用户名: 密码: 验证码:
炼油企业氢气系统优化研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着含硫原油和重质原油加工比例的增大,以及市场对油品质量的要求越来越高和环境保护法规的不断加强,加氢精制、加氢裂化等深加工技术在炼油企业得到了广泛的应用,以满足日益提高的产品质量和环保要求。随着氢气消耗量的日益增大,氢气成本已经是炼油企业原料成本中仅次于原油成本的第二位成本要素。对氢气系统进行优化将极大地挖掘炼油企业降本增效的潜力,同时为其节能降耗工作发挥重大作用。本文在综述了炼油企业氢气系统优化问题的国内外研究和应用现状后,对炼油企业氢气系统优化的相关问题进行了系统而深入的研究,并通过工业实际案例的应用研究证明了本文所提策略的可行性和有效性。本文的主要研究内容和创新点如下:
     1)首先提出了两种改进的炼油企业氢气系统优化设计策略,将炼油企业氢气系统的优化设计分为提纯系统优化和供氢系统优化的分步优化设计策略,以及整个氢气系统的同步优化设计策略。为了使优化模型更切合炼油企业实际,将耗氢装置反应器入口的氢气流量、纯度和提纯装置的回收率视为变量,并增加了耗氢装置的最小纯氢量约束。以最小化年度成本为目标,综合考虑了氢源、氢阱、压缩机、提纯装置、逻辑变量等约束,建立了氢气系统优化设计的混合整数非线性规划(MINLP)模型。工业实际案例研究表明,相比以前的研究方法,提出的优化策略得到了更切合实际的氢气系统优化设计方案,并节省了大量的氢气成本,对实际炼油企业氢气系统的优化管理起到了重要指导作用。
     2)针对氢气系统优化设计过程中需要同时实现操作成本和投资成本最小化的两个相互矛盾的目标函数,提出了炼油企业氢气系统的多目标优化设计策略。对氢气系统的驰放气资源进行了详细的分析和利用,建立了氢气系统多目标优化设计的MINLP模型。采用基于变化权系数的加权法处理该多目标优化问题,将多目标优化问题转化为单目标优化问题。通过不断改变权重系数求得多目标优化问题的Pareto最优前沿,根据Pareto最优前沿来权衡投资成本和操作成本的关系,以确定兼顾操作成本和投资成本的炼油企业氢气系统优化设计方案。案例研究表明,提出的多目标优化设计策略充分考虑了投资成本和操作成本的关系,确定了兼顾操作成本和投资成本的氢气系统优化设计方案。
     3)针对氢气的产耗量、驰放气产量和其它价格要素受原油供应、产品需求、市场条件和操作条件的变化而随机波动的不确定问题,基于机会约束规划方法构建了一种新的炼油企业氢气系统优化设计策略。充分考虑了产氢量、耗氢量、驰放气供应量、电价、氢气价格、燃料气价格等不确定因素对氢气系统优化设计问题的影响,并引入置信度水平,将模型中的不确定性约束转化为确定性约束,使得不确定条件下的机会约束规划模型转变为可以求解的确定性混合整数非线性规划模型。案例研究表明,该方法能有效处理炼油企业氢气系统的参数波动问题,与传统的确定性方法相比更具有优越性。
     4)针对炼油企业氢气系统不断变化的工况和氢气需求,提出了炼油企业氢气系统柔性优化设计策略,建立了多工况下氢气系统柔性优化设计的MINLP模型。提出了一种线性化策略对柔性优化设计模型进行了线性化处理,将难以求解的MINLP问题转化为易求解的混合整数线性规划(MILP)问题,并对线性化模型的特点进行了分析。采用提出的柔性优化策略对某炼油企业氢气系统进行了优化设计,柔性优化后的氢气系统可操作性强且具有较好的柔性调节能力,既节省了大量的运行成本,又为各工况下氢气系统的安全稳定运行提供了保障。
     5)针对炼油企业工艺过程对氢气不断变化的需求,提出了炼油企业氢气系统调度优化策略。从炼油企业氢气系统的生产实际出发,详细分析了当前炼油企业氢气系统实际调度中的影响因素,建立了综合考虑多项影响因素的氢气系统多周期调度优化的MINLP模型。针对建立的多周期调度优化MINLP模型,提出了一种迭代求解策略,避免了对原始MINLP问题的直接求解,降低了问题的求解难度,取得了较好的求解效果。工业实例研究表明,该策略经一次迭代便可求得合乎要求的有效解,保证了产氢装置的平稳生产,避免了压缩机启停、氢源更换、氢气管网容量超限等非正常现象的发生,减少了氢气放空,取得了显著的节能减排效果,实现了有效的氢气系统调度优化,为企业带来了良好的经济效益。
During the past decade, crude oil has become heavier and contains more sulfur and nitrogen, while clean fuels specifications are progressively tightened via the market and legislation for environmental protection. Hydrocracking and hydrotreating, which consume the most part of hydrogen in refinery, are used more and more widely to upgrade heavy oils to obtain more valuable products. As the demand for hydrogen grows, hydrogen cost has become the second most important cost after the cost of crude oil. Optimization of hydrogen systems will play a great role in energy saving, and definitely will bring considerable profit to the refinery at the same time. In this thesis, after the summary of the recent research issues in refinery hydrogen system, challenging issues about the optimization of hydrogen system in refinery are investigated systematically. Finally, case studies based on the data from real refineries are presented to illustrate the effectiveness and feasibility of the proposed approaches. The main contributions of this thesis are as follows:
     1) Two improved systematic mathematical approaches are developed based on a two-step approach and a simultaneous optimization approach respectively for the optimization design of hydrogen system in refinery. To make the approaches proposed more practical for the real system application, the flowrate and purity at the reactor inlet of hydrogen consumers and the recovery of purification units are considered as optimization variables, and at the same time the minimum pure hydrogen of hydrogen consumers will be satisfied. Mixed integer nonlinear programming (MINLP) models are formulated with the objective function of the minimization of total annual cost subject to constraints of sources, sinks, purifiers, logic variables, etc. As shown in the case study, optimized results are more practical and economical than those recently reported the literature. Therefore the proposed strategies play an important role in guiding the management of hydrogen system in refinery.
     2) A novel multi-objective optimization approach is presented to balance the two conflicting objectives between operating cost and investment cost. Based on detailed analysis of off-gases of the hydrogen system, a MINLP model is formulated for the multi-objective optimization problem. This problem is transferred into the single objective optimization problem based on the weighted method with varying weight coefficients. By solving the problem, the Pareto front of the multi-objective optimization problem is obtained to balance the operating cost and investment cost leading to a suitable compromise between the two objectives. As shown in the case study, the relation of operating cost and investment cost indicates a deep insight in to the system operation,, and the optimized results based on the proposed multi-objective optimization strategy are practical and suitable for the real system.
     3) The uncertainty of the crude oil supply, external product demand, market condition and operation condition will result in uncertainties in the hydrogen production and consumption, off-gases production and related prices in refinery. A novel chance constrained programming approach is adopted to address the hydrogen system optimization problem under various uncertainties such as hydrogen production and consumption, off-gases production and the price of electricity, hydrogen and fuel gas. In this way, important input and state constraints will be satisfied with predefined probability levels. The problem is then transformed to an equivalent deterministic MINLP problem so that it can be solved by a MINLP solver. The effectiveness of the proposed approach comparing with the traditional deterministic methods is demonstrated by a case study.
     4) A novel approach for the design and optimization of flexible hydrogen systems is addressed based on the consideration of varying operation conditions and demand of hydrogen system in refinery, and a corresponding MINLP model is formulated to address the flexible optimization problem. Using a linearization method the MINLP formulation is approximated by a mixed-integer linear programming (MILP) problem, resulting in an acceptable quality and a high efficiency. An industrial hydrogen system is taken for a case study. As shown in the case study, the optimized hydrogen system based on the presented flexible optimization strategy has better flexibility, and significant savings and stable operation of hydrogen system is realized in comparison to the existing design.
     5) A multi-period optimization scheduling approach for hydrogen system is developed based on the consideration of the varying hydrogen demand. The impact factors of hydrogen system scheduling are elaborated, and a MINLP model is developed for the optimal scheduling of hydrogen system. The solution of the MINLP problem is obtained based on an MILP-NLP iterative algorithm, avoiding the solving of the MINLP problem directly and resulting in better quality and efficiency. A case study is presented to illustrate the effectiveness of the proposed methodology. Optimized results based on a complete iteration show that the optimized scheduling scheme is reliable and practical, the abnormal phenomena of the hydrogen imbalance, compressor start-stop, and hydrogen source change could be prevented, and the economic loss and unstable operation can also be avoided.
引文
[1]Bagajewicz M, Rodera H, Savelski M. Energy efficient water utilization systems in process plants[J]. Computers & Chemical Engineering,2002,26(1): 59-79.
    [2]Karuppiah R, Grossmann I E. Global optimization for the synthesis of integrated water systems in chemical process[J]. Computers & Chemical Engineering,2006,30(4):650-673.
    [3]Sujo-Nava D, Scodari L A, Slater C S, et al. Retrofit of sour water networks in oil refineries:A case study[J]. Chemical Engineering and Processing,2009, 48(4):892-901.
    [4]Hwang S, Moore I. Water network synthesis in refinery[J]. Korean Journal of Chemical Engineering,2011,28(10):1975-1985.
    [5]Bokic M, Dragicevic S. MILP optimization of energy supply by using a boiler, a condensing turbine and a heat pump[J]. Energy Conversion and Management, 2002,43(4):591-608.
    [6]Marechal F, Kalitventzeff B. Targeting the integration of multi-period utility systems for site scale process integration[J]. Applied Thermal Engineering, 2003,23(14):1763-1784.
    [7]Micheletto S R, Carvalho M C A, Pinto J M. Operational optimization of the utility system of an oil refinery[J]. Computers & Chemical Engineering,2008, 32(1-2):170-185.
    [8]Lai S M, Wu H, Hui C W, et al. Flexible heat exchanger network design for low-temperature heat utilization in oil refinery[J]. Asia-Pacific Journal of Chemical Engineering,2011,6(5):713-733.
    [9]Najjar y, Habeebullah m. Energy-conservation in the refinery by utilizing reformed fuel gas and furnace flue-gases[J]. Heat Recovery Systems & CHP, 1911,11(6):517-521.
    [10]Fisher P, Brennan D. Minimize flaring with flare gas recovery-To reduce facility-wide air emission, a refinery retrofitted the flare system and reuses waste gas as fuel gas[J]. Hydrocarbon Processing,2002,81(6):83-85.
    [11]Zhang J D, Rong G. An MILP model for multi-period optimization of fuel gas system scheduling in refinery and its marginal value analysis[J]. Chemical Engineering Research & Design,2008,86(2):141-151.
    [12]Zhang J D, Rong G, Hou W F. Simulation based approach for optimal scheduling of fuel gas system in refinery[J]. Chemical Engineering Research & Design,2010,88(1A):87-99.
    [13]Zhang J D, Rong G. Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery[J]. Engineering Applications of Artificial Intelligence,2010,23(3):371-385.
    [14]Hasan M M F, Karimi I A, Avison C M. Preliminary Synthesis of Fuel Gas Networks to Conserve Energy and Preserve the Environment J]. Industrial & Engineering Chemistry Research,2011,50(12):7414-7427.
    [151瞿国华.炼厂用氢的低成本战略探讨[J].石油化工技术经济,2007,23(2):19-22.
    [16]方向晨,关明华,廖士纲.加氢精制[M1.北京:中国石化出版社,2006.
    [17]方向晨,关明华,廖士纲.加氢裂化[M].北京:中国石化出版社,2008.
    [18]Towler G P, Mann R, Serriere A J-L, et al. Refinery hydrogen management: Cost analysis of chemically-integrated facilities[J]. Industrial & Engineering Chemistry Research,1996,35(7),2378-2388.
    119]刘军.镇海炼化氢气网络优化研究[D1.杭州:浙江大学硕士学位论文,2004.
    [20]Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research,2002,41(23),5759-5769.
    [21]El-Halwagi M, Gabriel F, Harell D. Rigorous graphical targeting for resourceconservation via material recycle/reuse networks[J]. Industrial & Engineering Chemistry Research,2003,42(19):4319-28.
    [22]Agarwal A, Biegler L T, Zitney S E. Simulation and optimization of pressure swing adsorption systems using reduced-order modeling[J]. Industrial & Engineering Chemistry Research,2009,48(5):2327-43.
    [23]Salary R, Jafari N M, Amidpour M, et al. Design of oil refineries hydrogen network using process integration principles[J]. Iranian Journal of Chemistry & Chemical Engineering,2008,27(4):49-64.
    [24]孙恒慧.炼油厂氢气网络的窄点分析[J],炼油设计,2001,31(10):38-41.
    [25]冯霄.氢夹点原理及其应用[J].石油和化工节能,2006(5):10-13.
    [26]Zhao Z H, Liu G L, Feng X. New graphical method for the integration of hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2006,45(19):6512-7.
    [27]赵振辉,冯霄,刘永忠,等.氢气网络系统的夹点分析与匹配优[J].化工进展,2008,27(2):261-264.
    [28]Zhang Q, Feng X, Liu, G L, et al. A novel graphical method for the integration of hydrogen distribution systems with purification reuse[J]. Chemical Engineering Science,2011,66(4),797-809.
    [29]Ding Y, Feng X, Chu K H. Optimization of hydrogen distribution systems with pressure constraints[J]. Journal of Cleaner Production,2011,19(2-3):204-211.
    [30]Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks part I:systems with no hydrogen purification[J]. Chemical Engineering Science,2011,66(5),813-820.
    [31]Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks part Ⅱ:systems with one hydrogen purification[J]. Chemical Engineering Science,2011,66(5),821-833.
    [32]邱若盘,尹洪超.应用夹点技术优化炼油厂氢气网络[J].齐鲁石油化工,2008,36(2):120-123.
    [33]郭亚逢,牟桂芹.炼厂氢气网络优化的计算方法[J].安全、健康和环境,2011,11(6):20-23.
    [34]郭亚逢,郭宏新,张楠,等.炼油厂氢气网络优化的工程设计应用[J]石油学报(石油加工),2012,28(1):107-114.
    [35]韩笑.海南炼化氢气管网优化探讨[J].石油石化节能与减排,2011,1(10):12-16.
    [36]唐明元,刘桂莲,冯霄.利用氢夹点图解法分析某炼厂的氢网络[J].华北电力大学学报(自然科学版),2007,34(2):48-51.
    [37]Zhao Z, Liu G, Feng X. The integration of the hydrogen distribution system with multiple impurities[J], Chemical Engineering Research & Design,2007,85(A9): 1295-1304.
    [38]丁哗,冯霄.多杂质氢系统网络设计[J].西安交通大学学报,2010,44(8):127-131.
    [39]刘桂莲,刘永彪,冯霄.炼厂多杂质氢网络的集成[J].化工学报,2012,63(1):163-169.
    [40]Achenie L K E; Biegler L T. A superstructure based approach to chemical reactor network synthesis[J]. Computers & Chemical Engineering,1990,14(1): 23-40.
    [41]Pahor B, Irsic N, Kravanja Z. MINLP synthesis and modified attainable region analysis of reactor networks in overall process schemes using more compact reactor superstructure[J] Computers & Chemical Engineering,2000,24(2-7): 1403-1408.
    [42]Linke P, Kokossis A. Attainable reaction and separation processes from a superstructure-based method[J]. AIChE Journal,2003,49(6):1451-1470.
    [43]Henao C A, Maravelias C T. Surrogate-Based Superstructure Optimization Framework[J]. AIChE Journal,2011,57(5):1216-1232.
    [44]Konukman A E S, Camurdan M C, Akman U. Simultaneous flexibility targeting and synthesis of minimum-utility heat-exchanger networks with superstructure-based MILP formulation[J]. Chemical Engineering and Processing,2002,41(6):501-518.
    [45]Morton W. Optimization of a heat exchanger network superstructure using nonlinear programming. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering,2002,216(E2):89-104.
    [46]Chen D; Yang S, Luo X, et al. An explicit solution for thermal calculation and synthesis of superstructure heat exchanger networks[J]. Chinese Journal of Chemical Engineering,2007,15(2):296-301.
    [47]Isafiade A J, Fraser D M. Interval-based MINLP superstructure synthesis of heat exchange networks[J]. Chemical Engineering Research & Design,2008,86(A3): 245-257.
    [48]Hernandez-Suarez R, Castellanos-Fernandez J, Zamora J M. Superstructure decomposition and parametric optimization approach for the synthesis of distributed wastewater treatment networks[J]. Industrial & Engineering Chemistry Research,2004,43(9):2175-2191.
    [49]Tan R R, Ng D K S, Foo D C Y, et al. A superstructure model for the synthesis of single-contaminant water networks with partitioning regenerators[J]. Process Safety & Environmental Protection,2009,87(3):197-205.
    [50]Li L J, Zhou R J, Dong H G. State-time-space superstructure-based minlp formulation for batch water-allocation network design[J]. Industrial & Engineering Chemistry Research,2010,49(1):236-251.
    [51]Ahmetovic E, Grossmann I E. Global Superstructure Optimization for the Design of Integrated Process Water Networks[J]. AIChE Journal,2011,57(2): 434-457.
    [52]Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research,2001,6(1):81-98.
    [53]Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research & Design,2004,82(A10): 1315-1330.
    [54]Ahmad M I, Zhang N, Jobson M. Modelling and optimisation for design of hydrogen networks for multi-period operational. Journal of Cleaner Production, 2010,18(9):889-899.
    [55]Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks:a retrofit case study[J]. Journal of Cleaner Production,2010,18(3): 233-241.
    [56]Jiao Y Q, Su H Y, Hou W F. An optimization method for the refinery hydrogen network and its application:Proceedings of the 20114th International Symposium on Advanced Control of Industrial Processes, Hangzhou, May 23-26,2011[C]. Piscataway, NJ:IEEE press,2011.
    [57]Jiao Y Q, Su H Y, Hou W F. Improved optimization methods for refinery hydrogen network and their applications[J]. Control Engineering Practice,2012, 20(10):1075-1093.
    [58]宣吉,廖祖维,荣冈,等.基于随机规划的炼厂氢气系统改造设计[J].化工学报,2010,61(2):398-404.
    [59]Jiao Y Q, Su H Y, Hou W F, et al. Optimization of refinery hydrogen network based on chance constrained programming[J]. Chemical Engineering Research & Design,2012,90(10):1553-1567.
    [60]Jiao Y Q, Su H Y, Liao Z W, et al. Modeling and multi-objective optimization of refinery hydrogen network[J]. Chinese Journal of Chemical Engineering,2011, 19(3):990-998.
    [61]焦云强,苏宏业,侯卫锋.炼油厂氢气网络柔性优化[Jl.化工学报,2012,63(9):2739-2748.
    [62]张毅,阳永荣,刘军,等.炼油厂氢气网络集成管理[J].石油学报(石油加工),2004,20(1):58-62.
    [63]刘永忠,张超,彭春来,等.氢网络公用工程消耗量与流股匹配数的优化[J].2007,23(5):78-83.
    [64]刘永忠,张超,赵振辉,等.基于超结构方法的氢网络系统优化[J].华北电力大学学报,2007,34(2):24-26.
    [65]刘桂莲,唐明元,冯霄.多杂质氢网络的优化[J].石油化工,2009,38(4):419-422.
    [66]张亮,刘永忠,闫哲.炼化企业中氢气管网的中间等级设置与优化分析[J].计算机与应用化学,2010,27(10):1361-1364.
    [67]于泽淼,冯霄.以最小为目标的氢气分配网络优化[J].化工学报,2011,62(7):1951-1956.
    [68]Khajehpour M, Farhadi F, Pishvaie M R. Reduced superstructure solution of MINLP problem in refinery hydrogen management[J]. International Journal of Hydrogen Energy,2009,34(22):9233-9238.
    [69]Kumar, A.; Gautami, G.; Khanam, S. Hydrogen distribution in the refinery using mathematical modeling[J]. Energy,2010,35(9):3763-3772.
    [70]Jia N, Zhang N. Multi-component optimisation for refinery hydrogen networks[J] Energy,2011,36(8):4663-4670.
    [71]Sarabia D, de Prada C, Gomez E, et al. Data reconciliation and optimal management of hydrogen networks in a petrol refinery[J]. Control Engineering Practice,2012,20(4):343-354.
    [72]Iyer R R, Grossmann I E. Optimal multiperiod operational planning for utility systems[J]. Computers & Chemical Engineering,1997,21(8):787-800.
    [73]Iyer R R, Grossmann I E. Synthesis and operational planning of utility systems for multi-period operation[J]. Computers & Chemical Engineering,1998, 22(7-8):979-993.
    [74]Kim J H, Han C H. Short-term multiperiod optimal planning of utility systems using heuristics and dynamic programming [J]. Industrial & Engineering Chemistry Research,2001,40(8):1928-1938.
    [75]Varbanov P S, Doyle S, Smith R. Modelling and optimization of utility systems[J], Chemical Engineering Research & Design,2004,82(A5):561-578.
    [76]Han I S, Lee Y H, Han C H. Modeling and optimization of the condensing steam turbine network of a chemical plant[J], Industrial & Engineering Chemistry Research,2006,45(2):670-680.
    [77]Hirata K, Sakamoto H, O'Young L, et al. Multi-site utility integration-An industrial case study [J]. Computers & Chemical Engineering,2004,28(1-2): 139-148.
    [78]Oliveira Francisco A P, Matos H A. Multiperiod synthesis and operational planning of utility systems with environmental concerns[J]. Computers and Chemical Engineering,2004,28(5):745-753.
    [79]Aguilar O, Perry S J, Kim J K, et al. Design and optimization of flexible utility systems subject to variable conditions:Part 1:Modelling framework[J]. Chemical Engineering Research & Design,2007,85(8A):1136-1148.
    [80]Aguilar O, Kim J K, Perry S, et al. Availability and reliability considerations in the design and optimisation, of flexible utility systems[J]. Chemical Engineering Science,2008,63(14):3569-3584.
    [81]Van den Heever S A, Grossmann I E. A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network[J], Computers & Chemical Engineering,2003,27(12):1813-1839.
    [82]焦云强,苏宏业,侯卫锋.炼油厂氢气系统优化调度及其应用[J].化工学报,2011,62(8):2101-2107.
    [83]Jiao Y Q, Su H Y, Hou W F, et al. A multiperiod optimization model for hydrogen system scheduling in refinery [J]. Industrial & Engineering Chemistry Research,2012,51(17):6085-6098.
    [84]Dakin R J. A tree-search algorithm for mixed integer programming problems[J]. The Computer Journal,1965,8(3):250-255.
    [85]Gupta O K, Ravindran A. Branch and bound experiments in convex nonlinear integer programming[J]. Management Science,1985,31(2):1533-1546.
    [86]Nabar S, Schrage L. Modeling and solving nonlinear integer programming problems:Proceedings of the Annual AIChE Meeting, Chicago,1991[C].
    [87]Borchers B, Mitchell J E. An improved branch and bound algorithm for mixed integer nonlinear programs[J]. Computers & Operations Research,1994,21(4): 359-367.
    [88]Stubbs R, Mehrotra S. A branch-and-cut method for 0-1 mixed convex programming[J]. Mathematical Programming,1999,86(3):515-532.
    [89]Leyffer S. Integrating SQP and branch-and-bound for mixed integer nonlinear programming[J]. Computational Optimization and Applications,2001,18(3): 295-309.
    [90]Li H L, Tsai J F. Treating free variables in generalized geometric global optimization programs[J]. Journal of Global Optimization,2005,33(1):1-13.
    [91]Abhishek K. Topics in mixed integer nonlinear programming[D]. Bethlehem, Lehigh University,2008.
    [92]Benders J F. Partitioning procedures for solving mixed-variables programming problems[J]. Numerische Mathematik,1962,4:267-299.
    [93]Geoffrion A M. Generalized benders decomposition[J], Journal of Optimization Theory and Applications,1972,10(4):237-260.
    [94]Duran M A, Grossmann I E. An outer-approximation algorithm for a class of mixed integer nonlinear programs[J]. Mathematical Programming,1986,36(3): 307-339.
    195] Quesada I, Grossmann I E. An LLP/NLP based branch and bound algorithm for convex MINLP optimization problems[J]. Computers and Chemical Engineering,1992,16(10-11):937-947.
    [96]Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation[J]." Mathematical Programming,1994,66(1-3):327-349.
    [97]Westerlund T, Pettersson F. An Extended cutting plane method for solving convex MINLP problems[J]. Computers and Chemical Engineering,1995, 19(S1):131-136.
    [98]田大庆.面向对象的析取规划及在过程综合中的应用研究[D].杭州:浙江大学硕士学位论文,2010.
    [99]Grossmann I E, Biegler L T. Part Ⅱ. Future perspective on optimization[J]. Computers & Chemical Engineering,2004,28(8):1193-1218.
    [100]Iyer R R, Grossmann I. E. A bilevel decomposition algorithm for longe-range planning of process networks[J]. Industrial and Engineering Chemistry Research,1998,37(2):474-492.
    [101]Iyer R R, Grossmann I. E. Synthesis and operational planning of utility systems for multiperiod operation[J]. Computers and Chemical Engineering,1998, 22(7-8):979-993.
    [102]Fisher M L. The Lagrangean relaxation method for solving integer programming problems[J]. Management Science,1981,27(1):1-18.
    [103]Papageorgiou L G, Pantelides C C. Optimal campaign planning/scheduling of multipurpose batch/semi-continuous plants.2. A mathematical decomposition approach[J]. Industrial & Engineering Chemistry Research,1996,35(2): 510-529.
    [104]Dogan M E, Grossmann I E. A decomposition method for the simul-taneous planning and scheduling of single stage continuous multiproduct plants[J]. Industrial and Engineering Chemistry Research,2006,45(1):299-315.
    [105]Zhang N, Zhu X X. Novel modelling and decomposition strategy for total site optimization[J]. Computers & Chemical Engineering,2006,30(5):765-777.
    [106]章建栋.炼油企业瓦斯系统优化调度研究及应用[D].杭州:浙江大学博士学位论文,2009.
    [107]Car(?)e C C, Schultz R. Dual decomposition in stochastic integer programming[J]. Operations Research Letters,1999,24(1-2),37-45.
    [108]Nowak M P, Romisch W. Stochastic Lagrangean relaxation applied to power scheduling in a hydro-thermal system under uncertainty[J]. Annals of Operations Research,2000,100(1-4):251-272.
    [109]Gupta A, Maranas C D. A hierarchical Lagrangean relaxation procedure for solving midterm planning problems[J]. Industrial & Engineering Chemistry Research,1999,38(5):1937-1947.
    [110]Van den Heever S A, Grossmann I E, Vasantharajan S, et al. A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infrastructures with complex economic objectives[J]. Industrial & Engineering Chemistry Research,2001,40(13):2857-2875.
    [111]Equi L, Gallo G, Marziale, S, et al. A combined transportation and scheduling problem[J]. European Journal of Operational Research,1997,97(1):94-104.
    [112]Wu D, Ierapetritou M G. Decomposition approaches for the efficient solution of short-term scheduling problems[J]. Computers & Chemical Engineering,2003, 27(8-9):1261-1276.
    [113]Rogers D F, Plante R D, Wong R T, Evans J R. Aggregation and disaggregation techniques and methodology in optimization[J]. Operation Research,1991, 39(4):553-574.
    [114]Kondili E, Pantelides C C, Sargent R W H. A general algorithm for short-term computers and chemical scheduling of batch operations. I. MILP formulation[J]. Computers & Chemical Engineering,1993,17(2):211-227.
    [115]Jorsten K, Leisten R. Scenario aggregation in single-resource production planning models with uncertain demand[J]. Production Planning and Control, 1994,5(3):271-281.
    [116]Wilkinson S J, Cortier A, Shah N, et al. Integrated production and distribution scheduling on a Europe-wide basis[J]. Computers & Chemical Engineering, 1996,20(S2):1275-1280.
    [117]Van den Heever S A, Grossmann I E. An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model[J]. Industrial & Engineering Chemistry Research,2000,39(6): 1955-1971.
    [118]Holland J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor, University of Michigan Press,1975.
    [119]黄顺吉.计算智能及其在多用户检测中的应用研究[D].成都:电子科技大学博士学位论文,2002.
    [120]Coit D W, Smith A E. Reliability optimization of series-parallel systems using a genetic algorithm[J]. IEEE Transactions on Reliability,1996,45(2):254-260, 256.
    [121]Cheung B K S, Langevin A, Delmaire H. Coupling genetic algorithm with a grid search method to solve mixed integer nonlinear programming problems[J]. Computers & Mathematics with Applications,1997,34(12):13-23.
    [122]Gantovnik V B, Gurdal Z, Watson L T. Genetic algorithm for mixed integer nonlinear programming problems using separate constraint approximations[J]. AIAA Journal,2005,43(8):1844-1849.
    [123]Young C T, Zheng Y, Yeh C W. Information-guided genetic algorithm approach to the solution of MINLP problems[J]. Industrial & Engineering Chemistry Research,2007,46(5):1527-1537.
    [124]Kusum D, Krishna P S, M.L. Kansal, et al. A real coded genetic algorithm for solving integer and mixed integer[J]. Applied Mathematics and Computation, 2009,212(2):505-518.
    [125]Wasanapradit T, Mukdasanit N, Chaiyaratana N. Solving mixed-integer nonlinear programming problems using improved genetic algorithms[J]. Korean Journal of Chemical Engineering,2011,28(1):32-40.
    [126]Aly A H, Peralta P C. Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems[J]. Water Resources Research,1999,35(8):2415-2425.
    [127]Delfanti M, Granelli G P, Marannino P. Optimal capacitor placement using deterministic and genetic algorithms[J]. IEEE Transactions on Power Systems, 2000,15(3):1041-1046.
    [128]Arroyo J M, Conejo A J. A parallel repair genetic algorithm to solve the unit commitment problem[J]. IEEE Transactions on Power Systems,2002,17(4): 1216-1224.
    [129]Min H, Ko H J, Ko C S. A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns[J]. Omega-International Journal of Management Science,2006,34(1):56-59.
    [130]Fan W, Machemehl R B. Optimal transit route network design problem with variable transit demand:Genetic algorithm approach[J]. Journal of Transportation Engineering-Asce,2006,132(1):40-51.
    [131]Ko H J, Evans G W. A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs[J]. Computers & Operations Research,2007,34(2):346-366.
    [132]Ozcelik Y. Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm[J]. Applied Thermal Engineering,2007,27(11-12): 1849-1856.
    [133]Wang K, Lohl T, Stobbe M, et al. A genetic algorithm for online-scheduling of a multiproduct polymer batch plant[J]. Computers & Chemical Engineering,2000, 24(2-7):393-400.
    [134]Hu X B, Chen W H. Genetic algorithm based on receding horizon control for arrival sequencing and scheduling[J]. Engineering Applications of Artificial Intelligence,2005,18(5):633-642.
    [135]Chatfield D C. The economic lot scheduling problem:A pure genetic search approach[J]. Computers and Operations Research,2007,34(10):2865-2881.
    [136]Chen J S, Pan J C H, Lin C M. A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem[J]. Expert Systems with Applications,2008, 34(1):570-577.
    [137]Soleimani H, Golmakani H R, Salimi M H. Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm[J]. Expert Systems with Applications, 2009,36(3):5058-5063.
    [138]Taleizadeh A A, Niaki S T A, Hoseini V. Optimizing the multi-product, multi-constraint, bi-objective newsboy problem with discount by a hybrid method of goal programming and genetic algorithm[J]. Engineering Optimization,2009,41(5):437-457.
    [139]Taleizadeh A A, Niaki S T A, Aryanezhad M B, et al. A genetic algorithm to optimize multiproduct multiconstraint inventory control systems with stochastic replenishment intervals and discount[J]. International Journal of Advanced Manufacturing Technology,2010,51(1-4):311-323.
    [140]Thunyawart J, Srinophakun T, Henwatthana W. Simulation of mass exchange networks using modified genetic algorithms[J]. Korean Journal of Chemical Engineering,2011,28(2):332-341.
    [141]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science,1983,220(4598):671-680.
    [142]赵小强.炼厂生产调度问题研究[D].杭州:浙江大学博士学位论文,2005.
    [143]王凌.车间调度及其遗传算法[M].北京:清华大学出版社,2003.
    [144]Teegavarapu R S V, Simonovic S P. Optimal operation of reservoir systems using simulated annealing[J]. Water Resources Management,2002,16(5): 401-428.
    [145]Wei G F, Yao P J, Luo X. Study on multi-stream heat exchanger network synthesis with parallel genetic/simulated annealing algorithm[J]. Chinese Journal of Chemical Engineering,2004,22(1):66-77.
    [146]Ma X K, Yao P J, Luo X. Synthesis of flexible multi-stream heat exchanger networks based on stream pseudo-temperature with genetic/simulated annealing algorithms[J]. Journal of the Chinese Institute of Chemical Engineers,2007, 38(3-4):321-331.
    [147]Mahlke D, Martin A, Moritz S. A simulated annealing algorithm for transient optimization in gas networks[J]. Mathematical Methods of Operations Research, 2007,66(1):99-115.
    [148]An W, Yu F, Dong F. Simulated annealing approach to the optimal synthesis of distillation column with intermediate heat exchangers [J]. Chinese Journal of Chemical Engineering,2008,16(1):30-35.
    [149]Ma X K, Yao P J, Luo X. Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms[J]. Applied Thermal Engineering,2008,28(8-9):809-823.
    [150]Zhang X P, Yuan X H, Yuan Y B. Improved hybrid simulated annealing algorithm for navigation scheduling for the two dams of the Three Gorges Project[J]. Computers & Mathematics with Applications,2008,56(1):151-159.
    [151]Cauley F G, Cauley S F, Wang N H L. Standing wave optimization of SMB using a hybrid simulated annealing and genetic algorithm (SAGA)[J]. Adsorption-Journal of the International Adsorption Society,2008,14(4-5): 665-678.
    [152]An W Z, Yuan X G. A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences[J]. Computers & Chemical Engineering,2009,33(1):199-212.
    [153]Dahal K P, Chakpitak N. Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches[J]. Electric Power Systems Research,2007,77(7):771-779.
    [154]Sadegheih A. Sequence optimization and design of allocation using GA and SA[J]. Applied Mathematics and Computation,2007,186(2):1723-1730.
    [155]Zhang C Y, Li P G, Rao Y Q, et al., A very fast TS/SA algorithm for the job shop scheduling problem[J]. Computers and Operations Research,2008,35(1): 282-294.
    [156]Glover F, McMillan C. The general employee scheduling problem:an integration of MS and AI[J]. Computers and Operations Research,1986,13(5): 563-573.
    [157]王明兴.连续禁忌搜索算法改进及应用研究[D].杭州:浙江大学硕士学位论文,2005.
    [158]Dell'Amico M, Trubian M. Applying tabu search to the job-shop scheduling problem[J]. Annals of Operations Research,1993,41(3):231-252.
    [159]Pezzella F, Merelli E. A tabu search method guided by shifting bottleneck for the job shop scheduling problem[J]. European Journal of Operational Research, 2000,120(2):297-310.
    [160]Ponnambalam S G, Aravindan P, Rajesh S V. A tabu search algorithm for job shop scheduling[J]. The International Journal of Advanced Manufacturing Technology,2000,16(10):765-771.
    [161]Gallego R A, Monticelli A J, Romero R. Optimal capacitor placement in radial distribution networks[J]. IEEE Transactions on Power Systems,2001,16(4): 630-637.
    [162]Rajan C C A, Mohan M R, Manivannan K. Neural-based tabu search method for solving unit commitment problem[J]. IEE Proceedings-Generation Transmission and Distribution,2003,150(4):469-474.
    [163]Lin B, Miller D C. Solving heat exchanger network synthesis problems with Tabu Search[J]. Computers & Chemical Engineering,2004,28(8):1451-1464.
    [164]Chen X, Li Z H, Yang J. Nested tabu search (TS) and sequential quadratic programming (SQP) method, combined with adaptive model reformulation for heat exchanger network synthesis (HENS) [J]. Industrial & Engineering Chemistry Research,2008,47(7):2320-2330.
    [165]Cunha M D, Ribeiro L. Tabu search algorithms for water network optimization[J]. European Journal of Operational Research,2004,157(3): 746-758.
    [166]Exler O, Antelo L T, Egea J A, et al. A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design[J]. Computers & Chemical Engineering,2008,32(8): 1877-1891.
    [167]王红梅.算法设计与分析[M].北京:清华大学出版社,2006.
    [168]Kennedy J, Eberhart R C. Particle Swarm Optimization:Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia,1995[C]. Piscataway, NJ:IEEE press,1995.
    [169]He S, Prempain E, Wu Q H. An improved particle swarm optimizer for mechanical design optimization problems[J]. Engineering Optimization,2004, 36(5):585-605.
    [170]Zhao X Q, Rong, G. Blending scheduling under uncertainty based on particle swarm optimization algorithm[J]. Chinese Journal of Chemical Engineering, 2005,13(4):535-541.
    [171]Pan H, Wang L. Blending Scheduling under uncertainty based on particle swarm optimization with hypothesis test[J]. Lecture Notes in Computer Science,2006, 4115(2006):109-120.
    [172]Liao C J, Tseng C T, Luarn P. A discrete version of particle swarm optimization for flowshop scheduling problems[J]. Computers and Operations Research, 2007,34(10):3099-3111.
    [173]AlRashidi A R, El-Hawary M E. Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects[J]. IEEE Transactions on Power Systems,2007,22(4):2030-2038.
    [174]Eghbal M, Yorino N, El-Araby E E.Multi-load level reactive power planning considering slow and fast VAR devices by means of particle swarm optimisation[J]. IET Generation Transmission & Distribution,2008,2(5): 743-751.
    [175]Hooshmand R A, Pour M E. Corrective action planning considering FACTS allocation and optimal load shedding using bacterial foraging oriented by particle swarm optimization algorithm[J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES,2010,18(4): 597-612.
    [176]Song H, Diolata R, Joo Y H. Photovoltaic System Allocation Using Discrete Particle Swarm Optimization with Multi-level Quantization[J]. Journal Of Electrical Engineering & Technology,2009,4(2):185-193.
    [177]Wong J T, Chen K H, Su C T. Replenishment Decision Support System Based on Modified Particle Swarm Optimization in a VMI Supply Chain[J]. International Journal of Industrial Engineering-Theory Applications and Practice,2009,16(1):1-12.
    [178]Dye C Y, Ouyang L Y. A particle swarm optimization for solving joint pricing and lot-sizing problem with fluctuating demand and trade credit financing[J]. Computers & Industrial Engineering,2011,60(1):127-137.
    [179]Bozorgi-Amiri A, Jabalameli M S, Alinaghian M. A modified particle swarm optimization for disaster relief logistics under uncertain environment[J]. International Journal of Advanced Manufacturing Technology,2012,60(1-4): 357-371.
    [180]Dorigo M, DiCaro G, Gambardella L M. Ant Algorithms for Discrete Optimization[J].ArtificialLife,1999,5(3):137-172
    [181]刘士新,宋健海,唐加福.蚁群最优化—模型、算法及应用综述[J].系统工程学报,2004,19(5):496-502.
    [182]Chandrasekharan R, Hans Z. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs[J]. European Journal of Operational Research,2004,155(2):426-438.
    [183]Christian B, Michael S. An ant colony optimization algorithm for shop scheduling problems[J]. Journal of Mathematical Modelling and Algorithms, 2004,3(3):285-308.
    [184]Schluter M, Egea J A, Antelo L T. An Extended Ant Colony Optimization Algorithm for Integrated Process and Control System Design[J]. Industrial & Engineering Chemistry Research,2009,48(14):6723-6738.
    [185]Niknam T. An efficient algorithm for Volt/Var control at distribution systems including DER[J]. Journal Of Intelligent & Fuzzy Systems,2009,20(3): 119-132.
    [186]Westerlund T, Porn R. Solving pseudo-convex mixed integer optimization problems by cutting plane techniques[J]. Optimization and Engineering,2002, 3(2):253-280.
    [187]Roelofs M, Bisschop J. AIMMS 3.9-The User's Guide[M]. Haarlem, Netherlands:Paragon Decision Technology BV,2009.
    [188]Tawarmalani M, Sahinidis N V. Convexification and Global Optimization in Con-tinuous and Mixed-Integer Nonlinear Programming:Theory, Algorithms, Software, and Applications[M]. Norwell:Kluwer Academic Publishers,2002.
    [189]Tawarmalani M, Sahinidis N V. Global optimization of mixed-integer nonlinearprograms:A theoretical and computational study[J]. Mathematical Programming,2004,99(3):563-591.
    [190]Bao X, Sahinidis N V, Tawarmalani M. Multiterm polyhedral relaxations fornonconvex, quadratically-constrained quadratic programs[J]. Optimization Methods and Software,2009,24(4-5):485-504.
    [191]Ghildyal V, Sahinidis N V. Sahinidis. Solving Global Optimization Problems with BARON[M]. Dordrecht, Netherlands:Kluwer Academic Publishers,2001.
    [192]Math Works Corporation. MATLAB User's Guide. Natick[M], MA:Math Works Corporation,2009.
    [193]Bonami P, Biegler L T, Conn A R, et al. An algorithmic framework for convex mixed integer nonlinear programs[J]. Discrete Optimization,2008, 5(2):186-204.
    [194]Fletcher R, Leyffer S. Nonlinear programming without a penalty function[J]. Mathematical Programming,2002,91(2):239-270.
    [195]Belotti P, Lee J, Liberti L, et al. Branching and bounds tightening techniques for non-convex MINLP[J]. Optimization Methods and Software,2009, 24(4-5):597-634.
    [196]GAMS Development Corporation. GAMS-The Solver Manuals[M]. Washington DC:GAMS Development Corporation,2011.
    [197]Abhishek K, Leyffer S, Linderoth J T. FilMINT:An outer-approximation based solver for nonlinear mixed integer programs[J]. INFORMS Journal on Computing,2010,22(4):555-567.
    [198]Nowak I, Vigerske S. LAGO:a (heuristic) branch and cut algorithm for nonconvex MINLPs[J]. Central European Journal of Operations Research,2008, 16(2):127-138.
    [199]Snider S. Optimization Modeling with LINGO (Fifth Edition). Chicago:Lindo Systems Corporation,2002.
    [200]Floudas C A. Nonlinear and Mixed-Integer Optimization:Fundamentals and Applications[M]. Oxford:Oxford University Press,1995
    [201]Smith, R. Chemical Process Design and Integration[M]. New York:John Wiley & Sons,2005.
    [202]Peters M S, Timmerhaus K D. Plant design and economics for chemical engineers[M].New York:McGraw-Hill,1990.
    [203]李鸿亮,陆金桂,侯卫锋,等.基于混合遗传算法的催化重整过程多目标优化[J].化工学报,2010,61(2):432-438.
    [204]潘治,李学斌.改进的多目标优化算法及其在船舶设计中的应用[J].中国造船,2010,51(2):99-106.
    [205]张毅.炼油厂氢气网络集成技术的研究[D].杭州:浙江大学硕士学位论文,2003.
    [206]Schaffer J D. Multi-objective optimization with vector evaluated genetic algorithms. Proceedings of the International Conference on Genetic Algorithms and their Applications, Pittsburgh,93-100,1985[C]. Hillsdale, NJ:Lawrence Erlbaum & Associates Inc,1985.
    [207]Fonseca C M, Fleming P J. Genetic algorithm for multi-objective optimization: formulation, discussion and generation. Proceedings of the Fifth International Conference Oil Genetic Algorithms, Urbana-Champaign,416-423,1993[C]. San Mateo:Morgan Kauffman Publishers,1993.
    [208]Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [209]Horn J, Nafpliotis N, Goldberg D E. A niche Pareto genetic algorithm for multi-objective optimization. Proceeding of the First IEEE Conference on Evolutionary Computation, Orlando,82-87,1994[C]. Piscataway, NJ:IEEE press,1994.
    [210]Zitzler E, Thiele L. Multi-objective evolutionary algorithms:a comparative case study and the strength Pareto approach [J]. IEEE Trans on Evolutionary Computation,1999,3(4):257-271.
    [211]Zitzler E, Laumanns M, Thiele L. SPEA2:improving the strength Pareto evolutionary algorithm. Proceedings of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, 95-100,2001[C]. Barcelona:International Center for Numerical Methods in Engineering,2001.
    [212]Deb K, Pratap A, Agrawal S, et al. A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-11 [J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
    [213]Khare V, Yao X, Deb K. Performance sealing of Multi-objective evolutionary algorithms[J]. Lecture Notes in Computer Science,2003,376-390.
    [214]Coello Coello C A, Pulido G T, Lechuga M S. Handing multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computations,2004,8(3):256-279.
    [215]Gong M G, Jiao L C, Du H F, et al. Multiobjective Immune Algorithm with Nondominated Neighbor-based Selection[J]. Evolutionary Compulation,2008, 16(2):225-255.
    [216]Zhang Q F, Zhou A M, Jin Y. RM-MEDA:A regularity model based multi-objective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation,2008,12(1):41-63.
    [217]Zhang Q E, Li H. MOEA/D:a multi-objective evolutionary algorithm based on decomposition[JJ. IEEE Transactions on Evolutionary Computation,2007, 11(6):712-731.
    [218]Bandyopadhyay S, Saha S, Maulik U, et al. A simulated annealing based multi-objective optimization algorithm:AMOSA[J]. IEEE Transaction on Evolutionary Computation,2008,12(3):269-283.
    [219]陈冬.基于群智能及博弈策略的多目标优化算法研究[D].长沙:湖南大学硕士学位论文,2010.
    [220]Mu S J, Su H Y, Wang Y X, et al. An efficient evolutionary multi-objective optimization algorithm. Proceedings of the IEEE Congress on Evolutionary Computation, Canberra, December 8-12,2003 [C]. Piscataway, NJ:IEEE press, 2003.
    [221]Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization,2004,26 (6): 369-395.
    [222]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [223]Mu S J, Su H Y, Gu Y, et al. Multi-objective optimization of industrial purified terephthalic acid oxidation process[J]. Chinese Journal of Chemical Engineering,2003,11(5):536-541 (2003).
    [224]Mu S J, Su H Y, Jia T, et al. Scalable multi-objective optimization of industrial purified terephthalic acid (PTA) oxidation process[J]. Computers & Chemical Engineering,2004,28(11):2219-2231.
    [225]Li P, Arellano-Garcia H, Wozny G Chance constrained programming approach to process optimization under uncertainty[J]. Computers & Chemical Engineering,2008,32(1-2):25-45.
    [226]Charnes A, Cooper W W. Chance-constrained programming[J]. Management Science,1959,6:73-79.
    [227]Li W K, Hui C W, Li P, et al. Refinery Planning under Uncertainty [J]. Industrial & Engineering Chemistry Research,2004,43(21):6742-6755.
    [228]Schwarm A T, Nikolaou M. Chance-constrained model predictive control[J]. AIChE Journal,1999,45:1743-1752.
    [229]Li P, Wendt M, Wozny G. Robust model predictive control under chance constraints[J]. Computers & Chemical Engineering,2000,24(2-7):829-834.
    [230]Li P, Wendt M, Arellano-Garcia H, et al. Optimal operation of distillation processes under uncertain inflow streams accumulated in a feed tank[J]. AIChE Journal,2002,48(6):1198-1211.
    [231]Li P, Wendt M, Wozny G. A probabilistically constrained model predictive controller[J]. Automatica.2002,38(7):1171-1176.
    [232]Wendt M, Li P, Wozny G. Nonlinear Chance-Constrained Process Optimization under Uncertainty[J]. Industrial & Engineering Chemistry Research,2002, 41(15):3621-3629.
    [233]Li P, Wendt M, Wozny G. Optimal production planning for chemical processes under uncertain market conditions[J]. Chemical Engineering & Technology, 2004,27(6):641-651.
    [234]Mesfin G, Shuhaimi M. A chance constrained approach for a gas processing plant with uncertain feed conditions[J]. Computers & Chemical Engineering, 2010,34(8):1256-1267.
    [235]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.
    [236]Petkov S B, Maranas C D. Multiperiod Planning and Scheduling of Multiproduct Batch Plantsunder Demand Uncertainty [J]. Industrial & Engineering Chemistry Research,1997,36(11):4864-4881.
    [237]Arellano-Garcia H, Wozny G. Chance constrained optimization of process systems under uncertainty:I. Strict monotonicity[J]. Computers & Chemical Engineering,2009,33(10):1568-1583.
    [238]Tong Y L. The Multivariate Normal Distribution[M]. New York: Springer-Verlag,1990.
    [239]池晓.变参数蒸汽动力系统多周期优化[D].大连:大连理工大学硕士学位论文,2008.
    [240]Grossmann I E, Floudas C A. Active constraint strategy for flexibility analysis in chemical processes [J]. Computers & Chemical Engineering,1987,11(6): 675-693.
    [241]Lee H M, Pinto J M, Grossmann I E, et al. Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management[J]. Industrial & Engineering Chemistry Research,1996,35(5): 1630-1641.
    [242]Jia Z, Ierapetritou M. Mixed-integer linear programming model for gasoline blending and distribution scheduling[J]. Industrial & Engineering Chemistry Research,2003,42(4):825-835.
    [243]Jia Z, Ierapetritou M, Kelly J D. Refinery short-term scheduling using continuous time formulation:Crude-oil operations [J]. Industrial & Engineering Chemistry Research,2003,42(13):3085-3097.
    [244]Wang J S, Rong G. Robust optimization model for crude oil scheduling under uncertainty [J]. Industrial & Engineering Chemistry Research,2010,49(4): 1737-1748.
    [245]Li W K, Hui C W, Hua B, et al. Scheduling crude oil unloading, storage, and processing[J]. Industrial & Engineering Chemistry Research,2002,41(26): 6723-6734.
    [246]Quesada I, Grossmann I E. Global optimization of bilinear process networks with multicomponent flows[J]. Computers & Chemical Engineering,1995, 19(12):1219-1242.
    [247]Galan B, Grossmann I E. Optimal design of distributed wastewater treatment networks[J]. Industrial & Engineering Chemistry Research,1998,37(10): 4036-4048.
    [248]Esposito W R, Floudas C A. Global optimization for the parameter estimation ofdifferential-algebraic systems[J]. Industrial & Engineering Chemistry Research,2000,39(5):1291-1310.
    [249]Riascos C A M, Gombert A K, Pintoa J M. A global optimization approach for metabolic flux analysis based on labeling balances[J]. Computers & Chemical Engineering,2005,29(3):447-458.
    [250]Chew I M L, Tan R, Ng D K S, et al. Synthesis of direct and indirect interplant water network[J]. Industrial & Engineering Chemistry Research,2008,47(23): 9485-9496.
    [251]Lee T, Ryu J-h, Lee I-B. A synchronized feed scheduling of petrochemical industries simultaneously considering vessel scheduling and storage tank management[J]. Industrial & Engineering Chemistry Research,2009,48(5): 2721-2727.
    [252]鄢烈样,胡晟华,麻德贤.锅炉蒸汽系统多操作周期的优化调度[J].化工学报,2003,54(12):1708-1712.
    [253]Reddy P C P, Karimi I A, Srinivasan R. Novel solution approach for optimizing crude oil operations[J]. AIChE Journal,2004,50(6):1177-1197.
    [254]Li J, Li W, Karimi I A, et al. Improving the robustness and efficiency of crude scheduling algorithms[J]. AIChE Journal,2007,53(10):2659-2680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700