用户名: 密码: 验证码:
高性能Ti(C,N)基金属陶瓷材料及其刀具切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用粉末冶金、材料科学和固体经验电子理论(EET理论)研究了Nj对Ti(C,N)基金属陶瓷中不同碳化物的润湿性、润湿性与陶瓷相价电子结构的关系以及细晶粒的Ti(C,N)基金属陶瓷材料和切削刀具的性能。
     首先,介绍了Ti(C,N)基金属陶瓷的发展过程、组织性能、研究现状、存在的问题及其在切削刀具领域的应用。重点概述了加入晶粒长大抑制剂对金属陶瓷组织和性能的影响、纳米增强和超细晶粒Ti(C,N)基金属陶瓷的研究现状,指出了Ti(C,N)基金属陶瓷的发展趋势;同时也概述了EET理论在金属陶瓷领域的应用;指出了本文研究的目的与意义。简要讨论了润湿性测试用陶瓷基板的制备工艺,发现采用热压烧结(HP)工艺(Ar保护、压力为30MPa、在1800℃下保温1h)可以制备出致密度达97%以上的陶瓷基板。详细研究了金属陶瓷中不同碳化物对Ni的润湿性,指出在Ti(C,N)固溶体中添加Mo_2C、TaC、WC、VC和NbC等碳化物都能降低金属Ni/(Ti,Me)(C,N)体系的接触角(θ),添加一元碳化物对改善润湿性能力大小依次为:Mo_2C>TaC>WC>VC>NbC。添加多元碳化物能够使Ni对Ti(C,N)固溶体的接触角持续降低。研究发现,Ni/(Ti,Me)(C,N)体系的润湿机理是存在元素扩散与金属/陶瓷互溶的反应性润湿。而在研究润湿性与陶瓷相价电子结构的关系时发现,多元陶瓷相的价电子结构参数(n_A)随碳化物添加量的增加而增加,碳化物对n_A影响大小依次为VC>Mo_2C>NbC>WC>TaC;建立了陶瓷相最强键上共价电子数(n_A)、润湿性(接触角θ)以及陶瓷相成份(x)之间的关系;发现了添加Mo_2C可使陶瓷相与金属相的界面电子密度增大,润湿性得到改善,界面得到强化,金属陶瓷的强韧性也得以提高。
     其次,研究了纳米TiN改性TiC基金属陶瓷的组织与性能。发现添加纳米TiN或复合添加纳米—微米TiN可以增强TiC基金属陶瓷材料;随纳米TiN的添加量的增加,金属陶瓷材料的组织都得到了细化,材料力学性能得到提高;当添加6~8wt%的纳米TiN时可以获得最优的力学性能;组织细化和力学性能提高的原因与在基体(TiC)晶界处分布的纳米TiN颗粒可以有效钉扎TiC晶粒的运动有关。而Mo含量对5Co-5Ni和10Co-10Ni纳米改性金属陶瓷的组织的影响不尽相同。研究发现,随Mo添加量的增大,材料的断裂韧性和抗弯强度下降;当Mo添加量为4wt%时,材料的断裂韧性和抗弯强度都达到最大值。纳米TiN增强金属陶瓷的机制有细晶强化、弥散强化和固溶强化。
     本文还研究了纳米改性金属陶瓷刀具的切削性能和磨损机理。结果表明,在切削正火态45#钢、灰铸铁、淬硬钢利不锈钢时,与YT15硬质合金刀具和YG8刀具相比,纳米改性金属陶瓷刀具寿命明显较高。而与未进行纳米改性的金属陶瓷刀具相比,纳米改性金属陶瓷刀具的切削性能与耐磨性有了较大的提高。纳米改性金属陶瓷刀具在v_c=200 m/min~400m/min下切
In order to improve the strength and toughness of Ti(C,N) cermets efficiently and make cermets win more and more wide applications, wettability of nickel on various carbides in cermets, relationship between valence electron structure (VES) and wettability, the microstructures and mechanical properties of Ti(C,N)-based cermets materials with nano-TiN modifications and cutting properties of cermets cutters are investigated systematically in this dissertation by means of powder metallurgy, materials science and empirical electron theory of solids (EET theory).In the first part, the development process, microstructures and properties, present research situation, problems presently existing and application areas as cutters have been outlined and a special attention is paid to the role and effect of grain growth inhibitors on the microstructures and properties of cermets and research status in the nano reinforcing Ti(C,N)-based cermets and ultra-fine grained Ti(C,N)-based cermets. Simultaneously, the present research progress of EET theory is also outlined and the development trends of cermets pointed out. Grounded on the above work, the purposes and significance of this dissertation have also been pointed out. Preparation techniques for wetting test samples was briefly given and results have shown that ceramic substrates with high density (above 97 %) can be prepared by using hot press technology (pressure being 30MPa, temperature being 1800℃ for 1 h at an argon atmosphere).Furthermore, wettability of nickel on various carbides in cermets was investigated and wetting tests reveal that contact angle (θ) reduces continuously and wettability of Ni/(Ti,Me)(C,N) are improved efficiently with the addition of various carbides such as Mo_2C, TaC, WC, VC as well as NbC and contact angle ( 9) decreases definitely with the increase of carbides content, the impact order of the carbides on θis Mo_2C>TaC>WC>VC >NbC. It is also found that wetting mechanism of Ni/(Ti,Me)(C,N) system is virtually a process in which diffusion and dissolution of elements are characterized. On the other hand, it can be deduced from EET calculations that the covalent electrons on the strongest bond (n_a) in ceramic phases increase with the content of carbides, and the impact order is VC>Mo_2C>NbC>WC>TaC. The author have also posed the regression relationship among the chemical composition (x), contact angle (θ) and valence electron structure (n_A). In this section, the author have also found that addition of M02C can efficiently improve the wettability between (Ti,Me)(C,N) and Ni and the interfacial binding and strength are therefore
    improved, and cermets with high strength and toughness can be obtained.In the second part, microstructures and mechanical properties of TiC based cermets with nano-TiN modifications are presented. Results reveal that addition of nano-TiN particles or compound addition of nano-TiN and micro-TiN can to some extent strengthen the cermets and a finer microstructure and higher mechanical properties have been obtained with the increase of content of nano-TiN. Investigations have also shown that optimally comprehensive properties are achieved when the content of nano-TiN reaches 6~8wt%.TEM characterizations reveal that dispersive distribution of residual nano-TiN particles at/among TiC interfaces results in the fining effect and improvements of mechanical properties of cermets. On the other hand, the effects of Mo on the microstructures of 5Co-5Ni cermets and lOCo-lONi cermets are not identical. Mechanical tests show that bending strength and fracture toughness decline definitely with addition of Mo and reach a maximum value when Mo content is about 4 wt%. In general, the reinforcing mechanism of nano-particles on cermets can be summarized as grain fining strengthening, dispersion strengthening and solid solution strengthening.Next, the cutting characteristics and wearing mechanism of cermets cutters with nano-TiN modifications are discussed in detail. Results show that in machining normalized medium carbon steel, gray cast iron, quenched steel and stainless steel cermets cutters with nano-TiN modifications definitely exhibit better cutting properties and longer tool life in comparison with cemented carbide cutters (YT15 and YG8) and conventional cermets cutter. Grain wear, diffusion wear and oxidation wear are predominant wear mechanism when the cutter is cutting at a higher speed (200 m/min ~ 400m/min). Comparably, the main wear mechanism changes to adhesion wear, diffusion wear and oxidation wear when the cutter is utilized in cutting gray cast iron. Investigations also show that in cutting quenched steel cermets cutter readily fails in the form of "chipping".Finally, thermal shock resistance of cermets with nano-modifications is investigated. Results reveal that the quantity and size of the voids plus the size of micro-cracks in cermets increases with thermal shock cycles (N) and cermets with nano-modifications possesses a better thermal shock resistance in comparison with conventional cermets materials.
引文
[1] P. Ettmayer, W. Lengauer. The story of cermets [J]. Powder Met. Int., 1989, 21(2): 37-38.
    [2] P. Ettmayer. hardmetals and cermets [J]. Anu. Rev. Mater. Sci., 1989, 19: 145-164.
    [3] Jr. M. Humenik, N. M. Parikh. Cermets: Ⅰ, Fundamental Concepts related to microstructure and Physical properties of cermets system [J]. J. Amer. Ceram. Soc., 1956, 39(2): 60-63.
    [4] D. Moskowitz, Jr. M. Humenik. Modern development in P/M [M], Vol3, Ed. By Hansner H. H., Plenum Press, N. Y., 1966:83.
    [5] N. M. Parikh, Jr. M. Humenik. Cermets Ⅱ, Wettability and Mircostructure studies in liquid phase sintering [J]. J. Amer. Ceram. Soc., 1957, 40(9):315-320.
    [6] P. Ettmayer, H. Kolaska, K. Dreyer. Effect of the sintering atmosphere on the properties of cermets [J]. Powder Met. Int., 1991, 23(4):224-229.
    [7] 贺从训,夏志华,江有明等.Ti(C,N)基金属陶瓷的研究[J].稀有金属,1999,23(1):4-12.
    [8] E. B. Clark, B. Roebuck. Extending the application areas for titanium carbonitride cermets [J]. Int. J. Refr. Metals & Hard Mater.,1992, 11: 23-33.
    [9] S. Bolognini, G. Feusier, D. Mari, et al. High temperature mechanical behavior of Ti(C,N)-Mo-Co cermets [J]. Int. J. Refr. Metals & Hard Mater., 1998, 16: 257-268.
    [10] I. Hussainova, J. Kubarsepp, J. Pirso. Mechanical properties and features of erosion of cermets [J]. Wear, 2001, 250: 818-825.
    [11] L. M. Chen, W. Lengauer, K. Dreyer. Advances in modern nitrogen containing hardmetals and cermets [J]. Int. J. Refr. Metals & Hard Mater., 2000, 18: 153-161.
    [12] 松原秀彰,富士原由雄.硬质·超硬质材料先端材料应用[J].日本金属学会会报,1990,29(12):1008-1018.
    [13] 陆庆忠,张福润,余立新.Ti(C,N)基金属陶瓷的研究现状及发展趋势[J].武汉科技学院学报,2002,15(5):42-46.
    [14] S. Y. Ahn and S. Kang. Formation of Core/Rim Structure in Ti(C,N)-WC-Ni Cermet via Dissolution and Precipitation Process [J]. J. Am. Cerma. Soc., 2000, 83(6):1489-1494.
    [15] S. Y, Ahn, S. W. King, and S. Kang. Microstructure of Ti(C,N)-WC-NbC-Ni Cermets [J]. J. Am. Cerma. Soc., 2001, 84(4): 843-849.
    [16] H. Yoshimura, T. Sugizawa, K. Nishigaki, et al. Reaction occurring during sintering and the characteristics of TiC-20TiN- 15WC-10TaC-9Mo-5.SNi- 11Co cermet [J]. Int. J. Refr. Metals & Hard Mater., 1983, (33): 170-174.
    [17] J. Zackrisson, H.-O. Andren. Effect of Carbon content on the microstructure and mechanical properties of (Ti, W, Ta, Mo)(C, N)-(Co, Ni) cermets [J]. Int. J. Refr. Metals & Hard Mater.,1999, 17:265-273.
    [18] P. Ettmayer, H. Kolaska, W. Lengauer, et al. Ti (C,N)Cermets-Metailurgy and Properties [J]. Int. J. Refr. Metals & Hard Mater., 1995, 13:343-351.
    [19] J. Joardar, S. W. Kim, S. Kang. Effect of nanocrystalline binder on the microstructure and mechanical properties of ultrafine Ti (CN) cermets [J]. Mater Sci. Eng., 2003, A360:385-389.
    [20] P. Feng, W. H. Xiong, L. X. Yu, et al. Phase evolution and microstructure characteristics of ultrafine Ti (CN)-based cermet by spark plasma sintering [J]. Int. J. Refr. Metals & Hard Mater., 2004, 22:133-138.
    [21] 晋勇,王玉环,胡希川等.微波烧结金属陶瓷材料的工艺研究[J].工具技术,2004,38(9):96-107.
    [22] G. Q. Xiao, Q. C. Fan, M. Z. Gu. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Ni cermet [J]. Mater Sci. Eng., 2004, A382:132-140.
    [23] 张杰,刘灿楼,胡镇华.碳含量对Ti(CN)基金属陶瓷组织和性能的影响[J].粉末冶金技术,1997,15(2):122-125.
    [24] H. Suzuki, H. Matsubara, and T. Saitoh. The Microstructures of Ti (C,N)-Mo_2C-Ni Cermet Affected by WC Addition [J]. Jpn. Soc. Powder Metali., 1983, 31 (7): 236-240.
    [25] 刘宁,姜勇.化学成分对Ti(C,N)基金属陶瓷断裂韧性的影响[J].粉末冶金技术,1999,17(4):269-272.
    [26] 曾德麟主编.粉末冶金材料[M].北京:冶金出版社,1989:190.
    [27] 郑勇等.TiN对Ti(C,N)基金属陶瓷组织和性能的影响.硬质合金,1997,14(3),139-142
    [28] F. Qi, S. Kang. A study on microstructure changes in Ti(CN)-NbC-Ni cermets [J]. Mater. Sci. Eng., 1998, A 251: 276-285.
    [29] 刘宁等.Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报,2000,28(1):72-76.
    [30] 李学芳.国外刀具材料的发展近况[J].工具技术,1999,33(3):3-7.
    [31] S. Berger. Nanocrystalline materials: A study of WC-based hard metals [J], Process in Materials Science, 1997,10(2):245.
    [32] 范景莲,李志希,缪群等.超细/纳米硬质合金及晶粒长大抑制剂的研究[J],粉末冶金技术,2004,22(5):259-263.
    [33] 吴恩熙,雷贻文.超细硬质合金中晶粒长大抑制剂的作用[J],硬质合金,2002,19(3):136.140.
    [34] B. Wittman, W. D. Schubert. WC grain growth and grain growth inhibition in nickel and iron biner hard metals [J], Int. J. Refr. Metals & Hard Mater., 2002, 20:51-60.
    [35] R. K. Sadangi, L. E. McCandish, B. H. Kear, et al. grain growth inhibition in liquid phase sintered nanophase WC/Co alloys [J]. Advances in Powder Metallurgy and Particulate Materials, 1998, (1):51-59.
    [36] 郑勇,刘文俊,游敏等.Cr_3C_2和VC对Ti(C,N)基金属陶瓷中环形相的价电子结构和性能的影响[J],硅酸盐学报,2004,32(4):422-428.
    [37] Y. Zheng, M. You, W. H. Xiong, et al. Effect of Cr_3C_2 on Valence Electron Structure and plasticity of rim phases in Ti(C,N) based cermets [J], J. Am. Ceram. Soc., 2004, 87(3):460-464.
    [38] K. Choi, N. M. Hwang, D. Y. Kim. Effect of VC addition on microstructural evolution of WC-Co alloy:mechanism of grain growth inhibition [J]. Powder Metallurgy, 2000, 43 (2):168-171.
    [39] H. Pastor. Titanium-carbonitride-based hard alloy for cutting tools [J]. Mater. Sci. Eng., 1998, A105/106: 401-411.
    [40] S. Zhang. Material development of titanium carbonitride-based cermets for machining application [J]. Key Engineering Materials, 1998,138-140: 521-543.
    [41] S. Zang. Titanium Carbonitride-Based Cermet: Process and Properties [J]. Mater Sci. Eng., 1993, A 163: 141-148.
    [42] G. E. D. Errico, S. Bugliosi, and E. Guglielmi. Tool-life Reliability of Cermet Inserts in Milling test [J]. J. Mater. Proc. Tech., 1998,77: 337-343.
    [43] 章宗城.性能优异的切削刀具材料—金属陶瓷[J].工具技术,2001,35(12):15-19.
    [44] 林信平,曹顺华,李炯义.纳米硬质合金烧结技术进展[J].稀有金属与硬质合金,2004,32(1):40-45.
    [45] 姜军生,王宝友,黄传真.陶瓷刀具材料的现状与发展[J].山东陶瓷,2000,23(1):4-7.
    [46] K. Niihara. New design concept of structural ceramics [J]. J. Ceram. Soc. Jpn., 1999, 99:974-982.
    [47] H. Tan, W. Yang. Toughening mechanisms of nano-composite ceramics [J]. Mechanics of Materials, 1998, 30: 111-123.
    [48] N. Liu, Y. D. Xu, H. Li, et al. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets [J]. J. Euro. Ceram. Soc., 2002, 22(13):2409-2414.
    [49] N. Liu, Y. D. Xu, Z. H. Li, et al;. Influence of Molybdenum addition on the microstructure and mechanical properties of TiC based cermets with nano-TiN modification [J]. Ceramics International, 2003, 29:919-925.
    [50] N. Liu, Y. D. Xu. Cutting and wearing properties of nano-TiN modified cermets cutter [J]. Intercerm, 2003, 52(4):212-217.
    [51] N. Liu, Y. D. Xu, Z. H. Li, et al. A study on the cutting and wear behaviors of TiC based cermets cutter with nano-TiN modification [J]. Trans. Nonferro. Met.Soc. China, 2003, 13(4):869-875.
    [52] N. Liu, C. L. Han, Y. D. XU, et al. Microstructure and mechanical properties of nano modified cermets for milling tools [J], Mater. Sci. Eng. A, 2004, A382: 122-131.
    [53] 徐智谋,易新建,胡茂中等.纳米Ti(C,N)增强Ti(C,N)基金属陶瓷的制备研究[J].无机材料学报,2003,18(6):1210-1216.
    [54] 徐智谋,易新建,郑家(?)等.纳米TiC增强Ti(C,N)基金属陶瓷材料的组织与性能[J].功能材料,2003,34(6):696-698.
    [55] Y. Zheng, W. H. Xiong, W. J. Liu, et al. Effect of nano addition on the microstructure and mechanical properties of Ti (C, N)-based cermets [J]. Ceramics International, 2005, 31: 1165-1170.
    [56] 晋勇,薛屺,汤小文等.纳米金属陶瓷材料的微波烧结工艺研究[J].机械工程材料,2004,28(1 2):49-51.
    [57] 熊继,张亚昆,沈保罗等.超细Ti(C,N)金属陶瓷的制备及性能[J].粉末冶金技术,2003,21(2):92-95.
    [58] 夏阳华,丰平,胡耀波等.放电等离子体烧结制备Tj(C,N)基金属陶瓷[J],机械工程材料,2004,28(5):29-31.
    [59] K. Yamazaki. PAS (Plasma Activated Sintering):Transient sintering process control for rapid consolidation of powders [J]. J. Mater. Proc. Tech., 1996, 56(1-4):955-965.
    [60] H. Moriguchi, K. Tsuduki, A. Ikegaya. Ultrafine grained cemented carbides sintered by pulse current process [J]. Powder Metallurgy, 2000, 43 (1):17-19.
    [61] Q. C. Fan, H. F. Chai, Z. H. Jin. Combustion synthesis of TiC-Fe composite [J]. J. Mater. Sci., 1997, 32(7):4219-4224.
    [62] J. C. Lasalvia, M. A. Meyers, D. K. Kim. Combustion synthesis/dynamic densification of TiC-Ni cermets [J]. J. Mater. Synth. Proc., 1994,2(4):255-274.
    [63] J. C. Han, X. H. Zhang, J. V. Wood. In-situ combustion synthesis of TiC-xNi cermets [J]. Mater. Sci. Eng., 2000, A280(2):328-333.
    [64] 靳喜海,高濂.纳米复相陶瓷的制备、显微结构和性能[J].无机材料学报,2001,16(2):200-206.
    [65] F. Delannay, L. Froyen, A. Deruyttere. The wetting of solid by molten metals and its relation to preparation of metal-matrix composites [J]. J. Mater. Sci., 1987, 22:1-16.
    [66] N. Frage, N. Froumin, M.P. Dariel. Wetting of TiC by non-reactive liquid metals [J]. Acta Mater., 2002, 50: 237-245.
    [67] N. Froumin, N. Frage, M. Polak, et al. Wetting phenomena in the TiC/(Cu±AI) system [J]. Acta Mater., 2000, 48:1435-1441.
    [68] V. Leroux, J. C. Lable, T. T. Nguyen, et al. Wettability of non-reactive Cu/SiAION systems Ⅰ. Experimental results [J]. J. Euro. Ceram. Soc., 2001, 21: 825-831.
    [69] K. Nakashima, H. Matsumoto, K. Mori. Effect of additional elements Ni And Cr on wetting characteristics of liquid Cu on Zirconia ceramics [J]. Acta Mater., 2000, 48:4677-4681.
    [70] Landry K, Rado C., Eustathopouios N.. Influence of interracial reaction rates on the wetting driving force in metal/ceramic systems [J]. Metall. Mater. Trans. A, 1996, 27A: 3181-3186.
    [71] N. Eustathopoulos. Dynamics of wetting in reactive metal/ceramic systems [J]. Acta Mater., 1998, 46(7): 2319-2327.
    [72] C. Rado, B. Drevet, N. Eustathopoulos. The role of compound formation in reactive wetting: The Cu/SiC system [J]. Acta Mater., 2000, 48:4483-4491
    [73] P. Protsenko, A. T.Vladimir, et al. The role intermetallics in wetting in metallic systems [J]. Scripta Mater., 2001, 45: 1439-1445.
    [74] 刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,1990:10-270.
    [75] 钱存富,段占强,耿平,曾梅光.高Co-Ni二次硬化马氏体钢中合金元素对相变的影响[J],钢铁研究学报,1999,11(6):25-29.
    [76] 支文.金属间化合物的价电子结构脆性判据[J],兵工学报,2001,22(2):248-251.
    [77] 王焕荣,叶以富,闵光辉等.TiC价电子结构及其性质分析[J].科学通报,2001,46(3):215-218.
    [78] 章桥新.TiC_(1-x)N_x固溶体的价电子结构及其性能研究[J].稀有金属与硬质合金,2004,(4):28.
    [79] 刘宁,胡镇华,崔昆.陶瓷相(Ti,W)C的价电子结构与力学性能的关系[J].硅酸盐学报,1997,25(4):420-426.
    [80] 刘宁,田春艳,舒士明等.ZrC和HfC的价电子结构及其性能研究[J].硅酸盐学报,1998,26(2):210-216.
    [81] 刘志林,李志林,刘伟东.界面电子结构与界面性能[M],北京:科学出版社,2002:88-148.
    [82] 孙家涛,范润华,刘冰等.碳化物价电子结构及其界面电子密度分析[J].人工晶体学报,2004,33(3):316-319.
    [83] 章桥新.(Ti,W(C,N)的价电子结构研究[J].稀有金属与硬质合金,2001,(3):5-7.
    [84] 章桥新.TiC_x固溶体的价电子结构及其性能研究[J].武汉工业大学学报,2000,22(5):5-7.
    [85] 刘宁.Ti(C,N)基金属陶瓷的制备及成分、组织和性能的研究[D],武汉:华中理工大学博士学位论文,1994:17-21.
    [86] 徐智谋,易新建,郑家焱等.(Ti,W,Ta)_p/Ti(C,N)基金属陶瓷的组织与性能[J].硬质合金,2002,19(4):193-198.
    [87] 李荣久 主编.陶瓷.金属复合材料[M].北京:冶金工业出版社(第二版),2002.
    [88] 刘红卫,陈康华,吕海波.Ti(C,N)基硬质合金中的润湿性研究[J].粉末冶金技术,2000,18(3):167-171.
    [89] N. Hideo I .Ryuichi, H.Yosuke, et al. Effects of surface roughness on wettability [J]. Acta Mater., 1998, 46(7): 2313-2318.
    [90] S. J. Hitchcock, N. T. Carrol, M. G. Nicholas. Some effect of substrate roughness on wettability [J]. J. Mater. Sci., 1980,16:714-732.
    [91] Kyoon Choi, Jin-Woo Choi, Doh-Yeon Kim, et al. Effect of coalescence on the grain coarsening during liquid-phase sintering of TaC-TiC-Ni cermets [J]. Acta Mater., 2000, 48: 3125-3129.
    [92] UIf Rolander, Gerold Weinl, Marcus Zwinkels. Effect of Ta on structure and mechanical properties of (Ti,Ta, W)(C,N)-Co cermets [J]. Int. J. Refr. Metals & Hard Mater., ,2001, 19: 325-328.
    [93] F. Arenas, I. B. de Arenas, J. Ochoa, et al. Influence of VC on the microstructure and mechanical properties of WC±Co sintered cemented carbides [J]. Int. J. Refr. Metals & Hard Mater., 1999, 17: 91-97.
    [94] F. Monteverde, V. Medri, A. Beilosi. Microstructure of hot-pressed Ti(C,N)-based cermets [J]. J. Euro. Ceram. Soc., 2002, 22:2587-2593.
    [95] S. Ahn, S. Kang. Effect of various carbides on the dissolution behavior of Ti(C_(0.7)N_(0.3)) in a Ti(C_(0.7)N_(0.3))-30Ni system[J]. Int. J. Refr. Metals & Hard Mater., 2001, 19:539-545
    [96] N. Liu, Q. M. Zeng, X. M. Huang. Microstructure in titanium carbonitride cermets [J], Materials Science and Technology, 2001,17(9): 1050-1054.
    [97] 熊惟皓.Ti(C,N)基金属陶瓷相界面结合机理的研究[J].华中理工大学学报,1995,23(12):28-32.
    [98] 刘宁,刘逊芬.Mo_2C相价电子结构及其本质硬度[J].合肥工业大学学报(自然科学版),1997,20(4):14-19.
    [99] 郑勇,赵兴中,胡镇华等.Mo含量对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金,1993,10(5):65-68.
    [100] 涨箐.Ti(C,N)基金属陶瓷的高温力学性能[J].硬质合金,1995,12(3):187-189.
    [101] 肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1990:28.
    [102] 仇启源.新型陶瓷刀具[M].北京:国防工业出版社,1987:24.
    [103] N. M. Parikh, Jr. M. Humenik. Cermets: Ⅱ, Wettability and Microstructure studies in liquid phase sintering. J. Amer. Ceram. Soc., 1957, 40(9):315-320.
    [104] 张琳.改善碳化钛基合金韧性的研究[M].北京:冶金工业出版社,1989:190.
    [105] 现代机夹可转位刀具实用手册编委会.现代机夹可转位刀具实用手册[M].北京:机械工业出版社,1994:9.46.
    [106] G. E. D'Errico, S. Bugliosi, D. Cuppini, et al. A study of cermets' wears behaviour [J]. Wear, 1997, 203-204:242-246.
    [107] 于彦波,王志勇,朱忠业等.硬质合金刀具断续切削破损理论[M].武汉:华中理工大学出版社.1990:113-125.
    [108] 杨荣福,董申.金属切削原理[M].北京:机械工业出版社,1988:176.
    [109] 张维纪.金属切削原理及刀具[M],杭州:浙江大学出版社,2002:42-47.
    [110] D. P. H. Hasselman. Approximate theory of thermal stress resistance of brittle, ceramics involving creep [J], J. Am. Ceram. Soc., 1969, 50:454-457.
    [111] D. P. H. Hasselman. Griffith criterion of thermal shock resistance of single-phase versus multiphase brittle ceramics [J], J. Am. Ceram. Soc., 1969, 52:288-289.
    [112] V. N. Gurarie, P. H. Otsuka. Thermal shock resistance of aluminium oxide single crystals with different crystallograghic faces [J], Mater. Chem. Phy., 2002, 75:246-251.
    [113] O. Sbaizero, G. pezzotti. Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics [J]., Mater. Sci. Eng., 2003, 343:273-281.
    [114] M. Lshitsuka, T. Sato, T Endo, et al.. Grain size dependence of thermal shock resistance of yttria-doped tetragonai zirconia polycrystals [J], J. Am. Ceram. Soc., 1990, 73:2523.
    [115] 明文龙,胡镇华,肖建中等.Ti(C,N)基金属陶瓷热疲劳特性研究[J].机械工程材料,1996,20(4):4-6.
    [116] 徐强,张幸红,韩杰才等.TiB_2-Cu-Ni金属陶瓷的抗热震和抗烧蚀行为[J].复合材料学报,2003,20(6):31-35.
    [117] N. Liu, G. Y. Xu, Y. D. Xu. Thermal shock fatigue behaviors of cemented carbide YG20 [J], Trans. Nonferrous Met. Soc. China, 1998, 7(2): 149-151.
    [118] 刘宁,徐根应,许育东等.Ti(C,N)基金属陶瓷的抗热冲击性能[J].中国有色金属学报,1997,7(4):136-140.
    [119] 徐根应,刘宁,许育东等.含20%Ni金属陶瓷的热冲击疲劳[J].稀有金属材料与工程,1997,26(3):9-13.
    [120] K. Okuyama, T. Sakuma. High temperature plastic flow in TiC-20 wt% Mo_2C-20 wt%Ni cermet [J]. Materials Science and Engineering A, 1995, 194:63-68.
    [121] 周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995:492.
    [122] 李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1989:279.
    [123] 许育东.颗粒型陶瓷-金属复合材料热冲击疲劳行为研究[D].合肥:合肥工业大学硕士学位论文,1997:47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700