanopowders,tobermorite (Ca_5Si_6O_(16)(OH)_2·4H_2O)nanowires,xonotlite(Ca_6Si_6O_(17)(OH)_2)nanowires,calcium silicate(CaSiO_3,CS)ultrafine powders and nanowires,β-TCP/CS and HAp/CS composite nanopowders were prepared.The bioactivity and degradability of tobermorite nanowires in vitro were investigated.The sintering ability of the apatite nanopowders and calcium silicate nanopowders,and the properties of the sintered matrixes were performed.Theβ-TCP/CS and HAp/CS composite nanoceramics were developed,and the mechanical properties,bioactivity(bone-like apatite-formation ability in vitro)and in vitro dissolution behavior of the fabricated samples with different composite ratios were examined.The macroporousβ-TCP and CS ceramic scaffolds with high mechanical strength and the novel porous samples similar to the natural bone structures were explored,and the biocompatibility,bioactivity, degradability and in vivo bone-regenerative capacity of the scaffolds were investigated.Furthermore,the adsorption of phenolic pollutants on HAp nanopowders was studied.The obtained results are described as followings:
     1.(1)The HAp nanopowders with different morphologies,crystallinity,particle size and specific surface area could be obtained using chemical precipitation method, hydrothermal microemulison method,ultrasonic chemical method or homogeneous-precipitation method.(2)Theβ-TCP nanopowders with 80~100nm could be obtained in large-scale by chemical precipitation method.(3)The monodispersed tobermorite nanowires with diameter of 30~50nm and up to tens of micrometers in length were prepared via hydrothermal microemulsion method.(4) The monodispersed xonotlite nanowires with diameter of 10~30nm and up to tens of micrometers in length were prepared via a simple hydrothermal method.After calcining at 800℃for 2h,xonotlite nanowires completely transformed intoβ-wollastonite nanowires and the wire-like structure and sizes were also preserved.(5) Theβ-TCP/CS and HAp/CS composite nanopowders with different composite ratios and well dispersions were synthesized by two-step chemical precipitation method. The particle sizes ofβ-TCP/CS and HAp/CS composite nanopowders were 20~80nm and 10~30nm,respectively.
     2.In vitro bioactivity of the tobermorite nanofibers was evaluated by examing the bone-like HAp forming ability on the surface after soaking in simulated body fluid (SBF)for various periods.After soaking in SBF for 3d,the nanofibers were completely covered by bonelike hydroxycarbonate apatite(HCA)layers,and the nanofibers after soaking still kept stability in fibrous morphology.The dissolution of the nanofibers reached about 24.5%after soaking in SBF for 14d.The results suggested that the tobermorite nanofibers exhibited certain desirable characteristics including bioactivity,degradability and stability in morphology,and a potential candidate as reinforcement materials to develop novel bioactive and degradable composites for biomedical applications.On the other hand,the tobermorite nanofibers might be used as the alkaline biodegradability materials to fabricate the composite biomaterials,which might not only contribute to the improved bioactivity of those acid biodegradability polymer materials,but also be able to neutralize the acidic degradation products of the polymers.
     3.Using the nanopowders as raw materials,the apatite and calcium silicate bioceramics were fabricated by sintering green compacts at atmosphere after cold isostatic pressure respectively.The results showed that the nanopowders possessed excellent sintering ability,and the ceramic samples with ultrafine crystal size and high densities could be obtained.Therefore,the apatite and calcium silicate bioceramics with well mechanical strength could be fabricated using nano-sized powders.(1)β-TCP bioceramics with high mechanical strength of 200MPa were fabricated using the nano-size powders,which were more than two times higher as compared to those of samples fabricated from micro-size powders.(2)The transparentβ-TCP bioceramics were fabricated using nano-size powders and(Spark Plasma Sintering, SPS).The transparent bodies had an average grain size of 250nm.The transparency of the samples with 1.0mm thickness reached about 52%.The MTT method showed that the proliferation of bone mesenchymal stem cells on transparentβ-TCP bioceramics was much better than that on the polystyrene cell culture cluster,suggesting that the transparentβ-TCP may be used as cell carrier materials and window materials for biomedical applications.(3)The dense HAp nanoceramics with an average grain size of 193nm were obtained through two-step sintering method.The fracture toughness reached 1.18MPa·m~(1/2),which was about 60%higher than that of the samples with an average grain size of 765nm and fabricated by normal sintering method.(4)The bending strength of the CaSiO_3 bioceramics sintered from nanowires reached about 146MPa,which was similar to the upper value of the human cortical bones and was 53%higher than that of the samples sintered from superfine powders.The elastic modul of the fabricated CaSiO_3 bioceramics was similar to the human cortical bone. The study showed that the CaSiO_3 bioceramics with well mechanical strength could be fabricated using nanowires as raw materials.(5)The CaSiO_3 bioceramics possessed excellent bioactivity,degradability and cell compatibility.After soaking in SBF for 1d,the samples were completely covered by bonelike HAp layers.The dissolution ratio of the ceramics reached about 27.85%after soaking in Tris-HCl buffer solution for 28d,which was much higher than that ofβ-TCP bioceramics.The adhesion and proliferation of bone marrow mesenchymal stem cells on the CaSiO_3 ceramics was examined and the results showed that the ceramics supported cell adhesion and proliferation,which indicated good biocompatibility.Our results suggested that CaSiO_3 ceramics might be a potential bioactive and degradable material as bone implant.
     4.Using the nano-composite powders as raw materials,theβ-TCP/CS composite nanoceramics have been fabricated by sintering green compacts at atmosphere after cold isostatic pressure.The mechanical strength,bioactivity and degradability of the composite ceramics could be regulated by the composite ratios.The bending strength of the samples withβ-TCP component higher than 50wt.%was similar to the bending strength of human cortical bone.The mechanical strength increased with the increase of theβ-TCP component amount.The composite ceramics showed excellent bioactivity when the CS component ratio was higher than 30wt.%.After soaking in SBF for 1d,the samples were completely covered by bonelike HAp layers.The bioactivity and degradability increased with the increase of the CS component amount.
     5.Using the nano-composite powders as raw materials,the HAp/CS composite nanoceramics have been fabricated by sintering green compacts at atmosphere after cold isostatic pressure.The mechanical strength,bioactivity and degradability of the composite ceramics could be regulated by the composite ratios.The bending strength of the samples was in the range of 98.06 and 221.30MPa,and the elastic modul of the fabricated nanocomposite bioceramics was similar to the human cortical bone.The bending strength of the samples with CS component over 50wt.%was higher than the bending strength of human cortical bone.The mechanical strength,bioactivity and degradability increased with the increase of the CS component amount.
     6.The macroporousβ-TCP and CS scaffolds were successfully fabricated by porogen burning-out method,casting method and polymer sponge method.The results showed that the scaffolds with well mechanical strength could be obtained by the porogen burning-out method and the casting method.And the structure of the scaffolds fabricated by the polymer sponge method was open and interconnected pores,which showed that the structure of the scaffolds was similar to that of natural cancellous bones.Furthermore,theβ-TCP scaffolds with high mechanical strength could be fabricated from the nano-size powders.After soaking in SBF for 1d,the CS scaffolds were completely covered by HCA layers.The degradability of the CS samples with porosity of 63.1%reached 7.14%after soaking in SBF for 7d.The results suggested excellent in vitro bioactivity and degradability of the macroporous CS scaffolds.Therefore,the CS scaffolds may be potential candidates as bioactive and degradable scaffolds for hard tissue repair and bone tissue engineering applications.
     7.Theβ-TCP and CS scaffolds were implanted in rabbit subcutaneous sites and the rabbit calvarial defect sites,respectively to investigate the biological characteristics,in vivo bone-regenerative capacity and resorption of the materials. Compared withβ-TCP,the results showed that the CS scaffolds possessed superiority in vascularization,ingrowth of new tissue,degradation and bone-regenerative ability in early stage.The TRAP-positive multinucleated cells were observed on the surface ofβ-CS,suggested a cell-mediated process involved in the degradation ofβ-CS in vivo.Histological observation demonstrated that newly formed bone tissue grew into the porousβ-CS,and a bone-like HAp layer was identified between the bone tissue and CS materials.The studies showed that the CS scaffolds could stimulate bone regeneration and may be used as bioactive and biodegradable materials for hard tissue repair and bone tissue engineering applications.
     8.The HAp nanopowders were used as the adsorbent,and the potential of HAp nanopowders for phenolic pollutant adsorption from aqueous solution was studied. The effect of contact time,initial phenol concentration,pH,adsorbent dosage, solution temperature and adsorbent calcining temperature on the phenol adsorption, and the adsorption kinetic,equilibrium and thermodynamic parameters of phenolic pollutants were investigated.The results showed that the HAp nanopowders possessed good adsorption ability to phenolic pollutants.The results suggested that the HAp nanopowders might be a new potential,biocompatible and good adsorbent for the removal of phenol pollutants from aqueous solutions.
     In conclusion,the apatite,calcium silicate and their composite bioceramics could be fabricated using the nano-size powders as the raw materials.The mechanical strength,bioactivity and degradability of theβ-TCP/CS and HAp/CS composite nanoceramics could be regulated by the composite ratios.The CS scaffolds possessed excellent biocompatibility,bioactivity,biodegradability and bone-regenerative ability, and may be used as bioactive and biodegradable materials for hard tissue repair and bone tissue engineering applications.The HAp nanopowders possessed good adsorption ability to phenolic pollutants,and may be a new potential,biocompatible and good adsorbent for the removal of phenol pollutants from aqueous solutions.
引文
1.俞耀庭、张兴栋编,生物医用材料,天津大学出版社,2000.
    2.李世普编著,生物医用材料导轮,武汉工业大学出版社,2000.
    3.R.H.Doremus,Review:Bioceramics,J.Mater.Sci.27(1992)830-834.
    4.S.F.Hulbert,L.L.Hench,D.Forbes,et.al.History of bioceramics,in:Ceramic in surgery,edited by P.Vincenzini,1983,Elsevier Scientific Company,Amsterdam,Netherlands,p.3-25.
    5.S.F.Hulbert,The use of alumina and zirconia in surgical implants,in:An introduction to bioceramics,edited by L.L.Hench and June Wilson,World Scientific:Singapore,1993,p.25-40.
    6.中国科学院,2006高技术发展报告,科学出版社,2006,P80.
    7.V.I.Sikavtsas,J.S.Temenoff,A.G.Mikos,Biomaterials and bone mechanotransduction,Biomaterials 22(2001)2581-2593.
    8.K.J.L.Burg,S.Porter,J.F.Kellam,Biomaterial development for bone tissue engineering,Biomaterials 21(2000)2347-2359.
    9.P.V.Giannoudis,H.Dinopoulos,E.Tsiridis,Bone substitutes:An update,Injury 365(2005)520-527.
    10.Y.P.Zhang,J.C.Gao,Y.Wang,Research and development of world science and technology,22(2000)47-52.
    11.M.R.Urist,T.A.Dowell,P.H.Hay,B.S.Strates,Inductive substrates for bone formation,Clin. Orthop.Rel.Res.59(1968)59-96.
    12.S.Steven,S.E.Emery,V.M.Goldberg,Factors affecting bone graft incorporation,Clin.Orthop.324(1996)66-74.
    13.C.J.Demien,J.R.Parsons,Bone graft and bone graft substitutes:A review of a current technology and application,J.Appl.Biomater.2(1991)187-208.
    14.J.F.Shackelford,History and scope of biomaterials.In Advance Ceramics Vol Ⅰ Bioceramics Gorden.
    15.L.L.Hench,J.M.Polak,Third-generation biomedical materials,Science 295(2002)1014-1017.
    16.李玉宝主编,生物医用材料,化学工业出版社,2003.
    17.张兴栋,如何应对生物医用材料产业挑战,新材料产业 12(2005)32-38.
    18.2004年第七次世界生物材料大会论文集,Australian Society for Biomaterials Inc.,2004.
    19.L.L.Hench Bioactive materials,Ceram.Inter.22(1996)493-507.
    20.X.Y.Liu,P.K.Chu,C.X.Ding,Surface modification of titanium,titanium alloys,and related materials for biomedical applications,Mater.Sci.Eng.R:Reports,47(2004)49-121.
    21.J.J.Jacobs,A.K.Skipor,L.M.Patterson,N.J.Hallab,W.G.Paprosky,J.Black,J.O.Galante,Metal release in patients who have had a primary total hip arthroplasty:A prospective,controlled,Iongitudinal study,J.Bone Joint Surg.Series A 80(1998)1447-1485.
    22.Y.Okazaki,E.Gotoh,T.Manabe,K.Kobayashi,Comparison of metal concentrations in rat tibia tissues with various metallic implants,Biomaterials 25(2004)5913-5920.
    23.P.L.Silva,J.D.Santos,F.J.Monteiro,J.C.Knowles,Adhesion and microstructural characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6Al-4V substrates,Surf.Coat.Tech.2(1998)191-196.
    24.L.L.Hench,R.J.Splinter,W.C.Allen,T.K.Greenlee Jr,Bonding mechanisms at the interface of ceramic prosthetic materials,J.Biomed.Mater.Res.Symp.2(1971)117-141.
    25.L.L.Hench,Bioceramics:Materials characteristics versus in-vivo behavior,P.Ducheyne,J.Lemons(Eds.).Annals of New York Acad Sci:New York 523(1988)54-65.
    26.L.L.Hench,Bioceramics:From Concept to Clinic,J.Am.Ceram.Soc.74(1991)1487-1510.
    27.L.L.Hench,Bioceramics,J.Am.Ceram.Soc.81(1998)1705-1728.
    28.J.Ishikawa,H.Tsuji,H.Sato,Y.Gotoh,Ion implantation of negative ions for cell growth manipulation and nervous system repair,Surf.Coat.Tech.201(2007)8083-8090.
    29.B.Nebe,B.Finke,F.Luthen,C.Bergemann,K.Schroder,J.Rychly,K.Liefeith,A.Ohl,Improved initial osteoblast functions on amino-functionalized titanium surfaces,Biomol.Eng.24(2007)447-454.
    30.P.Li,C.Ohtsuki,T.Kokubo,Process of formation of bone-like apatite layer on silica gel,J.Mater.Sci.Mater.Med.4(1993)127-131.
    31.P.Ducheyne,Q.Qiu,Bioactive ceramics:the effect of surface reactivity of bone formation and bone cell function,Biomaterials 20(1999)2287-2303.
    32.I.D.Xynos,A.J.Edgar,L.D.Buttery,L.L.Hench,J.M.Polak,Ionic products ofbioactive glass diddolution increase proliferation of human osteoblasts and induce insulin-like growth factor ⅡmRNA expression and protein synthesis,Biochem.Biophy.Res.Comm.276(2000)461-465.
    33.J.E.Gough,J.R.Jones,L.L.Hench,Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold,Biomaterials 25(2004)2039-2046.
    34.P.Valerio,M.M.Pereira,A.M.Goes,M.F.Leite,The effect of ionic products from bioactive glass dissolution on osteoblast prolferation and collagen production,Biomaterials 25(2004)2941-2948.
    35.I.A.Silver,J.Deas,M.Erecinska,Interactions of bioactive glasses with osteoblasts in vitro:effects of 45S5 bioglass,and 58S and 77S bioactive glasses on metabolism,intracellular ion concentrations and cell viability,Biomaterials 22(2001)175-185.
    36.I.A.Silver,M.Ereeinska,Interactions of osteoblastic and other cells with bioaetive glasses and silica in vitro and in vivo,Mat.Werkstofftech 34(2003)1069-1075.
    37.I.D.Xynos,A.J.Edgar,L.D.Buttery,L.L.Hench,J.M.Polak,Gene-expression profiling of human osteoblasts following treatment with ionic products of bioglass 45S5 dissolution,J.Biomed.Mater.Res.55(2001)151-157.
    38.J.E.I.Gough,Notingher,L.L.Hench.Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths,J.Biomed.Mater.Res.68(2004)640-650.
    39.L.Chou,S.Al-Bazie,D.Cottrell,R.Giordano,D.Nathason,Atomic and molecular mechanisms underlying the osteogenic effects of bioglass~(?)materials,Bioceramics 11(1998)265-268.
    40.L.Chou,J.D.Firth,V.J.Uitto,D.M.Brunette,Substratum surface topography alters cell shape and regulates fibronectin mRNA level,mRNA stability,secretion and assembly in human fibroblasts,J.Cell Sci.108(1995)1563-1573.
    41.T.J.Webster,C.Ergun,R.H.Doremus,R.W.Siegel,R.Bizios,Enhanced functions of osteoblasts on nanophase ceramics,Biomaterials 21(2000)1803-1810.
    42.Y.F.Chou,W.B.Huang,J.Dunn,T.A.Miller,B.M.Wu,The effect of biomimetic apatite structure on osteoblast viability,proliferation,and gene expression,Biomaterials 26(2005)285-295.
    43.L.L.Hench,I.Xynos,A.Edgar,L.Buttery,J.Polak,钟吉品,刘宣勇,常江.激活基因的玻璃,无机材料学报 17(2002)897-909.
    44.P.Ducheyne,S.Radin,L.King,The effect of calcium phosphate ceramic composition and structure on in vitro behavior:I.Dissolution,J.Biomed.Mater.Res.27(1993)25-34.
    45.S.R.Radin,P.Ducheyne,The effect of calcium phosphate ceramic composition and structure on in vitro behavior:Ⅱ.Precipitation,J.Biomed.Mater.Res.27(1993)35-45.
    46.S.V.Dorozhkin,A review on the dissolution models of calcium apatite,Progress Crys.Character.44(2002)45-61.
    47.A.Rapacz-Kmita,A.Slosarczyk,Z.Paszkiewicz,Mechanical properties of HAp-ZrO_2composites,J.Euro.Ceram.Soc.26(2006)1481-1488.
    48.Y.Chen,C.H.Gan,T.N.Zhang,G.Yu,P.C.Bai,A.Kaplan,Laser-surface-allonyed carbon nanotubes reinforced hydroxyapatite composite coatings,Appl.Phys.Lett.86(2005)251905-251907.
    49.S.P.Huang,B.Y.Huang,K.C.Zhou,Z.Y.Li,Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites,Mater.Lett.58(2004)3582-3585.
    50.B.T.Lee,K.H.Kim,H.C.Youn,Functionally gradient and micro-Channeled Al_2O_3-(t-ZrO_2)/HAp composites,J.Am.Ceram.Soc.90(2007)629-631.
    51.G.Georgiou,J.C.Knowles,Glass reinforced hydroxyapatite for hard tissue surgery-Part 1:mechanical properties,Biomaterials 22(2001)2811-2815.
    52.M.Inagaki,T.Kameyama,Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation, Biomaterials 28 (2007) 2923-2931.
    53. M.E. Fleet, X.Y. Liu, Location of type Bcarbonate ion in type A-B carbonate apatite synthesized at high pressure, J. Solid State Chem. 177 (2004) 3174-3182.
    54. S. Liao, F. Watari, G. Xu, M. Ngiam, S. Ramakrishna, C.K. Chan, Morphological effects of variant carbonates in biomimetic hydroxyapatite, Mater. Lett. 61 (2007) 3624-3628.
    55. H. Morgan, R.M. Wilson, J.C. Elliott, S.E.P. Dowker, P. Anderson, Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate, Biomaterials 21 (2000) 617-627.
    56. J.P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca_(10-x)(PO_4)_(6-x)(CO_3)_x(OH)_(2-x-2y)(CO_3)_y ceramics with controlled composition, J. Euro. Ceram. Soc. 28 (2008) 139-147.
    57. L.M. Rodriguez-Lorenzo, J.N. Hart, K.A. Gross, Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite, Biomaterials 24 (2003) 3777-3785.
    58. S. Loher, W.J. Stark, M. Maciejewski, A. Baiker, Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis, Chem. Mater. 17 (2005) 36-42.
    59. K.A. Bhadang, K.A. Gross, Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings, Biomaterials 25 (2006) 4935-4945.
    60. L. Bertinetti, A. Tampieri, E. Landi, G. Martra, S. Coluccia, Punctual investigation of surface sites of HA and magnesium-HA, J. Euro. Ceram. Soc. 26 (2006) 987-991.
    61. W.L. Suchanek, K. Byrappaa, P. Shuka, R.E. Rimana, V.F. Janas, K.S. TenHuisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical -hydrothermal method, Biomaterials 25 (2004) 4647-4657.
    62. S. Kannan, I.A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/b-tricalcium phosphate ratios, J. Solid State Chem. 178 (2005) 3190-3196.
    63. A. Bandyopadhyay, E.A. Withey, J. Moore, S. Bose, Influence of ZnO doping in calcium phosphate ceramics, Materials Science and Engineering C 27 (2007) 14-17.
    64. T. Tamm, M. Peld, Computational study of cation substitutions in apatites, J. Solid State Chem. 179(2006)1581-1587.
    65. I. Mayer, J.D.B. Featherstone, Dissolution studies of Zn-containing carbonated Hydroxyapatites, J. Crystal Growth 219 (2000) 98-101.
    66. A. Ito, H. Kawamura, M. Otsuka, M. Ikeuchi, H. Ohgushi, K. Ishikawa, K. Onuma, N. Kanzaki, Y. Sogo, N. Ichinose, Zinc-releasing calcium phosphate for stimulating bone formation, Mater. Sci. Eng. C 22 (2002) 21-25.
    67. E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield, Silicon-substituted hydroxyapatite: The next generation of bioactive coatings, Mater. Sci. Eng. C 27 (2007) 251-256.
    68. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Effect of sintered silicate-substituted hydroxyapatite on remodeling processes at the bone - implant interface, Biomaterials 25 (2004) 3303-3314.
    69. K.A. Hing, P.A. Revell, N. Smith, T. Buckland, Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds, Biomaterials 27 (2006) 5014-5026.
    70. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. BonFIeld, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials 24(2003)4609-4620.
    71.A.Bigi,E.Boanini,C.Capuccini,M.Gazzano,Strontium-substituted hydroxyapatite nanocrystals,Inorg.Claim.Acta 360(2007)1009-1016.
    72.E.M.Carlisle,Silicon:A possible factor in bone calcification,Science,167(1970)279-280.
    73.姚康德、尹玉姬,组织工程相关生物材料,化学工业出版社,.2003.
    74.G.Daculsi,Biphasic calcium phosphate concept applied to artificial bone,implant coating and injectable bone substitute,Biomaterials 21(1998)1473-1478.
    75.S.Yamada,D.Heymann,J.N.Bouler,G.D.Daculsi,Osteoclastic resorption of calcium phosophate ceramics with different hydroxyapatite/tricalcium phosphate ratios,Biomaterials 18(1997)1037-1041.
    76.H.S.Ryu,K.S.Hong,J.K.Lee,D.j.Kim,J.H.Lee,B.S.Chang,Magnesia-doped HA/TCP ceramics and evaluation of their biocompatibility,Biomaterials 25(2004)393-401.
    77.Z.Yang,H.Yuan,W.tong,P.Zou,X.Zhang,Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics:variability among different kinds of animals,Biomaterials 27(1996)2131- 2137.
    78.Y.Leng,J.Chen,S.Qu,TEM study of calcium phosphate precipitation on HA/TCP ceramics,Biomaterials 24(2003)2125-2131.
    79.C.Wang,Y.Duan,B.Markovic,J.Barbara,C.R.Howlett,X.Zhang,H.Zreiqat,Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions,Biomaterials 25(2004)2507-2514.
    80.T.Livingston Arinzeh,T.Tran,J.Mcalary,G.Daculsi,A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation,Biomaterials 26(2005)3631-3638.
    81.J.X.Lu,M.C.Blary,S.Vavasseur,M.Descamps,K.Anselme,P.Hardouin,Relationship between bioceramics sintering and micro-particles-induced cellular damages,J.Mater.Sci.Mater.Med.15(2004)361-365.
    82.L.L.Hench.Bioactive ceramics:Theory and clinical applications,Bioceramics 7(1994)3-14.
    83.T.Kokubo,Surface chemistry of bioactive glass-ceramics,J.Non-Cryst Solids 120(1990)138-151.
    84.T.Kokubo,H.Takadama,How useful is SBF in predicting in vivo bone bioactivity?Biomaterials 27(2006)2907-2915.
    85.T.Kokubo,H.Kushitani,S.Saka,T.Kitsgi,Solution able to reproduce in vivo surface structure changes in bioactive glass-ceramic A-W,J.Biomed.Mater.Res.24(1990)721-729.
    86.P.Zhu,Y.Masuda,K.Koumoto,The effect of surface charge on hydroxyapatite nucleation,Biomaterials 25(2004)3915-3921.
    87.I.D.Xynos,A.J.Edgar,L.D.Buttery,L.L.Hench,J.M.Polak,Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution,J.Biomed.Mater.Res.55(2001)151-157.
    88.I.D.Xynos,M.V.Hukkanen,J.J.Batten,L.D.Buttery,L.L.Hench,J.M.Polak,Bioglass 45S5stimulates osteoblast turnover and enhances bone formation In vitro:implications and applications for bone tissue engineering,Calcif.Tissue Int.67(2000)321-329.
    89.T.Sugimoto,M.Kanatani,J.Kano,H.Kaji,T.Tsukamoto,T.Yamaguchi,et al.Effects of high calcium concentration on the functions and interactions of osteoblstic cells and monocytes and on the formation of osteoclast-like cells,J.Bone Miner.Res.8(1993)1445-1452.
    90. S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials 26 (2005) 4847-4855.
    91. J.R. Farley, S.L. Hall, M.A. Tanner, J.E. Wergedal, Specific activity of skeletal alkaline Phosphatase in human osteoblast-like cells regulated by phosphate, phosphate in esters, and phosphate analogs and release of alkaline Phosphatase activity inversely regulated by calcium, J. Bone Miner. Res. 9 (1994) 497-508.
    92. N. Patel, S.M. Best, W. Bonfield, A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules, J. Mater. Sci: Mater. Med. 13 (2002)1199-1206.
    93. S.B. Cho, F. Miyaji, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, Apatite-forming ability of silicate ion dissolved from silica gel, J. Biomed. Mater. Res. 32 (1996) 375-381.
    94. T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka, T. Yamamuro, Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation, J. Mater. Sci. Mater. Med. 4 (1993) 1-4.
    95. T. Gao, H.T. Aro, H. Ylanen, E. Vuorio, Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro, Biomaterials 22 (2001) 1475-1483.
    96. D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, et al. Orthosilicic acid stimulated collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone 32 (2003) 127-135.
    97. R.A. Messing, Molecular inclusions: Adsorption of macromolecules on porous glass membranes, J. Am. Chem. Soc. 91 (1969) 2370-2371.
    98. K.D. Lobel, L.L. Hench, In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates, J. Biomed. Mater. Res. 39 (1998) 575-579.
    99. R.C. Bielby, I.S. Christodoulou, R.S. Pryce, W.J.P. Radford, L.L. Hench, J.M. Polak, Time-and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts, Tissue Eng. 10 (2004) 1018-1026.
    100. D.C. Greenspan, J.P. Zhong, D. Wheeler, Bioactivity and biodegradability: melt vs. sol-gel-derived bioglass in vitro and in vivo, Bioceramics 11 (1998) 345-348.
    101. J.R. Jones, P. Sepulveda, L.L. Hench, Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res. B 59 (2002) 720-726.
    102. M. Hamadouche, A. Meunier, D.C. Greespan, C. Blanchat, J.P. Zhong, G.P.L. Torre, Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses, J. Biomed. Mater. Res. 54 (2001) 560-566.
    103. T. Livingston, P. Ducheyne, J. Garino, In vivo evaluation of bioactive scaffold for bone tissue engineering, J. Biomed. Mater. Res. 62 (2002) 1-13.
    104. P. Laqueeiere, E. Jallot, L. Kilian, H. Benhayoune, G. Balossier, Effects of bioactive glass particles and their ionic product on intracellular concentrations, J. Biomed. Mater. Res. 65 (2003) 441-446.
    105. H. Broemer, K. Deutscher, B. Blencke, E. Pfeil, V. Strunz, Properties of the bioactive implant material, Ceravital. Sci. Ceram. 9 (1977) 219-225.
    106. T. Nakamura. T. Yamamuro, S. Higashi, T. Kokubo, A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue, J. Biomed. Mater. Res. 19 (1985) 689-695.
    107.T.Kokubo,Bioactive glass ceramics:properties and applications,Biomaterials 12(1991)155-163.
    108.T.Kitsugi,T.Yamamuro,T.Kokubo,Bonding behavior of a glass-ceramic containing apatite wollastonite in segmental replacement of the rabbit tibia under load-bearing conditions,J.Bone Jt.Surg.71A:264;1989.
    109.H.R.Lin,C.J.Kuo,C.Y.Yang,S.Y.Shaw,Y.J.Wu,Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives,J.Biomed.Mater.Res.63(2002)271-279.
    110.Q.Cai,J.Yang,J.Z.Bei,S.G.Wang,A novel porous scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques,Biomaterials 23(2002)4483-4492.
    111.C.M.Agrawal,K.A.Athanasiou,Technique to control pH in vicinity of biodegrading PLA-PGA implants,J.Biomed.Mater.Res.38(1997)105-114.
    112.M.Ara,Y.Imai,Effect of blending calcium compounds on hydrolytic degradation of poly (DL-lactic acid-co-glycolic acid),Biomaterials 23(2002)2479-2483.
    113.C.Martin,H.Winet,J.Y.Bao,Acidity near eroding polylactidepolyglycolide in vitro and in vivo in rabbit tibial bone chambers,Biomaterials 17(1996)2373-2380.
    114.L.Lu,S.J.Peter,M.D.Lyman,H.L.Lai,S.M.Leite,J.A.Tamada,In vitro and in vivo degradation of porous poly(DL-lactic-coglycolic acid)foams,Biomaterials 21(2000)1837-1845.
    115.J.A.Rother,A.R.Boccaccini,L.L.Hench,V.Maquet,S.Gautier,R.Jerjme,Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications,Biomaterials 23(2002)3871-3878.
    116.A.G.Stamboulis,A.R.Boccaccini,L.L.Hench,Novel Biodegradable Polymer/Bioactive Glass Composites for Tissue Engineering,Adv.Eng.Mater.4(2002)105-109.
    117.K.Zhang,Y.Wang,M.A.Hillmyer,L.F.Francis,Processing and properties of porous poly(L-lactide)/bioactive glass composites,Biomaterials 25(2004)2489-2500.
    118.L.L.Hench,R.J.Splinter,W.C.Allen,T.K.Greenlee,Bonding mechanics at the interface of prosthetic materials,J.Biomed.Mater.Res.,2(1971)117-141.
    119.L.L.Hench,H.A.Paschall,Direct chemical bond of bioactive glass-ceramic materials to bone and muscle,J.Biomed.Mater.Res.7(1973)25-42.
    120.L.L.Hench,Ceramics,glasses,and composites in medicine,Med Instrum,7(1973)136-144.
    121.L.L.Hench,Wilson J.,An introduction to Biocemmics,London:World Scientific,1993.
    122.I.Izqquierdo-Barba,A.J.Salinas,M.Vallet-Regi,Effect of the continuous solution exchange on the in vitro reactivity of a CaO-SiO_2 sol-gel glass,J.Biomed.Mater.Res.51(2000)191-199.
    123.K.Ohura,T.Nakamura,T.Yamamuro,T.Kokubo,Y.Ebisawa,Y.Kotoura,M.Oka,Bone-bonding ability of P_2O_5-free CaO.SiO_2 glasses,J.Biomed.Mater.Res.25(1991)357-365.
    124.胡善洲,硅灰石矿物及其在陶瓷工业中的应用,国外建材科技 26(2005)36-38.
    125.P.Siriphannon,S.Hayashi,A.Yasumori,K.Okada,Preparation and sintering of CaSiO_3from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution,J.Mater.Res.14(1999)529-536.
    126.Y.Iimori,Y.Kameshima,A.Yasumori,K.Okada,Effect of solid/solution ratio on apatite formation from CaSiO_3 ceramics in simulated body fluid,J.Mater.Sci.Mater.Med.15(2004)1247-1253.
    127. P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO_3 ceramics: Formation of hydroxyapatite in simulated body fluid, J. Biomed. Mater. Res. 52 (2000) 30-39.
    128. X.Y. Liu, C.X. Ding, Z.Y. Wang, Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid, Biomaterials 22 (2001) 2007-2012.
    129. X. Li, J. Chang, Synthesis of wollastonite single crystal nanowires by a novel hydrothermal route, Chem. Lett. 33 (2004) 1458-1459.
    130. K. Lin, J. Chang, Y. Zeng, W. Qian, Preparation of macropous calcium silicate ceramics, Mater. Lett. 58 (2004) 2109-2113.
    131. L.H. Long, L.D. Chen, S.Q. Bai, J. Chang, K.L. Lin, Preparation of dense β-CaSiO_3 ceramic with high mechanical strength and its HAp formation in simulated body fluid, J. Euro. Ceram. Soc. 26(2006)1701-1706.
    132. L.H. Long, L.D. Chen, J. Chang, Low temperature fabrication and characterizations of β-CaSiO_3 ceramics, Ceram. Intern. 32 (2005) 457-460.
    133. H. Li, J. Chang, Preparation and characterization of bioactive and biodegradable wollastonite/poly(D,L-lactic acid) composite scaffolds, J. Mater. Sci. Mater. Med. 15 (2004) 1-7.
    134. H. Li, J. Chang, Fabrication and characterarization of bioactive wollastonite/PHBV composite scaffolds, Biomaterials 25 (2004) 5473-5480.
    135. W.C. Xue, X.Y. Liu, X.B. Zheng, C.X. Ding, In vivo evalution of plasma-sprayed wollastonite coating, Biomaterials 26 (2005) 3455-3460.
    136. P.N. de Aza, Z.B. Luklinska, M.R. Anseau, M. Hector, F. Guitian, S. de Aza, Reactivity of a wollastonite-tricalcium phosphate bioeutectic ceramics in human parotid saliva, Biomaterials 21 (2000) 1735-1741.
    137. P.N. de Aza, F. Guitian, Phase diagram of wollastonite-tricalcium phosphate, J. Am. Ceram. Soc. 78(1995)1653-1656.
    138. P.N. de Aza, F. Guitian, S. de Aza, A new bioactive materials which transforms in situ into hydroxyapatite, Acta Mater. 46 (1998) 2541-2549.
    139. S.Y Ni, K.L. Lin, J. Chang, L. Chou, β-CaSiO_3/β-Ca_3(PO_4)_2 composite materials for hard tissue repair: In vitro studies, J. Biomed. Mater. Res. 85A (2008) 72-82.
    140. D. Dufrane, C. Delloye, I.J. Mckay, P.N. de Aza, S. de Aza, Y.J. Schneider, M. Anseau, Indirect cytotoxicity evaluation of pseudowollastonite, J. Mater. Sci. Mater. Med. 14 (2003) 33-38.
    141. S.Y. Ni, J. Chang, L. Chou, W.Y. Zhai, Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro, J. Biomed. Mater. Res. 80B (2007) 174-183.
    142. S.Y. Ni, J. Chang, L. Chou, A novel bioactive porous CaSiO_3 scaffold for bone tissue engineering, J. Biomed. Mater. Res. 76A (2006) 196-205.
    143. X.Y. Liu, S.Y. Tao, C.X. Ding, Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23 (2002) 963-968.
    144. Z. Gou, J.Chang, Synthesis and in vitro bioactivity of dicalcium silicate powders, J. Euro. Ceram. Soc. 24 (2004) 93-99.
    145. Z. Gou, J. Chang, J. Gao, In vitro bioactivity and dissolution of Ca_2(SiO_3)(OH)_2 and β-Ca_2SiO_4 fibers, J. Euro. Ceram. Soc. 24 (2004) 3491-3497.
    146. Z. Gou, J. Chang, W.Y. Zhai, Preparation and characterization of novel bioactive dicalcium silicate ceramics, J. Euro. Ceram. Soc. 25 (2005) 1507-1514.
    147. W.Y. Zhao, J. Chang, Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders, Mater. Lett. 58 (2004) 2350-2353.
    148. W.Y. Zhao, J. Chang, Preparation and characterization of novel tricalcium silicate bioceramics, J. Biomed. Mater. Res. 72 (2005) 86-89.
    149. W.Y. Zhao, J.Y. Wang, W.Y. Zhai, Z. Wang, J. Chang, The self-setting properties and in vitro bioactivity of tricalcium silicate, Biomaterials 26 (2005) 6113-6121.
    150. S. Nakajima, Y. Kurihara, Y. Wakatsuki, H. Noma, Physicochemical characteristics of new reinforcement ceramic implant, Shikwa Gakuho 89 (1989) 1709-1717.
    151. S. Nakajima, Experimental studies of healing process on reinforcement ceramic implantation in rabbit mandible, Shikawa Gakuho 4 (1990) 525-553.
    152. Y. Miake, T. Yanagisawa, Y. Yajima, H. Noma, N. Yasui, T. Nonami, High-resolution and analytical electron microscopic studies crystals induced by a bioactive ceamic (diopside), J. Dent. Res. 74(1995)1756-1763.
    153. T. Nonami, S. Tsutsumi, Study of diopside ceramics for biomaterials, J. Mater. Sci. M. 10 (1999)475-479.
    154. RN. De Aza, Z.B. Luklinska, M.R. Anseau, Bioactivity of diopside ceramic in human parotid saliva, J Biomed Mater Res B Appl Biomater 73 (2005) 54-60.
    155. C. Wu, J. Chang, Synthesis and apatite-formation ability of akermanite, Mater. Lett. 58 (2004) 2415-2417.
    156. C. Wu, J. Chang. Synthesis and in vitro bioactivity of bredigite powders, J. Biomater. Appl. 21(2007)251-263.
    157. CT. Wu, J. Chang, Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics, J. Biomed. Mater. Res. 83B (2007) 153-160.
    158. C. Wu, J. Chang, S. Ni, J. Wang, The in vitro bioactivity of akermanite ceramics, J. Biomed. Mater. Res. A 76 (2006) 73-80.
    159. C. Wu, J. Chang, J. Wang, S. Ni, W. Zhai, Preparation and characteristics of a calcium magnesium silicate (Bredigite) bioactive ceramics, Biomaterials 26 (2005) 2925-2931.
    160. C. Wu, J. Chang, W. Zhai, A novel hardystonite ceramic: preparation and in vitro biocompatibility, Ceram. Intern. 31 (2005) 27-31.
    161. G Stix, Trend in nanotechnology waiting for break throughs, Sci. Am. 274 (1996) 78-81.
    162. P. Ducheyne, Bioceramics: Material characteristic versus in vivo behavior, J. Biomed. Mater. Res. 21 (1987) 219-236.
    163. M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Lander, A.G. Mikos, Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone, Biomaterials 17 (1996) 175-185.
    164. V.J.P. Lin, K.A. Khor, L. Fu, P. Cheang, Hydroxyapatite-zirconia composite coatings via the plasma spraying process, J. Mater. Process. Technol. 89 (1999) 491-496.
    165. M. Jarcho, R.L. Salisbury, M.B. Thomas, R.H. Doremus, Synthesis and fabrication of β-tricalcium phosphate ceramics for potential prosthetic application, J. Mater. Sci. 14 (1979) 142-150.
    166. A. Tampieri, G. Celotti, F. Szontagh, E. Landi, Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity, J. Mater. Sci. Mater. Med. 8 (1997) 29-37.
    167. N. Thangamani, K. Chinnakali, F.D. Gnanam, The effect of powder processing on densification,microstrucrure and mechanical properties of hydroxyapatite,Ceram.Intern.28(2002)355-362.
    168.N.J.Perch,The cleavage strength of polycrystals,J.Iron Steel Inst.174(1953)25-28.
    169.F.P.Knudsen,Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size,J.Am.Ceram.Soc.42(1959)376-387.
    170.R.W.Rice,Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations,J.Mater.Sci.28(1993)2187-2190.
    171.郭景坤,关于陶瓷材料的脆性问题,复旦学报(自然科学版)42(2003)822-827.
    172.J.C.Elliott,Structure and Chemistry of the Apatites and Other Calcium Orthophosphates,Amsterdam:Elsevier,1994.
    173.M.Akao,H.Aoki,K.Kato,A.Sato,Dense polycrystalline β-tricalcium phosphate for prosthetic applications,J.Mater.Sci.17(1982)343-346.
    174.H.K.Varma,S.Sureshbabu,Oriented growth of surface grams m sintered β-tricalcium phosphate bioceramics,Mater.Lett.49(2001)83-85.
    175.K.C.B.Yeong,J.Wang,S.C.Ng,Fabricating densified hydroxyapatite ceramics from a precipitated precursor,Mater.Lett.38(1999)208-213.
    176.I.W.Chen,X.H.Wang,Sintering dense nanocrystallme oxide without final stage grain growth,Nature,404(2000)168-171.
    177.张其清、梁屹,纳米技术在生物医学中的应用,中国医学科学院学报 24(2002)197-202.
    178.N.C.Tansik Z.Q.Gao,Nanoparticles in biomolecular detection,Nanotoday 1(2006)28-37.
    179.P.Gould,Nanomagnetism shows in vivo potential.Nanotoday 1(2006)34-39.
    180.P.K.Jam,I.H.El-Sayed,M.A.El-Sayed,Au nanoparticles target cancer,Nanotoday 2(2007)18-29.
    181.F.X.Gu,R.Karnik,A.Z.Wang,F.Alexis,E.Levy-Nissenbaum,S.Hong,R.S.Langer,O.C.Farokhzad,Targeted nanoparticles for cancer therapy,Nanotoday 2(2007)14-21.
    182.M.Arruebo,R.F.Pacheco,M.R.Ibarra,J.Santamaria,Magnetic nanoparticles for drug delivery,Nanotoday 2(2007)22-32.
    183.O.A.Govorov,H.H.Richardson,Generating heat with metal nanoparticles,Nanotoday 2(2007)30-38.
    184.钱正英、张光斗,中国可持续发展水资源战略研究综合报告及各专题报告,中国水利水电出版社,2001.
    185.张锡辉,水环境修复工程学原理与应用,化学工业出版社,2001.
    186.金相灿,沉积物污染化学,中国环境科学出版社,1992.
    187.H.W.Vallack,D.J.Bakker,I.Brandt,E.Brostrom-Lunden,A.Brouwer,K.R.Bull,C.Gough,R.Guardans,I.Holoubek,B.Jansson,R.Koch,J.Kuylenstierna,A.Lecloux,D.Mackay,P.McCutcheon,P.Mocarelli and R.D.F.Taalman,Controlling persistent organic pollutants-what next? Environ.Toxicol.Phar.6(1998)143-175.
    188.中国环境优先监测研究组,环境优先污染物,中国环境科学出版社,1989.
    189.K.C.Sekha,N.S.Chary,Fractionation studies and bioaccumulation of sediment - bound heavy metals in Kolleru lake by edible fish,Enviro.Intern.29(2003)1001-1008.
    190.梁芳、郭晋平,植物重金属毒害作用机理研究进展,山西农业科学 35(2007)59-61.
    191.周怀东、彭文启,等.水环境与水环境修复,化学工业出版社,2005.
    192.胡必彬,我国十大流域片水污染现状及主要特征,重庆环境科学 25(2003)15-17.
    193.赵璇、吴天宝、叶裕才,我国饮用水源的重金属污染及治理技术深化问题,给水排水 24(1998)22-25.
    194.中国近岸海域环境质量公报(2001年),国家环境保护总局.
    195.刘相伟,工业含酚废水处理技术的现状与进展,工业水处理 18(1998)4-6.
    196.王海玲等,超高交联吸附树脂对水中对甲苯胺的吸附热力学与动力学研究,环境化学23(2004)188-192.
    197.冯波等,蒙脱石-有机化合物的相互作用,化学通报 2002,07:440-444.
    198.F.A.Banat,B.AL-Bashir,S.AL-Asheb,O.Hayajneh,Adsorption of phenol by bentonite.,Environmental Pollution.107(2000)391-398.
    199.张芳西等,含酚废水的处理与利用,化学工业出版社,1983.
    200.杨正庆等,臭氧氧化法处理实验室苯酚废水,环境科学与管理,31(2006)119-122.
    201.J.H.Carey,J.Lawrence,H.M.Tosine,Photodechlorination of PCB's in the presence of titanium dioxide in queous suspension,Bull.Environ Contam.Toxicol.16(1976)697-701
    202.张金龙著,光催化,华东理工大学出版社,2004.
    203.杨儒等,锐钛矿型纳米TiO_2粉体的精细结构及其光催化降解苯酚的活性,催化学报24(2003)629-634.
    204.井立强等,ZnO和TiO_2纳米粒子的光致发光性能及其与光催化活性的关系,高等学校化学学报 26(2005)111-115
    205.D.M.Nevskaia,A.Guerrero-Ruiz,Comparative Study of the Adsorption from Aqueous Solutions and the Desorption of Phenol and Nonyphenol Substrates on Activated Carbons,J.Colloid Interface Sci.234(2001)316-321.
    206.F.Akbal,Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant,J.Environ.Manage.74(2005)239-244.
    207.L.Zhu,X.Ren,S.Yu,Use of Cetyltrimethylammonium Bromide-bentonite to Remove Organic Contaminants of Varying Polar Character From Water,Environ.Sci.Technol.32(1998)3374-3378
    208.王海玲、陈金龙、翟志才、陈一良、张全兴,超高交联吸附树脂对水中对甲苯胺的吸附热力学与动力学研究,环境化学 23(2004)188-192.
    209.K,Kadirvelu,K.Thamaraiselvi,C.Namasivayam,Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste,Bioresouree Tech.76(2001)663-651.
    210.D.Mohan,S.Chander,Single component and multi-component adsorption of metal ions by activated carbon,Colloids Surfaces 177(2001)183-196.
    211.张秀英,天然及改性膨润土对重金属废水处理效果的试验研究,中国矿业15(2006)82-87.
    212.刘云、吴平霄、党志,柱撑蛭石吸附去除废水中重金属离子的试验研究,矿物岩石26(2006)8-13.
    213.F.Fernane,M.O.Mecherri,P.Sharrock,M.Hadioui,H.Lounici,M.Fedoroff Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles,Mater.Character.59(2008)554-559.
    214.I.Smiciklas,A.Onjia,S.Raicevic,D.Janackovic,M.Mitric,Factors influencing the removal of divalent cations by hydroxyapatite,J.Hazard.Mater.152(2008)876-884.
    215.A.Corami,S.Mignardi,V.Ferrini,Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu)solutions by sorption on hydroxyapatite,J.Colloid Interf.Sci.317(2008)402-408.
    216.A.Yasukawa,T.Yokoyama,K.Kandori,T.Ishikawa,Reaction of calcium hydroxyapatite with Cd~(2+)and Pb~(2+)ions,Colloid Surf.A 299(2007)203-208.
    217.J.G.del Rio,P.Sanchez,P.J.Morando,D.S.Cicerone,Retention of Cd,Zn and Co on hydroxyapatite filters,Chemosphere 64(2006)1015-1020.
    218.钱光人、徐霞、孙福成,几种矿物相在重金属类污染物自净化体系中的应用,西南科技大学学报 22(2007)43-62.
    219.A.Tiselius,S.Hjerten,O.Levin,Protein chromatography on calcium phophate columns,Arch.Biochem.Biophys.65(1965)132-155.
    220.O.Takagi,N.Kuramoto,M.Ozawa,S.Suzuki,Adsorption/desorption of acidic and basic proteins on needle-like hydroxyapatite filter prepared by slip casting,Ceram.Intern.30(2004)139-143.
    221.S.Yu,J.Geng,P.Zhou,J.Wang,X.Chen,J.Hu,New hydroxyapatite monolithic column for DNA extraction and its application in the purification of Bacillus subtilis crude lysate,J.Chromatogr.A 1183(2008)29-37.
    222.A.Slosarczyk,J.S.Oleksiak,B.Mycek,The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants,Biomaterials 21(2000)1215-1221.
    223.R.M.Schek,E.N.Wilke,S.J.Hollister,P.H.Krebsbach,Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering,Biomaterials 27(2006)1160-1166.
    224.N.J.Coleman,Interactions of Cd(Ⅱ)with waste-derived 11 A tobermorites,Separat.Purif.Tech.48(2006)62-70.
    225.N.J.Coleman,D.S.Brassington,A.Raza,A.P.Mendham,Sorption of Co~(2+)and Sr~(2+)by waste-derived 11A tobermorite,Waste Manage.26(2006)260-267.
    226.J.Deja,Immobilization of Cr~(6+),Cd~(2+),Pb~(2+)and Zn~(2+)in Alkali-activated Slag Binders,Cement Concre.Res.32(2002)1971-1979.
    1.N.O.Engin,A.C.Tas,Manufacture of macroporous calcium hydroxyapatite bioceramics,J.Euro.Ceram.Soc.19(1999)2569-2572.
    2.T.A.Kuriakose,S.N.Kalkura,M.Palanichamy,D.Arivuoli,K.Dierks,G.Bocelli,C.Betzel,Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature,J.Crystal Growth 263(2004)517-523.
    3.G.K.Lim,J.Wang,S.C.Ng,L.M.Gan,Processing of fine hydroxyapatite powders via an inverse microemulsion route,Mater.Lett.28(1996)431-436.
    4.K.Byrappa,Handbook of Hydrothermal Technology,Noyes Publications/William Andrew Publishing,LLC,USA,2001.
    5.F.C.Meldrum,N.A.Kotov,J.H.Fendler,Preparation of Particulate Mono- and Multilayers from Surfactant-Stabilized,Nanosized Magnetite Crystallites,J.Phys.Chem.98(1994)4506-4510.
    6.M.Delsannti,A.Moussaid,J.P.Munch,Effect of electric charges on the growth process of micelles,J.Colloid Interf.Sci.157(1993)285-290.
    7.S.H.Han,W.G.Hou,W.X.Dang,J.Xu,J.F.Hu,D.Q.Li,Synthesis of rod-like mesoporous silica using mixed surfactants of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride as templates,Mater.Lett.57(2003)4520-4524.
    8.Y.J.Xiong,Y.Xie,J.Yang,R.Zhong,C.Z.Wu,G.A.Du,In situ micelle-template-interface reaction route to CdS nnanotubes and nanowires,J.Mater.Chem.12(2002)3712-3716.
    9.J.Yao,W.Tjandra,Y.Z.Chen,K.C.Tam,J.Ma,V.Soh,Hydroxyapatite nanostructure material derived using cationic surfactant as a template,J.Mater.Chem.13(2003)3053-3057.
    10.J.C.Elliott,Structure and Chemistry of the Apatites and Other Calcium Orthophosphates,Elsevier,Amsterdam,1994.
    11.T.S.B.Narasaraju,D.E.Phebe,Review of some physico-chemical aspects of hydroxyapatite,J.Mater.Sci.31(1996)1-21.
    12.H.S.Liu,T.S.Chin,L.S.Lai,S.Y.Chiu,K.K.Chung,C.S.Chang,M.T.Lui,Hydroxyapatite synthesized by a simplified hydrothermal method,Ceram.Inter.23(1997)19-23.
    13.J.A.M.van der Houwen,G.Cressey,B.A.Cressy,E.Valsami-Jones,The effect of organic ligands on the crystallinity of calcium phosphate,J.Crystal Growth 249(2003)572-583.
    14.K.C.Blakeslee,R.A.Condrate,Vibration spectra of hydrothermal prepared hydroxyapatites,J.Am.Ceram.Soc.54(1971)559-563.
    15.A.Jillavenkatesa,R.A.Condrate Sr.,Sol-gel processing of hydroxyapatite,J.Mater.Sci.33(1998)4111-4119.
    16. B.O. Fowler, Infrared studies of apatite. I: vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution, Inorg. Chem. 13 (1974) 194-214.
    17. F. Peters, D. Schwarz, M. Epple, The structure of bone studied with synchrotron and thermal analysis, Thermochimica Acta, 361 (2000) 131-138.
    18. C.S. Liu, Y. Huang, W. Shen, J.H. Cui, Kinetics of hydroxyapatite precipitation at pH 10 to 11, Biomaterials, 2001, 22 (4): 301-306.
    19. L.Y. Cao, C.B. Zhang, J.F. Huang, Influence of temperature, [Ca~(2+)], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method, Mater. Lett. 59 (2005) 1902-1906.
    20. W. Kim, F. Saito, Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2, Ultrason. Sonochem. 8 (2001)85-88.
    21. J.H. Zhan, Y.H. Tseng, J.C.C Chan, C.Y. Mou, Biomimetic Formation of Hydroxyapatite Nanorods by a Single-Crystal-to-Single-Crystal Transformation, Adv. Funct. Mater. 15 (2005) 2005-2010.
    22. Q.J. He, Z.L. Huang, Y. Liu, W. Chen, T. Xu, Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres, Mater. Lett. 61 (2007) 141-143.
    23. D.G.A. Nelson, J.D.B. Featherstone, Preparation, analysis and characterization of carbonated apatites, Calcif. Tissue Int. 34 (1982) 69-81.
    24. R.N. Panda, M.F. Hsieh, R.J. Chung, T.S. Chin, FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique, J. Phys. Chem. Solids 64 (2003) 193-199.
    25. A. Krajewski, M. Mazzocchia, P.L. Buldini, A. Ravaglioli, A. Tinti, P. Taddei, C. Fagnano, Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods, J. Mol. Struct. 744 (2005) 221-228.
    26. Z.L. Huang, D.W. Wang, Y. Liu, Y. Zhang, H.Y. Xu, FT-IR investigation on crystal chemistry of various CO_3~(2-) substituted hydroxyapatite solid solutions, J. Inorg. Chem. 18 (2002) 469-474.
    27. G. Binder, G. Troll, Contrib. Mineral. Petr. 101 (1989) 394.
    28. R. Astala, M.J. Stott, First Principles Investigation of Mineral Component of Bone: CO_3~(2-) Substitutions in Hydroxyapatite, Chem. Mater. 17 (2005) 4125-4133.
    29. X. Huang, D.L. Jiang, S.H. Tan, Novel hydrothermal synthesis method of tobermorite fibers using Ca(II)-EDTA complex precursor, J. Euro. Ceram. Soc. 23 (2003) 123-126.
    30. P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada and S. Hayashi, Formation of hydroxyapatite on CaSiO_3 powders in simulated body fluid, J. Euro. Ceram. Soc. 22 (2002) 511-520.
    31. J.W. Mullin, Crystallization, Butterworth-Heinemann, Oxford, 1997, p. 172.
    32. W.L. Fan, W. Zhao, L.P. You, X.Y. Song, W.M. Zhang, H.Y. Yu and S.X. Sun, A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods, J. Solid State Chem. 177(2004)4399-4403.
    33. B. Zhang, C.B. Cao, H.L. Qiu, Y.J. Xu, Y.C. Wang, H.S. Zhu, Facile Synthesis of Uniform Tungsten Oxide Nanorods in Large Scale, Chem. Lett. 34 (2005) 154-155.
    34. M.H. Chen, L. Gao, From Cd(OH)_2 nanoflakes to CdSe nanochains: Synthesis and characterization, J. Crystal Growth 286 (2006) 228-234.
    35. Y.S. Wang, ZnO nanocrystals grown from zinc ketoacidoximate single molecular precursor, J. Crystal Growth, 291 (2006) 398-404.
    36. K. Kunugida, K. Tsukiyama, S. Teramura, S. Yuda, N. Isu, T. Shoji, H. Takahashi, Direct formation of xonotlite fiber with continuous-type autoclave, Gypsum. Lime, 216 (1988) 288-294.
    
    37. K. Yanagisawa, Q. Feng, N. Yamasaki, Hydrothermal synthesis of xonotlite whiskers by ion diffusion, J. Mater. Sci. Lett. 16 (1997) 889-891.
    
    38. X.K. Li, J. Chang, Synthesis of wollastonite single crystal nanowires by a novel hydrothermal route, Chem. Lett. 33 (2004) 1458-1459.
    
    39. K. Kobo, K. Mizuno, G. Yamaguchi, H. Hayashi, Synthetic wollastonite and molded material from it, J. Ceramic Soc. Jpn, 82 (1972) 45-50.
    
    40. X. Huang, D.L. Jiang, S.H. Tan, Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability, Journal Materials Res. Bull. 37 (2002) 1885-1892.
    
    41. S. Shaw, S.M. Clark, C.M.B. Henderson, Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca_5Si_6O_(16)(OH)_2·4H_2O) and xonotlite (Ca_6Si_6O_(17)(OH)_2): an in situ synchrotron study, Chem. Geology 167 (2000) 129-140.
    
    42. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915.
    
    
    43. P. Ducheyne, S. Radin, L. King, The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution, J Biomed Mater Res 27 (1993) 24-34.
    
    44. I.D. Xynos, A.J. Edgar, L.D. Buttery, L.L. Hench, J.M. Polak, Ionic products of bioactive glass diddolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem. Biophy. Res. Comm. 276 (2000) 461-465.
    
    45. I.D. Xynos, A.J. Edgar, L.D. Buttery, L.L. Hench, J.M. Polak, Gene-expression profiling of human osteoblasts following treatment with ionic products of bioglass 45S5 dissolution, J. Biomed. Mater. Res. 55 (2001) 151-157.
    
    46. P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast prolferation and collagen production, Biomaterials 25 (2004) 2941-2948.
    
    47.I.G Richardson, The calcium silicate hydrates, Cement Concrete Res 38 (2008) 137-158
    
    48. T. Mitsuda, Tobermorite and calcium silicate products, Gypsum lime, 214 (1998) 129-139.
    
    49. K. Kubo, M. Esumi, G.Yamaguchi, Xonotlite heat-insulating material with bulk density of 0.1, J. Ceram. Soc. Japan, 84 (1976) 23-28.
    
    50. T. Mitsuda, Hydrothermal reaction and industry of calcium silicate, Ceramics in Japan, 15 (1980)184-196.
    
    51. X.K. Li, J. Chang, A novel hydrothermal route to the synthesis of xonotlite nanofibers and investigation on their bioactivity. J. Mater. Sci. 41 (2006) 4944-4947.
    
    52. S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, Dependence of apatite formation on silica-gel on its structure-effect of heat-treatment, J. Am. Ceram. Soc. 78 (1995) 1769-1774.
    
    53. LL. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487-1510.
    
    54. J.J. Blaker, V. Maquet, R. Jerome, A.R. Boccaccini, SN. Nazhat, Mechanical properties of highly porous PDLLA/Bioglass~(?) composite foams as scaffolds for bone tissue engineering, Acta Biomater. 1 (2005) 643-652.
    
    55. H.Y. Li, J. Chang, Fabrication and characterizationof bioactive wollastonite/PHBV comosite scaffolds, Biomaterials 25 (2004) 5473-5480.
    
    56. H.Y. Li, R.L. Du, J. Chang, Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass, J. Biomater. Appl. 20 (2005) 137-155.
    57.W.Cheng,J.Chang,Fabrication and characterization of polysulfone/diealcium silicate composite films,J.Biomater.Appl.20(2006)361-376.
    58.P.Siripbannon,S.Hayashi,A.Yasumori,K.Okada,Preparation and sintering of CaSiO_3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution,J.Mater.Res.82(1999)529-535.
    59.P.N.De Aza,Z.B.Luklinska,M.R.Anseau,F.Guitian,S.De Aza,Bioactivity of pseudowollastonite in httman saliva,J.Dent.27(1999)107-113.
    60.Z.Gou,J.Chang,Synthesis and in vitro bioactivity of dicalcium silicate powders,J.Euro.Ceram.Soc.24(2004)93-99.
    61.H.R.Lin,C.J.Kuo,C.Y.Yang,S.Y.Shaw,Y.J.Wu,Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives,J.Biomed.Mater.Res.63(2002)271-279.
    62.Q.Cai,J.Yang,J.Z.Bei,SG.Wang,A novel porous scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques,Biomaterials 23(2002)23:4483-4492.
    63.C.M.Agrawal,KA.Athanasiou,Technique to control pH in vicinity of biodegrading PLA-PGA implants,J.Biomed.Mater.Res.38(1997)38:105-114.
    64.M.Ara,Y.Imai,Effect of blending calcium compounds on hydrolytic degradation of poly (DL-lactic acid-co-glycolic acid),Biomaterials 23(2002)2479-2483.
    65.C.Martin,H.Winet,J.Y.Bao,Acidity near eroding polylactidepolyglycolide in vitro and in vivo in rabbit tibial bone chambers,Biomaterials 17(1996)2373-2380.
    66.L.Lu,S.J.Peter,M.D.Lyman,H.L.Lai,S.M.Leite,J.A.Tamada,In vitro and in vivo degradation of porous poly(DL-lactic-coglycolic acid)foams,Biomaterials 21(2000)1837-1845.
    67.T.G.Park Degradation of poly(lactic-co-glycolic acid)microspheres:effect of copolymer composition,Biomaterials 16(1995)1123-1130.
    68.K.A.Athanasiou,J.P.Schmitz,C.M.Agrawal,The effects of porosity on degradation of PLA-PGA implants,Tissue Eng.4(1998)53-63.
    69.W.Heidemann,S.Jeschkeit-Schubbert,K.Ruffieux,J.H.Fischer,H.Jung,G.Krueger,E.Wintermantel,K.L.Gerlach,pH-stabilization of predegraded PDLLA by an admixture of water-soluble sodiumhydrogenphosphate-results of an in vitro- and in vivo-study,Biomaterials 23(2002)3567-3574.
    70.S.A.T.van der Meer,J.R.de Wijn,J.G.A.Wolke,The influence of basic filler materials on the degradation of amorphous D- and L-lactide copolymer,J.Mater.Sci.Mater.Med.7(1996)359-361.
    71.J.A.Rother,A.R.Boccaccini,L.L.Hench,V.Maquet,S.Gautier,R.Jerjme,Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications,Biomaterials 23(2002)3871-3878.
    72.A.G.Stamboulis,A.R.Boccaccini,L.L.Hench,Novel Biodegradable Polymer/Bioactive Glass Composites for Tissue Engineering,Adv.Eng.Mater.4(2002)105-109.
    73.K.Zhang,Y.Wang,M.A.Hillmyer,L.F.Francis,Processing and properties of porous poly(L-lactide)/bioactive glass composites,Biomaterials 25(2004)2489-2500.
    74.李海燕,聚酯/β-硅酸钙复合骨组织工程支架制备与性能研究,中国科学院硅酸盐研究所博士论文,2005,上海.
    75. H.Y. Li, J. Chang, pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA, Compos. Sci. Technol. 65 (2005) 2226-2232.
    76. R. Langer, J.P. Vacanti, Tissue engineering, Science 260 (1993) 920-926.
    77. J.X. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J.P. Proust, The biodegradation mechanism of Calcium Phosphate biomaterials in bone, J. Biomed. Mater. Res. 63 (2002)408-412.
    78. S. Wenisch, J.P. Stahl, U. Horas, C. Heiss, O. Kilian, K. Trinkaus, A. Hild, R. Schnettler. In vivo mechanisms of hydroxyapatite ceramics degradation by osteoclasts: Fine structure microscopy, J. Biomed. Mater. Res. 67A(2003) 713-718.
    79. H.W. Kim, H.E. Kim, J.C. Knowles, Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial, Adv. Function. Mater. 16 (2006) 1529-1535.
    80. D.C. Clupper, J. Gough, P.M. Embanga, LN. Notingher, L.L. Hench, M.M. Hall, Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment, J. Mater. Sci. Med. 15 (2004) 803-808.
    1.J.C.Elliott,Structure and Chemistry of the Apatites and Other Calcium Orthophosphates,Amsterdam:Elsevier,1994.
    2.L.L.Hench,Bioceramics:from concept to clinic,J.Am.Ceram.Soc.74(1991)1487-1510.
    3.L.L.Hench,Bioceramics,J.Am.Ceram.Soc.81(1998)1705-1728.
    4.R.Z.LeGeros,J.P.LeGeros,in:L.L.Hench,J.Wilson(Eds.),An Introduction to Ceramics,World Scientific,Singapore,1993.
    5.B.V.Rejda,J.G.J.Peelen,K.de Groot,Tricalcium phosphate as a bone substitute,J.Bioeng.1(1997)93-96.
    6.K.de Groot,Clinical applications of calcium phosphate biomaterials:a review,Ceramics International 19(1993)363-366.
    7.R.Cancedda,P.Giannoni,M.Mastrogiacomo,A tissue engineering approach to bone repair in large animal models and in clinical practice,Biomaterials 28(2007)4240-4250.
    8.P.Ducheyne,Bioceramics:Material characteristic versus in vivo behavior,J.Biomed.Mater.Res.21(1987)219-236.
    9.M.J.Yaszemski,R.G.Payne,W.C.Hayes,R.Lander,A.G.Mikos,Evolution of bone transplantation:molecular,cellular and tissue strategies to engineer human bone,Biomaterials 17(1996)175-185.
    10.V.J.P.Lin,K.A.Khor,L.Fu,P.Cheang,Hydroxyapatite-zirconia composite coatings via the plasma spraying process,J.Mater.Process.Technol.89(1999)491-496.
    11.M.Jarcho,R.L.Salisbury,M.B.Thomas,R.H.Doremus,Synthesis and fabrication of β-tricalcium phosphate ceramics for potential prosthetic application, J. Mater. Sci. 14 (1979) 142-150.
    12. A. Tampieri, G. Celotti, F. Szontagh, E. Landi, Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity, J. Mater. Sci.: Mater. Med. 8 (1997) 29-37.
    13. N. Thangamani, K. Chinnakali, F.D. Gnanam, The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite, Ceramics International 28 (2002) 355-362.
    14. N.J. Petch, The cleavage strength of polycrystal, J. Iron Steel Inst. 174 (1953) 25-28.
    15. F.P. Knudsen, Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size, J. Am. Ceram. Soc. 42 (1959) 376-387.
    16. R.W. Rice, Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations, J. Mater. Sci. 28 (1993) 2187-2190.
    17. G. Georgiou, J.C. Knowles, Glass reinforced hydroxyapatite for hard tissue surgery-Part 1: mechanical properties, Biomaterials 22 (2001) 2811-2815.
    18. X.Z. Yu, S. Cai, Z. Zhang, G.H. Xu, Bioactive pyrophosphate glass/beta-tricalcium phosphate composite with high mechanical properties, Mater. Sci. Eng.: C, 2007, doi:10.1016/i.msec.2007.08.001.
    19. A. Rapacz-Kmita, A. Slosarczyk, Z. Paszkiewicz, Mechanical properties of HAp-ZrO_2 composites, J. Euro. Ceram. Soc. 26 (2006) 1481-1488.
    20. BT. Lee, K.H. Kim, H.C. Youn, Functionally Gradient and Micro-Channeled Al_2O_3-(t-ZrO_2)/HAp, Composites, J. Am. Ceram. Soc. 90 (2007) 629-631.
    21. Y. Chen, C.H. Gan, T.N. Zhang, G. Yu, P.C. Bai, A. Kaplan, Laser-surface-allonyed carbon nanotubes reinforced hydroxyapatite composite coatings, Appl. Phys. Lett. 86 (2005) 251905-251907.
    22. S.P. Huang, B.Y. Huang, K.C. Zhou, Z.Y. Li, Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites, Materials Letters 58 (2004) 3582-3585.
    23. M. Akao, H. Aoki, K.Kato, A.Sato, Dense polycrystalline P-tricalcium phosphate for prosthetic applications, J. Mater. Sci. 17 (1982) 343-346.
    24. H.K. Varma, S. Sureshbabu, Oriented growth of surface grains in sintered P-tricalcium phosphate bioceramics, Mater. Lett. 49 (2001) 83-85.
    25. K.C.B. Yeong, J. Wang, S.C. Ng, Fabricating densified hydroxyapatite ceramics from a precipitated precursor, Mater. Lett. 38 (1999) 208-213.
    26. K. Ioku, D. Kawagoe, H. Toya, H. Fujimori, S. Goto, K. Ishida, A. Mikuni, H. Mae, OH-Designed Transparent Apatite Ceramics Prepared by Spark Plasma Sintering, Trans. Mater. Res. Soc. Jpn. 27 (2002) 447-449.
    27. N. Kotibuki, K. Ioku, D. Kawagoe, H. Fujimori, S. Goto, H. Ohgushi, Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics, Biomaterials, 26 (2005) 779-785.
    28. J. Li, L. Hermansson, Mechanical evaluation of hot isosta-. tically pressed hydroxylapatite, Interceram. 39 (1990) 13-15.
    29. Y. Fang, D.K. Agrawal, D.N. Roy, R. Roy, Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering, Mater. Lett. 23 (1995) 147-151.
    30.I.W. Chen, X.H. Wang, Sintering dense nanocrystalline oxide without final stage grain growth, Nature, 404 (2000) 168-171.
    31. D.S. Kim, J.H. Lee, R.J. Sung, S.W. Kim, H.S. Kim, J.S. Park, Improvement of translucency in Al_2O_3 ceramics by two-step sintering technique, J. Euro. Ceram. Soc. 27 (2007) 3629-3632.
    32. F. Ye, L.M. Liu, J.X. Zhang, M. Iwasa, C.L. Su, Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering, Compos. Sci. Tech. 65 (2005) 2233-2239.
    33. M. Mazaheri, Z.R. Hesabi, S.K. Sadrnezhaad, Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation, Scripta Materialia, 2008, doi:10.1016/j.scriptamat.2008.02.041.
    34. M. Mazaheri, M. Valefi, Z.R. Hesabi, S.K. Sadrnezhaad, Two-step sintering of nanocrystalline 8Y_2O_3 stabilized ZrO_2 synthesized by glycine nitrate process, Ceram. Int. 2007, doi:10.1016/j.ceramint.2007.09.009.
    35. Z.H. Chen, J.T. Li, J.J. Xu, Z.G Hu, Fabrication of YAG transparent ceramics by two-step sintering, Ceram. Int. 2007, doi:10.1016/j.ceramint.2007.05.015.
    36. X.H. Wang, P.L. Chen, I.W. Chen, Two-step sintering of ceramics with constant grain-size, I. Y_2O_3, J. Am. Ceram. Soc. 89 (2006) 431-437.
    37. Y.I. Lee, Y.W. Kim, M. Mitomo, D.Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering, J. Am. Ceram. Soc. 86 (2003) 1803-1805.
    38. N.O. Engin, A.C. Tas, Manufacture of macroporous calcium hydroxyapatite bioceramics, J. Euro. Ceram. Soc. 19 (1999) 2569-2572.
    39. A. Ravaglioli, A. Krajewski, Bioceramics-materials, properties and applications. Chapman & Hall, London, 1992.
    40. R. Famery, P.B. Richard, Preparation of a- and P-TCP ceramics, with and without magnesium addition. Ceram. Int. 20 (1994) 327-336.
    41. A. Jumpei, Phase diagrams of Ca_3(PO_4)_2-Mg_3(PO_4)_2 and Ca_3(PO_4)_2-CaNaPO_4 systems, Bull. Chem. Soc. Jpn., 31 (1958) 201-205.
    42. A.S. Edelstein, R.C. Cammarata (Eds.), Nanomaterials: Synthesis, Properties and Applications, Institute of Physics (IOP); Bristol, England, 1996.
    43. R.J. Brook, Pore and grain growth kinetics, J.Am.Ceram.Soc. 52 (1969) 339-340.
    44. D.W. Richerson (Eds.), Modern Ceramic Engineering: Properties, Processing and Use in Design, Marcel Dekker, New York, 1922.
    45. J.X. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J.P. Proust, The biodegradation mechanism of calcium phosphate biomaterials in bone, J. Biomed, Mater. Res. (Appl. Biomater.) 63 (2002) 408-412.
    46. H.K. Koerten, J. van der Meulen, Degradation of calcium phosphate ceramics, J. Biomed. Mater. Res. 44 (1999) 78-86.
    47. C.P.A.T. Klein, A.A. Driessen, K. de Groot, Biodegradation behavior of various calcium phosphate materials in bone tissue, J. Biomed. Mater. Res. 17 (1983) 769-784.
    48. H.U. Cameron, I. MacNab, R.M. Pillar, Evaluation of a biodegradable ceramic, J. Biomed. Mater. Res. 11 (1977) 179-185.
    49. S.N. Bhaskar, J.M. Brady, L. Getter, F. Grower, T. Driskell, Biodegradable ceramic implants in bone, Oral. Surg. 32 (1971) 336-346.
    50. J. Ringe, C. Kaps, B. Schmitt, K, Buscher. J, Bartel, H. Smolian, O Schultz, Porcine mesenchymal stem cells,induction of distinct mesenchymal lineages, Cell Tissue Res. 307 (2002) 321-327.
    51. T.J. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunological Methods, 65 (1983) 55-63.
    52. S.W. Wang, L.D. Chen, T.J. Hirai, Densification of Al_2O_3 powder using spark plasma sintering apparatus, J. Mater. Res. 15 (2000) 982-987.
    53. L. Gao, J.S. Hong, Miyamotho, D.D.L. Torre, Bending strength and microstructure of Al_2O_3 ceramics densified by spark plasma sintering, J. Eure. Ceram. Soc, 20 (2000) 2149-2152.
    54. Y.W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P. Cheang. Spark plasma sintering of hydroxyapatite powders, Biomaterials 23 (2002) 37-43.
    55. L. Gao, H.Z. Wang, J.S. Hong, S.B. Tor, P. Cheang, Nanostructured Mater. 11 (1999) 43-45.
    56. Z.J. Shen, E. Adolfsson, M. Nygren, Fracture Toughness and Phase Stability in Hot ... of ceramics in presence of an electric field, Adv. Mater. 13 (2001) 214-216.
    57. Y.I. Lee, J.H. Lee, S.H. Hong, D.Y. Kim. Preparation of nanostructured TiO_2 ceramics by spark plasma sintering, Mater. Res. Bull. 38 (2003) 925-930.
    58. C. Greskovich, K.N. Woods, Fabrication of Transparent ThO_2-Doped Y_2O_3, Am. Ceram. Soc. Bull. 52(1973)473-478.
    59. L.L. Hench, J.M. Polak, Third-generation biomedical materials, Science. 295(5557): 1014-1017; 2002.
    60. K.L. Lin, W.Y. Zhai, S.Y. Ni, J. Chang, Y. Zeng, W.J. Qian, Study of the mechanical property and in vitro biocompatibility of CaSiO_3 ceramics, Ceram. Int. 31 (2005) 323-326.
    61. P. Siriphannon, S. Hayashi, A. Yasumori, K. Okada, Preparation and sintering of CaSiO_3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution, J. Mater. Res. 14 (1999) 529-536.
    62. P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, Formation of hydroxyapatite on CaSiO_3 powders in simulated body fluid, J. Euro. Ceram. Soc. 22 (2002) 511-520.
    63. P. Siriphannon, Y. Kameshima, A. Yasumori, O. Kiyoshi, S. Hayashi, Influence of preparation of precparation conditions on the microstructure and bioactivity of α-CaSiO_3 ceramics: formation of hydroxyapatite in simulated body fluid, J. Biomed. Mater. Res. 52 (2000) 30-39.
    64. P.N. De Aza, Z.B. Luklinska, M.R. Anseau, F. Guitian, S. De Aza, Bioactivity of pseudowollastonite in human saliva, J. Dent. 27 (1999) 107-113.
    65. J.M. Fernandez-Pradas, P. Serra, J.L. Morenza, P.N. De Aza, Pulsed laser deposition of pseudowollastoite coatings, Biomaterials 23 (2002) 2057-2061.
    66. X.Y. Liu, C.X. Ding, Z.Y. Wang, Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid, Biomaterials 22 (2001) 2007-2012.
    67. L.H. Long, L.D. Chen, J. Chang, S.Q. Bai, K.L. Lin, Preparation of dense β-CaSiO_3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid, J. Euro. Ceram. Soc. 26(2006) 1701-1706.
    68.林开利、常江、汪正,多孔硅酸钙生物陶瓷的制备及体外活性和降解性研究,无机材料学报,20(2005)692-698.
    69. W.C. Xue, X.Y. Liu, X.B. Zheng, C.X. Ding, In vivo evaluation of plasma-sprayed wollastonite coating, Biomaterials 26 (2005) 3453-3460.
    70. P.N. De Aza, Z.B. Luklinska, A. Martinez, M.R. Anseau, F. Guitian, S. De Aza, Morphological and structural study of pseudowollastonite implants in bone. J. Microsc. 197 (2000) 60-67.
    71.黄翔,生物活性硅灰石极其复合材料的研究,中国科学院上海硅酸盐研究所博士学位论文,2002年5月.
    72.C.Maniatopoulos,J.Sodek,A.H.Melcher,Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats,Cell Tissue Research 254(1988)317-330.
    73.R.A.Hirst,H.Yesilkaya,E.Clitheroe,A.Rutman,N.Dufty,T.J.Mitchell,C.O'Callaghan,P.W.Andrew,Sensitivities of human monocytes and epithelial cells to pneumolysin are different,Infection and Immunity 70(2002)1017-1022.
    74.B.Yu,K.M.Liang,S.R.Gu,Effect of the microstmcture on the mechanical properties of CaO-P_2O_5-SiO_2-MgO-F~- glass ceramics,Ceram.Int.29(2003)695-698.
    75.A.EI-Ghannam,P.Ducheyne,I.M.Shapiro,Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix.Biomaterials 18(1997)295-303.
    76.S.Wenisch,J.P.Stahl,U.Horas,C.Heiss,O.Kilian,K.Trinkaus,A.Hild,R.Schnettler,In vivo mechanisms of hydroxyapatite ceramics degradation by osteoclasts:Fine structure microscopy.J.Biomed.Mater.Res.67A(2003)713-718.
    77.姚康德、尹玉姬.组织工程相关生物材料.化学工业出版社.2003.
    78.D.Hoeie,Zussman.Chain Silicates,Longman,London,1963.
    1.陆裕朴,胥少汀,葛丰宝,实用骨科。北京:人民军医出版社,1991.
    2.Punnama Siriphannon,Shigeo Hayashi,Atsuo Yasumori,Kiyoshi Okada,Preparation and sintering of CaSiO_3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution,14(1999)529-536.
    3.P.N.de Aza,F.Guitian,S.de Aza,Bioactivity of wollastonite ceramics:In vitro evaluation,Scripta Metallurgica et Materialia,31(1994)1001-1005.
    4.X.Y.Liu,C.X.Ding,Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid,Mater.Lett.57(2002)652-655.
    5.T.Kokubo,H.Takadama,How useful is SBF in predicting in vivo bone bioactivity?Biomaterials 27(2006)2907-2915.
    6.L.L.Hench,Bioceramics:from concept to clinic,J.Am.Ceram.Soc.74(1991)1487-1510.
    7.P.N.De Aza,Morphological studies of pseudowollastonite for biomedical application,J.Microsc.182(1996)24-31.
    8.EN.De Aza,Z.B.Luklinska,A.Martinez,M.R.Anseau,F.Guitan,S.De Aza,Morphological and structural study of pseudowollastonite implants in bone,J.Microsc.197(2000)60-67.
    9.L.L.Hench,J.M.Polak,Third-generation Biomedical Materials,Science 295(2002)1014-1017.
    10.Z.S.Patel,A.G.Mikos,Angiogenesis with biomaterial-based drug- and cell-delivery systems,J.Biomater.Sci.Polym.Ed.15(2004)701-726.
    11.M.Descamps,T.Duhoo,F.Monchau,J.Lu,P.Hardouin,J.C.Hornez,A.Leriche,Manufacture of macroporous β-tricalcium phosphate bioceramics,J.Euro.Ceram.Soc.2008;28:149-157.
    12.D.Hoeie,Zussman,Chain Silicates.London:Longmans,1963.
    13.R.W.Rice,Comparison of Physical Property-Porosity Behaviour with Minimum Solid Area Models,J.Mater.Sci.28(1993)2187-2190.
    14.H.Andersson,Y.Urpo.(Editor).Bioceramics(Vol.7).London:Butterworth-Heinemann,1994,97-102.
    15.JJ.Klawitter,A basic investigation of bone growth in porous materials.PhD Thesis Clemson,Clemson university 1979.
    16.M.V.Hillsley,J.A.Frangos,Bone tissue engineering:The role of interstitial fluid flow,Biotechnol.Bioeng.43(1994)573-581.
    17.J.J.Klawitter,S.F.Hulbert,Application of porous ceramics for the attachment of load bearing orthopaedic application,J.Biomed.Mater.Res.Symp.2(1971)161-167.
    18.J.X.Lu,B.Flautre,Role of interconnection in porous bioceramics on bone recolonization in vitro and in vivo,J.Mater.Sci.Mater.Med.10(1999)111-120.
    19.A.H.Reddi,Morphogenesis and tissue engineering of bone and cartilage:Inductive signals,stemcells and biomimetic biomaterials,Tissue Eng.6(2000)351-359.
    20.S.Wenisch,J.P.Stahl,U.Horas,C.Heiss,O.Kilian,K.Trinkaus,A.Hild,R.Schnettler,In vivo mechanisms of hydroxyapatite ceramics degradation by osteoclasts:Fine structure microscopy,J.Biomed.Mater.Res.67A(2003)713-718.
    21.X.Liu,C.Ding,Z.Wang,Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid,Biomaterials 22(2001)2007-2012.
    22.钟吉品,L.L.Hench,生物玻璃的研究与发展,无机材料学报10(1995)129-138.
    23.T.Kokubo,H.Kushitani,C.Ohtsuki,S.Sakka,T.Yamamuro,Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation,J.Mater.Sci.Mater.Med.4(1993)1-4.
    24.P.N.De Aza,A.H.De Aza,A.Herrera,F.A.Lopez-Prats,P.Peua,Influence of sterilization techniques on the in vitro bioactivity of pseudowollastonite,J.Am.Ceram.Soc.89(2006)2619-2624.
    25.L.W.Dobrucki,A.J.Sinusas,Imaging angiogenesis,Curr.Opin.Biotechnol.18(2007)90-96.
    26.S.T.Ho,D.W.Hutmacher,A comparison of micro CT with other techniques used in the characterization of scaffolds,Biomaterials 27(2006)1362-1376.
    27.G.H.van Lenthe,H.Hagenmuller,M.Bohner,S.J.Hollister,L.Meinel,R,Muller,Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo,Biomaterials 28(2007)2479-2490.
    28.K.Ohsawa,M.Neo,T.Okamoto,J.Tamura,T.Nakamura,In vivo absorption of porous apatite- and wollastonite-containing glass-ceramic,J.Mater.Sci.Mater.Med.15(2004)859-864.
    29.Z.S.Patel,A.G.Mikos,Angiogenesis with Biomaterial-Based Drug- and Cell-Delivery Systems,J.Biomater.Sci.Polymer Ed.15(2004)701-726.
    30.X.Y.Liu,C.X.Ding,P.K.Chu,Mechanism of apatite formation on wollastonite coatings in simulated body fluids,Biomaterials 25(2004)1755-1761.
    31.C.Sarmento,Z.B.Luklinska,L.Brown,M.Anseau,P.N.De Aza,S.De Aza,F.J.Hughes,I.J.McKay,In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic,J.Biomed.Mater.Res.69A(2004)351-358.
    32.D.Dufrane,C.Delloye,I.J.McKay,P.N.De Aza,S.De Aza,Y.J.Schneider and M.Anseau,Indirect cytotoxicity evaluation of pseudowollastonite,J.Mater.Sci.Mater.Med.14(2003)33-38.
    33.W.H.Xue,X.Y.Liu,X.B.Zheng,C.X.Ding.In vivo evaluation of plasma-sprayed wollastonite coating,Biomaterials 26(2005)3455-3460.
    34.O.Gauthier,R.Muller,D.von Stechow,B.Lamy,P.Weiss,J.M.Bouler,In vivo bone regeneration with injectable calcium phosphate biomaterial:a three-dimensional micro-computed tomographic, biomechanical and SEM study, Biomaterials 26 (2005) 5444-5453.
    35. K. Ohsawa, M. Neo, T. Okamoto, J. Tamura, T. Nakamura, In vivo absorption of porous apatite- and wollastonite-containing glass-ceramic, J. Mater. Sci. Mater. Med. 15 (2004) 859-864.
    36. P. V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: An update, Injury 36 (2005) S20-S27.
    37. S.Y. Ni, J. Chang, L. Chou, W.Y., Zhai Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro, J. Biomed. Mater. Res. 80B (2007) 174-183.
    38. S.Y. Ni, J. Chang, L. Chou, A novel bioactive porous CaSiO_3 scaffold for bone tissue engineering, J. Biomed. Mater. Res. 76A(2006) 196-205.
    39. S.Y. Ni, K.L. Lin, J. Chang, L. Chou, β-CaSiO_3/β-Ca_3(PO_4)_2 composite materials for hard tissue repair: In vitro studies, J. Biomed. Mater. Res. 85A (2008) 72-82.
    40. N. Kondo, A. Ogose, K. Tokunaga, H. Umezu, K. Arai, N. Kudo, Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials 27 (2006) 4419-4427.
    41. M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop. Relat. Res. 157(1981)259-278.
    42. M. Vogel, C. Voigt, C. Knabe, R.J. Radlanski, U.M. Gross, Muller-Mai CM. Development of multinuclear giant cells during the degradation of Bioglass particles in rabbits, J. Biomed. Mater. Res. 70A (2004) 370-379.
    43. H. Teramoto, A. Kawai, S. Sugihara, A. Yoshida, H. Inoue, Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo, Acta Med. Okayama. 59 (2005) 201-207.
    44. L.L. Hench, J. Wilson, An introduction to bioceramics, Singapore: World Scientific, 1993.
    45. L.L. Hench, H.A. Paschall, Histo-chemical responses at a biomaterials interface, J. Biomed. Mater. Res. 5(1974)49-64.
    46. T.L. Arinzeh, T. Tran, J. Mcalary. G. Daculsi, A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation, Biomaterials 26 (2005)3631-3638.
    47. P. Frayssinet, J.L. Trouillet, N. Rouquet, E. Azimus, A. Autefage, Osseointegration of macroporous calcium phosphate ceramic having a different chemical composition, Biomaterials 14(1993)423-429.
    48. T. Sugimoto, M. Kanatani, J. Kano, H. Kaji, T. Tsukamoto, T. Yamaguchi, et al. Effects of high calcium concentration on the functions and interactions of osteoblstic cells and monocytes and on the formation of osteoclast-like cells, J. Bone Miner. Res. 8 (1993) 1445-1452.
    49. J.R. Farley, S.L. Hall, M.A. Tanner, J.E. Wergedal, Specific activity of skeletal alkaline Phosphatase in human osteoblast-like cells regulated by phosphate, phosphate in esters, and phosphate analogs and release of alkaline Phosphatase activity inversely regulated by calcium, J. Bone Miner. Res. 9 (1994) 497-508.
    50. S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials 26 (2005) 4847-4855.
    51. E.M. Carlisle, Silicon: a possible factor in bone calcification, Science 167 (1970) 279-280.
    52. N. Patel, S.M. Best, W. Bonfield, A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules, J. Mater. Sci: Mater. Med. 13 (2002)1199-1206.
    53. T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka, T. Yamamuro, Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation, J. Mater. Sci: Mater. Med. 4 (1993) 1-4.
    54. S.B. Cho, F. Miyaji, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, Apatite-forming ability of silicate ion dissolved from silica gel, J. Biomed. Mater. Res. 32 (1996) 375-381.
    55. I.D. Xynos, M.V. Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J.M. Polak, Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering, Calcif. Tissue Int. 67 (2000) 321-329.
    56. I.D. Xynos, A.J. Edgar, L.D. Buttery, L.L. Hench, J.M. Polak, Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution, J. Biomed. Mater. Res. 55 (2001) 151-157.
    57. T. Gao, H.T. Aro, H. Ylanen, E. Vuorio, Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro, Biomaterials 22 (2001) 1475-1483.
    58. D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, et al. Orthosilicic acid stimulated collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone. 32 (2003) 127-135.
    59. R.A. Messing, Molecular inclusions: Adsorption of macromolecules on porous glass membranes, J. Am. Chem. Soc. 91 (1969) 2370-2371.
    60. K.D. Lobel, L.L. Hench, In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates, J. Biomed. Mater. Res. 39 (1998) 575-579.
    1.戴树桂 主编,环境化学进展,化学工业出版社,北京,2005.
    2. S. Rengaraj, S.H. Moon, R. Sivabalan, B. Arabindoo, V. Murugesan, Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon, Waste. Manage. 22 (2002) 543-548.
    3. N. Roostaei, F.H. Tezel, Removal of phenol from aqueous solutions by adsorption, J. Environ. Manage. 70(2004)157-164.
    4. O.J. Hao, H. Kim, P.C. Chiang, Decolorization of wastewater, Crit. Rev. Environ. Sci. Technol. 30 (2000) 449-505.
    5. B. Ozkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater. 129 (2006) 158-163.
    6. J.H. Tay, X.G. Chen, S. Jeyaseelan, N. Graham, Optimising the preparation of activated carbon from digested sewage sludge and coconut husk, Chemosphere 44 (2001) 45-51.
    7. A. Dabrowski, P. Podkoscielny, M. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-a critical review, Chemosphere 58 (2005) 1049-1070.
    8. S.K. Dentel, I.Y. Bottero, K. Khatyb, H. Demovgeot, LP. Duguet, C. Anselme, Sorption of tannic acid, phenol and 2,4,5-trichlorophenol on organoclays, Water Res. 29 (1995) 1273-1280.
    9. F.C. Wu, R.L. Tseng, R.S. Juang, Adsorption of dyes and phenols from water on the activated carbons prepared from corncob wastes, Environ. Technol. 22 (2001) 205-213.
    10. S.H. Lin, M.J. Cheng, Adsorption of phenol and m-chlorophenol on organobentonites and repeated thermal regeneration, Waste Manage. 22 (2002) 595-603.
    11. X. Zhang, A.M. Li, Z.M. Jiang, Q.X. Zhang, Adsorption of dyes and phenol from water on resin adsorbents: Effect of adsorbate size and pore size distribution, J. Hazard. Mater. 137 (2006) 1115-1122.
    12. J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam, 1994.
    13. A. Slosarczyk, J.S. Oleksiak, B. Mycek, The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants, Biomaterials 21 (2000) 1215-1221.
    14. R.M. Schek, E.N. Wilke, S.J. Hollister, P.H. Krebsbach, Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering, Biomaterials 27 (2006) 1160-1166.
    15. A. Tiselius, S. Hjerten, O. Levin, Protein chromatography on calcium phophate columns, Arch. Biochem. Biophys. 65 (1965) 132-155.
    16. O. Takagi, N. Kuramoto, M. Ozawa, S. Suzuki, Adsorption/desorption of acidic and basic proteins on needle-like hydroxyapatite filter prepared by slip casting, Ceram. Intern. 30 (2004) 139-143.
    17. J.G. Del Rio, P. Sanchez, P.J. Morando, D.S. Cicerone, Retentionion of Cd, Zn and Co on hydroxyapatite filters, Chemosphere 64 (2006) 1015-1020.
    18. B. Sandrine, N. Ange, B.A. Didier, C. Eric, S. Patrick, Removal of aqueous lead ions by hydroxy apatites: Equilibria and kinetic processes, J. Hazard. Mater. 139 (2007) 443-446.
    19. H. Polat, M. Molva, M. Polat, Capacity and mechanism of phenol adsorption on lignite, Int. J. Miner. Process. 79 (2006) 264-273.
    20. M. Ahmaruzzaman, D.K. Sharma, Adsorption of phenols from wastewater, J. Colloid Interf. Sci. 287 (2005) 14-24.
    21. X.L. Chai, Y.C. Zhao, Adsorption of phenolic compound by aged-refuse, J. Hazard. Mater. 137 (2006)410-417.
    22.A.Dabrowski,P.Podkoscielny,M.Hubicki,M.Barczak,Adsorption of phenolic compounds by activated carbon-a critical review,Chemosphere 58(2005)1049-1070.
    23.R.P.Han,W.H.Zou,Z.P.Zhang,J.Shi,J.J.Yang,Removal of copper(Ⅱ)and lead(Ⅱ)from aqueous solution by manganese oxide coated sand I.Characterization and kinetic study,J.Hazard.Mater.137(2006)384-395.
    24.Y.S.Ho,C.C.Chiang,Sorption studies of acid dye by mixed sorbents,Adsorption 7(2001)139-147.
    25.Y.C.Hsu,C.C.Chiang,M.F.Yu,Adsorption behaviors of basic dyes on activated clay,Separ.Sci.Technol.32(1997)2513-2534.
    26.Y.S.Ho,C.C.Chiang,Y.C.Hsu,Sorption kinetics for dye removal from aqueous solution using activated clay,Separ.Sci.Technol.36(2001)2473-2488.
    27.孙明礼、成荣明、徐学诚、陈奕卫、李茂刚,苯酚及取代酚在碳纳米管上的吸附研究.化学研究与应用,18(2006)13-16.
    28.S.Bekkouche,M.Bouhelassa,N.Hadj Salah,F.Z.Meghlaoui,Study of adsorption of phenol on titanium oxide(TiO_2),Desalination 166(2004)355-362.
    29.H.Polat,M.Molva,M.Polat,Capacity and mechanism of phenol adsorption on lignite,Int.J.Miner.Process.79(2006)264-273.
    30.S.Richards,A.Bouazza,Phenol adsorption in organo-modified basaltic clay and bentonite,Appl.Clay Sc.2006,in press.
    31.J.Q.Jing,C.Cooper,S.Ouki,Comparison of modified montmorillonite adsorbents Part Ⅰ:preparation,characterization and phenol adsorption,Chemosphere 47(2002)711-716.
    32.G.Dursun,H.Cicek,A.Y.Dursun,Adsorption of phenol from aqueous solution by using carbonized beet pulp.J.Hazard.Mater.125(2005)175-182.
    33.J.Wu,H.Q.Yu,Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass:Isotherms,kinetics and thermodynamics,J.Hazard.Mater.137(2006)498-508.
    34.N.Kannan,M.M.Sundaram,Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study,Dyes Pegments 51(2001)25-40.
    35.Y.S.Ho,G.Mckay,Sorption of dye from aqueous solution by peat,Chem.Eng.J.70(1998)115-124.
    36.W.J.Weber Jr.,J.C.Morriss,Kinetics of adsorption on carbon from solution,J.Sanit.Eng.Div.Am.Soc.Civ.Eng.89(1963)31-60.
    37.I.Langmuir,The adsorption of gasses on plane surface of glass,mica and platinum,J.Am.Chem.Soc.40(1916)1361-1368.
    38.H.M.F.Freundlich,Uber die adsorption in losungen,Z.Phys.Chem.57(1906)385-470.
    39.I.Vazquez,J.Rodriguez-Iglesias,E.Maranon,L.Castrillon,M.Aldvarez,Removal of residual phenols from coke wastewater by adsorption,J.Hazard.Mater.147(2007)395-400.
    40.A.H.Gemeay,Adsorption characteristics and the kinetics of the cation exchange of rhodamine-6G with Na~+ -montmorillonite,J.Colloid.Interf.Sci.251(2002)235-241.
    41.C.H.Wu,Adsorption of reactive dye onto carbon nanotubes:Equilibrium,kinetics and thermodynamics,J.Hazard.Mater.144(2007)93-100.
    42.R.A.Garcia-Delgado,L.M.Cotouelo-Minguez,J.J.Rodriguez,Equilibrium study of single-solution adsorption of anionic surfactants with polymeric XAD resins,Sep.Sci.Technol. 27(1992)975-987.
    43.J.P.Bell,M.Tsezos,Removal of hazardous organic pollutions by biomass adsorption,J.Water Pollut.Control.Fed.59(4)(1987)191-198.
    44.M.Kara,H.Yuzer,E.Sabah,M.S.Celik,Adsorption of cobalt from aqueous solutions onto sepiolite,Water Res.37(2003)224-232.
    45.M.J.Jaycock,G.D.Parfitt,Chemistry of Interfaces,Chichester:Ellis Horwood.1981.
    46.周迟骏、杨晓燕高浓度,FeO(OH)溶胶制备及对苯酚的吸附特性,工业水处理.25(2005)42-43,71.
    47.肖秋国、付勇坚,活化海泡石对苯酚的吸附研究,环境科学与技术.29(2006)73-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700