用户名: 密码: 验证码:
新型自然伽马测井响应的三维数值模拟以及数据合成与高分辨率处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在整个油气勘探和开发过程中,测井技术一直发挥着极其重要的作用,是进行岩性识别、油气层划分以及油气含量定量计算的有效手段。然而,近年来,国内油田均面临十分严峻的挑战,东部老油田已进入高含水后期开发,储采失衡矛盾日益突出,而作为石油战略接替区的西部石油资源在短期内又很难有大的突破。因此,迫切需要研究新技术有效开发隐蔽油气藏(页岩气、裂缝)和薄交互层油气等资源,增加可采储量,实现石油资源接替良性循环。新型高分辨率测井仪器的研发是解决勘探和评价这类非常规储层问题最为有效的方法,为此大庆钻探集团测井公司提出了建设0.2m分辨率测井平台研究任务,设法研制开发一套高分辨率测井系统,解决东部油田非常规油气层的勘探和评价问题。
     针对0.2m分辨率测井平台中新型高分辨率自然伽马测井仪器研制工作的需要,本论文在伽马测井仪器响应3D数值模拟与参数优化、多探测器伽马测井响应合成以及高分辨率处理等方面展开了深入研究,并研制出相关软件。通过3D数值模拟技术系统考察了探测器尺寸、探测器屏蔽与否以及探测器位置变化等对测井响应的影响,设计最佳仪器参数;通过多探测器伽马测井响应合成,设法从相同尺寸的多探测器测量结果中获得受统计涨落和环境影响较小的原始伽马测井记录;最后利用自适应正则化反褶积处理理论研制出伽马测井资料高分辨率处理方法,获得0.2m分辨率的自然伽马测井曲线。论文主要内容总结如下:
     一、新型高分辨率自然伽马测井响应的3D数值模拟与仪器参数优化。(第二章、第三章)
     由于新型自然伽马探测器在NaI晶体外表面的一部分加装了屏蔽铅板,探测器只能接收到地层中的部分自然伽马射线。当仪器贴井壁时,放射性源的空间分布相对于仪器的对称性也遭到破坏,仪器响应的计算变成三维问题。为了能够快速有效地考察探测器上加装屏蔽铅板以及其居中和贴井壁等复杂情况下的仪器响应,基于单能窄束原理,用稳态扩散方程描述伽马光子密度的空间分布,根据扩散方程基本解、放射源空间分布、探测器位置和屏蔽情况,将屏蔽探测器上的总伽马通量表示成放射性地层中的有效探测区域上的体积分和晶体表面上有效接收面的面积分形式。并根据伽马射线传播路径和探测器屏蔽情况,给出有效探测区域的解析表达式,通过数值积分法计算任意复杂情况下探测器上的自然伽马通量,获得伽马测井响应的3D数值模拟算法。并通过数值模拟结果与模型井数据的对比验证了该算法的有效性。
     在此基础上,利用3D数值模拟算法系统研究考察晶体形状(圆柱形晶体、方形晶体)、晶体尺寸(圆柱晶体长度以及直径、方形晶体边长以及棱长)、仪器在井轴中的位置(居中屏蔽探测器、贴井壁屏蔽探测器)、以及测速等不同情况下,自然伽马测井响应以及其纵向与径向积分微分几何因子,选择出最佳仪器参数。
     二、多探测器伽马测井响应合成(第四章)
     为克服长度较短的NaI晶体会导致计数率降低和统计涨落误差增大对测井质量的不利影响,新型自然伽马探测器利用4个结构和尺寸完全相同的探测器进行同时测量,获得4条相同分辨率的自然伽马测井曲线,但由于统计涨落误差以及井眼环境变化等不利影响,不同探测器的测量结果往往相差很大,为此,将相关加权处理与带通滤波相结合,研制出多探测器伽马测井响应合成曲线,获得受统计涨落和环境影响较小的原始伽马测井记录。
     三、自然伽马测井曲线高分辨率处理技术(第五章)
     在通过改变探测器结构改进伽马测井资料原始分辨率的基础上,利用Tikhonov正则化反演理论以及Morozev的偏差原理,进一步研制出自然伽马测井资料的自适应正则化反褶积处理技术,提高新型自然伽马探测器的纵向分辨率。理论与实际井场数据说明新型自然伽马探测器的纵向分辨率达到0.2m,比常规自然伽马测井仪器的分辨率高了3倍以上。
In the process of exploration and development of oil and gas, well loggingtechnology has been playing a significant role. It is an effective method to identifylithology, divide the reservoir, and calculate the hydrocarbone reserves. In recentyears, domestic oilfields are confronted with very severe challenges. Theproductivity of oil in convertional east old oilfields begin attenuation, because theexploited oil in these oilfields contains higher proportion water. While productivityof the new western oilfields can’t been enhanced in short term to make up for thedeficiency of oil productivity. Therefore,some new technologies must be studied toeffectively explore potential reservoirs such as shale gas, cracks and thinalternating layers of oil and gas resources, furthermore increase recoverablereserves and realize the growth of oil resources. The development of newhigh-resolution logging tool is one of most effective way to evaluate and exploitethese unconvertional reservoir. So the Wireline Logging Company, DaqingDrilling Engineering Company proposes a study task to develop a well loggingplatform having0.2m resolution in vertical direction, and try to develop ahigh-resolution logging system to solve the problems of exploration andevaluation of unconventional hydrocarbon reservoir in the eastern oil field
     For the development of new type of high-resolution natural gamma well logging tool in the0.2m resolution of logging platform, this thesis mainly studythe3D numerical simulation of the tool responses and optimization of the toolparameter, the data synthesis of multi-detector gamma ray logs and high-resolutionprocessing of the logging data. The influences of changes in the shieldingcondition, size and location of the detector on the response of natural gamma raydetector are investigated systematically by the3D numerical simulation to realizethe optimal selection of instrument parameters. The data synthesis is applied to getthe raw gamma logs from the multi-detector measurement results so that they areaffected by less statistical fluctuations and environmental changes as less aspossible.. Finally, the method of adaptively regularized deconvolution is used toenhance the vertical resolution of the new type of GR tool and realize the goal ofthe0.2m vertical resolution of GR tool.The main contents of the thesis are summarized as follows
     1).The3D numerical simulation of the logging response and the optimization ofinstrument parameters for the new high-resolution gamma ray tool(chapter II、chapter III)
     Due to the shielding stereotypes are installed on the outer surface of the NaIcrystal in the detector, So only the gamma rays emitted from parts of the layers canbe received. When the instrument is placed at the sidewall, the calculation of theinstrument becomes a three-dimensional simulation problem because of theunsymmetry of spatial distribution relative to the instrument. Fistly, the spatialdistribution of natural Gamma ray in radioactive formation can be described bysteady-state diffusion equation based on the theory of both single energy andnarrow-beam, And then, the total Gamma photon flux entering the surface of thedetector are expressed by the form of both the3D volume integral in theeffectively exploring domain in the formation of detector and2D surface integralon the effective detector surface. Finally, the effectively exploring domain isanalytically described by the propagation path of Gamma ray in the formation andboth shielding condition and location of the detector so that the flux in anycomplex conditions is efficiently computed by3D numerical method.
     On this basis, The3D numerical simulation algorithm is used to investigatethe influence of changes in the size of the detector, the sharp of the detector, thelocation of detector at borehole axis or cling to borehole wall and logging velocityon the response of the natural Gamma logging tool, the integral and differencegeometric factor in the longitudinal and Radical direction, which help to choosethe best instrument parameters.
     2). The data synthesis of Multi-detector gamma ray log response (chapter IV)
     The shorter NaI crystal will cause count rates to decrease and statisticalfluctuation errors to rise up, which affect the logging results. The new-type naturalGamma logging tool assemble4same detectors to achieve the4logs of Gammaray fluxes with high vertical resolution simultaneously. However, the results fromdifferent detectors are usually different due to the influence of statisticalfluctuations and Borehole environmental. So we use the correlation weightedmethod combined with low-pass filte technic to synthesize the four different logs,obtain an raw Gamma ray log less affected by the statistical fluctuation error andthe entironment.
     3).The high-resolution processing technology of Gamma ray logging data(chapterV)
     On the basis of the improving the resolution of the raw Gamma logging databy changing the detector structure, We further develop a the adaptively regularizeddeconvolution processing technology to enhance its vertical resolution byTikhonov regularized inversion theory and Morozev deviation principle. Thetheoretical modeling and field results prove that the new Gamma ray tool has thevertical resolution up to0.2m, whose vertical resolution is about3times higherthan other conventional Gamma ray tools.
引文
[1]黄隆基.核测井原理[M].北京:石油工业出版社,2000.
    [2]黄隆基.放射性测井原理[M].北京:石油工业出版社,1985.
    [3] B.L.劳森等著,孙济元,王文祥,雍世和等译.自然伽马、中子和密度测井[M].北京:石油工业出版社,1987.
    [4] Carl J. Koizum. Neutron Capture Logging Calibration and Data Analysis forEnvironmental Contaminant Assessment [J]. Applied Geophysics2007,61,111–131.
    [5] S. A. Kerr, P. F. Worthington.Nuclear Logging Techniques for Hydrocarbon,Mineral, and Geological Applications[J]. IEEE Transactions on NuclearScience1988,35(1),.794-799.
    [6] C.W.Title,L.S.Allen.Theroy of Neutron Logging II[M]. Geophysics,XXX1(1),p.214–224.1966.
    [7]卢存恒.铀矿物探伽马场理论计算和应用[M].原子能出版社,1991
    [8]庞巨丰.测井原理及仪器[M].科学出版社,2008.
    [9] Darwin V.Ellis,Julian M.Singer.Well Logging for Earth Scientists,secondedition.[M]
    [10]Jordan G. Mimoun, Carlos Torres-Verdin. Quantitative Interpretations ofPulsed Neutron[C]. SPWLA51st Annual Logging Symposium, June19-23,2010.
    [11]Jordan G. Mimoun, Carlos Torres-Verd′n, William E. Preeg. QuantitativeInterpretation of Pulsed Neutron Capture Logs-Part2—Inversion ofMeasurements in Thinly Bedded Formations. Geophysics[J].2011,76(3),p.E95–E103.
    [12]Michael P. Smith. Enhanced Vertical Resolution Processing of Dual-SpacedNeutron and Density Tools Using Standard Shop Calibration and BoreholeCompensation Procedures[C]. SPWLA31~1Annual Logging Symposium,June24-27.1990.
    [13]Charle L.Dennis,Wyatt W.Givens,John B.Hickman.Natural Gamma RadiationBorehole Logging System[P]. United States Patent,3,940,610.
    [14]丁次乾.矿场地球物理[M].北京:石油大学出版社,1992.
    [15]庞巨丰,迟云鹏,钟振伟.现代核测井技术与仪器[M].北京:石油工业出版社,1998.
    [16]钱建设,李惠.斯伦贝谢最新测井仪概况[J].国外测井技术,2001,16(4):43-47.
    [17]原宏壮,陆大卫,张辛耘等.测井技术新进展综述[J].地球物理学进展,2005,20(3):786-795.
    [18]张元中.新世纪第一个五年测井技术的若干进展[J].地球物理学进展,2004,19(4):828-836.
    [19]秦绪英.测井技术现状与展望[J].勘探地球物理进展,2002,25(l):26-34.
    [20]李斌凯,马海州,谭红兵.测井技术的应用及其在科学钻探研究中的意义[J].地球物理学进展,2007,22(5):1493-1501.
    [21]牛一雄,潘和平,王文先等.中国大陆科学钻探主孔(0~2000m)地球物理测井[J].岩石学报,2004,20(1):165-178.
    [22]程业勋.我国核地球物理的发展与展望[J].物探与化探,2002,26(4):247-249.
    [23]楚泽涵.地球物理测井方法与原理(上册)[M]..北京:石油工业出版社,2002
    [24]斯伦贝谢测井公司著.测井原理解释与应用[M].北京:石油工业出版社,1991.
    [25]张庚骥.电法测井[M].山东东营:石油大学出版社,1996.
    [26]张建华,刘振华,仵杰.电法测井原理与应用[M].西安:西北大学出版社,2002.
    [27]Wang H M, Tom Barber, Chen, K C et al. Triaxial Induction Logging:Theory,Modeling,Inversion, and Interpretation[C].SPE International Oil&GasConference.,2006
    [28]Wang H N, SO P, Yang S W, et al. Numerical Modeling of MulticomponentInduction Well Logging Tools in the Cylindrically Stratified Anisotropic Media[J].. IEEE Transactions on Geoscience and Remote Sensing,2008,46(4):1134-1147.
    [29]Wang H N, Yang S W. Fast Modeling of Micro-spherically Focused Log inHhorizontally Layered Formation[J]. IEEE Trans. On Geosci. And RemoteSensing,2001,39(10),2275-2282.
    [30]沈金松.用有限差分法计算各向异性介质中多分量感应测井的响应[J].地球物理学进展,2004,19(1):101-107.
    [31]沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报,2003,46(2):281~289.
    [32]于铭强,周镭庭等.放射性测量新技术(第一集)[M].北京:地质出版社,1983.
    [33]卢贤栋,吴慧山等.铀矿物探[M].北京:原子能出版社,1981.
    [34]成都地质学院三系.放射性勘探方法[M].北京:原子能出版社,1978.
    [35]贾文鼓等.放射性测量(应用地球物理教程)[M].北京:地质出版社,1991.
    [36]章哗,华荣洲,石柏慎.放射性方法勘查[M].北京:原子能出版社,1990.
    [37]Seott J H.Computer analysis of gamma-ray logs [J].GeoPhysies,1963,28:457-65
    [38]Seott J H, DoddP H, Droullard,RF, MudraPJ. Quantitativ Einterpretation ofLogs[J].Gcophysies,1961,26:182-191.
    [39]景建恩,测井与岩芯、地震数据的匹配方法研究[D].吉林长春:长春科技大学.
    [40]王克协,董庆德,柱状双层准弹性介质中声辐射场的理论分析[J].声波测井理论研究(Ⅰ),吉林大学自然科学学报,1979,47-55.
    [41]Conaway J G,q.Deconvalution of gamma-ray logs in the case of dippingradioactive zones.[J].Geophysics,1981,46:198-202.
    [42]Conaway J G, Bristow Q, killeen P G.Optimization of Gamm-ray LoggingTeehniques for Uranium[J].Geophysics,1980,45(2):292-311.
    [43]Killeen P G. Gamma-ray Spectrometric Methods Inuranium Exploration-Applieation and Interpretation [A]:Geophysies and Geoehemistry in the Searehfor Metallic Ores.Canada:Geological Survey of Canada Eeonomic GeologyReport31[C],1979,163-229
    [44]Conaway J G. Killeen P G.Quantitative Uranium Detennination from Gamma-ray Logs by Application of Digital Time Series Analysis[J].Geophysies,1978,,43(2):1204-1221.
    [45]Conaway J G.Deconvalution of Temperature Logs[J].Geophysies,1977,42:823-837.
    [46]王克协,董庆德,井孔声波理论研究[J].吉林大学自然科学学报,1992,106-112.
    [47]王克协,董庆德,渗透性地层油井中声场的理论分析与计算[J].石油学报,1986,7,59-70.
    [48]Guo P J, Pearland, TX. Method for determining shale bed boundaries andgamma ray activity with gamma ray instrument[P].United States Patent, US7,649,169.
    [49]William W. Moses.Current trends in scintillator detectors andmaterials[J].Nuclear Instruments and Methods in Physics Research2002,487,123–128.
    [50]白运台,王立新.自然伽马能谱测井在高自然伽马裂缝地层中的应用[J].国外测井技术,2011,16(5),.16-23
    [51]C.W.Title. Theroy of Neutron Logging I[J]. Geophysics, XXV1(1),1961,p.27–39.
    [52]Photon cross sections from0.1keV to1MeV for elements Z=1to Z=94WM.J[J].Veigele.atomic data tables,1973.5,51-111.
    [53]Alberto Mendoza, William Preeg, Carlos Torres-Verdín, Faruk O. Alpak.MonteCarlo Modeling of Nuclear Measurements In Vertical And Horizontal Wells Inthe Presence of Mud-Filtrate Invasion And Salt Mixing[C]. SPWLA46thAnnual Logging Symposium, June26-29,2005.
    [54]赵海文.小直径自然伽马测井仪器存在的问题及改进[J].石油仪器,2005,19(3),77-79.
    [55]卢存恒,刘庆成,韩长青.空间伽马场的弹性变化及应用[M].北京:原子能出版社,2006.
    [56]瓦冈诺夫,周蓉生.核方法原理及应用[M].北京:地质出版社,1994
    [57]Stephen Billing, Jens Hovgaard. Modeling Detector Response AirborneGamma-ray Spectrometry[J]. Geophysics,1999,64(5),p.1378–1392.
    [58]黄隆基.放射性测井原理[M].北京石油工业出版社,1996.
    [59]宋延杰.测井曲线垂直分辨率的实时评价[J].测井技术,1996,20(2),101-107.
    [60]任晓荣.NaI(Tl)闪烁探测器测量伽马射线的性能分析[J].传感器世界,2004,21-26.
    [61]P.A.S Elkington, J. R. Samworth, M C Enstone, BPB Wireline Services.Vertical Enhancement by Combination and Transformation of AssociatedResponses[C]. SPWLA(Society of Petrophysicists&Well Log Analysts)1990Society of Petrophysicists and Well-Log Analysts.
    [62]Cédric Vonesch, Michael Unser.A Fast Thresholded Landweber Algorithm forWavelet-Regularized Multidimensional Deconvolution[J]. IEEE Transactionson Image Processing,17(4),2008.
    [63]Laurent Cavalier,Marc Raimondo.Wavelet Deconvolution With NoisyEigenvalues[J]. IEEE Transactions on Signal Processing,2007,55(6),2414-2424..
    [64]Marina Biryulina, Gennady Ryzhikov. Non-Wiener filter, or SharpDeconvolution in Elimination of Multiples[J]. E-98,1-27.
    [65]George E. Kechter, Jan D. Achenbach. Combined Linear and HomomorphicDeconvolutions for Processing Bandpass Measurements[J]. IEEE Transactionson Signal Processing1991,39(6),1300-1304.
    [66]G.E. Coote. Deconvolution of Resonance Reaction Yield Curves by aNonlinear Least Squares Method[J]. Nuclear Instruments and Methods inPhysics Research1997,B130,118-122.
    [67]Gennady A. Ryzhikov, Marina S. Biryulina, Sharp Deconvolution inElimination of Multiples[C].SEG Annual Meeting, September13-18,1998,New Orleans, Louisiana.
    [68]Michael L. Gartner. A New Resolution Enhancement Method for NeutronPorosity Tools[J]. IEEE Nuclear Science,1990,39(1),.1237-1242.
    [69]E. Sekko, G. Thomas, A. Boukrouche. A Deconvolution Technique usingOptimal Wiener Filtering and Regularization[J]. Signal Processing,1999,72,23-32.
    [70]Sheng P., White B., Nair B., and Kerfordl S., Bayesian Deconvolution ofGamma-ray Logs[J]. Geophysics,1987,52(11),p.1535-1546.
    [71]Gadeken L. L., Merchant G. A., Jacobson L. A. et al, The Utility of combiningSmoothing and Deconvolution in Processing algorithm for Well Log Data[C].IEEE Nuclear Science,1990
    [72]Alberto Mendoza, Carlos Torres-Verdín, and Bill Preeg. Linear iterativerefinement method for the rapid simulation of borehole nuclear measurements:Part I—Vertical wells[J]. Geophysics,2010,75(1),p. E9–E29.
    [73]Alberto Mendoza, Carlos Torres-Verdín, and Bill Preeg. Linear IterativeRefinement Method for the rapid Simulation of Borehole NuclearMeasurements-Part2-High-angle and Horizontal Wells[J]. Geophysics,2010,75(2),p. E79–E90.
    [74]Conaway J G, Exact Inverse Filter for the Deconvolution of Gamma-rayLogs[J].Geoexploration,1980,181-14,
    [75]Guy,Ruckebusch. A Kalman Filtering approach to Natural Gamma raySpectroscopy in Well Logging[J]. IEEE Transactions on Automatic Control,1983,28(3),372-378.
    [76]唐广军,潘晓仁,王玉华. Kalman滤波方法在放射性测井资料处理中的应用[J].大庆石油地质与开发,2004,23(4),70-72.
    [77]L.J. Meng,D. Ramsden. An Inter-comparison of Three Spectral-DeconvolutionAlgorithms for Gamma-ray Spectroscopy[J]. IEEE Nuclear Science,47(4),2000.
    [78]李舟波,汪宏年.提高补偿中子测井纵向分辨率处理技术[J],测井技术,1993,17,402-409.
    [79]汪宏年,李舟波,常明澈.地球物理测井综合高分辨率处理系统及其应用[J].测井技术.1996,20(6):441-448.
    [80]Tikhonov, A H著,王秉忱译.不适定问题的解法[M],北京,地质出版社,1979,34-112.
    [81]Zorski, T.一种测井曲线的反褶积效率分析[J].测井分析家协会27,28北京:石油工业出版社,1990,501-517.
    [82]Thomas Bonesky. Morozov’s Discrepancy Principle and Tikhonov-typeFunctionals. Inverse Problems[J].2009,(25)015015
    [83]Karl Kunisch, Jun Zou. Iterative Choices of Regularization Parameters inLinear Inverse Problems[J]. Inverse Problems,1998,14,1247-1264.
    [84]Peter Math.The Discretized Discrepancy Principle under General SourceConditions[J]. Complexity,2006,22,371-381.
    [85]Nikolas P. Galatsanos, Aggelos K. Katsaggelos. Methods for choosing theregularization parameter and estimating the noise variance in image restorationand their relation[J], IEEE Image Processing1992,1(3),.322-336
    [86]Sergei Preverzev, Eberhard Schock. On The Adaptive Selection of theParameter in Regularization of Ill-posed Problem[J]. Society for Industrial andApplied Mathematics,2003,43(5),2060-2076.
    [87]Teresa Regilqska. A Regularization Parameter in Discrete Ill-Posed Problems[J]. Society for Industrial and Applied Mathematics,1996,17(3),740-749.
    [88]汪宏年,李舟波,常明澈等提高自然伽马测井曲线分辨率的正则化方法[J].地球物理学报,1997,40(6),847-856.
    [89][王静,谈德辉,苏波.地面自然伽马曲线正演模型的高分辨率研究[J].国外测井技术,2008,23(1),14-27..
    [90]Michalis Tzortzis, Haralabos Tsertos, Stelios Christo,des, GeorgeChristodoulides. Gamma-ray Measurements of Naturally OccurringRadioactive samples from Cyprus Characteristic Geological Rocks[J].Radiation Measurements2003,37,221-229.
    [91]L. Manduci, L.Tenailleau, J.L.Trole, A.DeVismes, G.Lopez, M.Piccione.Self-attenuation correction factors for bioindicators measured by r spectrometryfor energies E<100keV[J]. Nuclear Instruments and Methods in PhysicsResearch2010,A613,90–94.
    [92]Tong Zhou, Jeffrey Robert Miles.Forward Models for Gamma rayMeasurement Analysis of Subterranean Formations[P]. United States Patent,US7,818,128B2.
    [93]陶宏根,商庆龙,刘长伟,汪宏年,李舟波.新型高分辨率自然伽马测井仪器的优化设计与资料处理技术[J],吉林大学学报,2012,42(4),906-913.
    [94]Tittman. J., Wahl, J. S., The Physical Foundations of Formation DensityLogging (gamma-gamma)[J].Geophysics,1965,30:284-294.
    [95]Vlastou R., Ntziou I.T., Kokkoris M., et al. Monte Carlo Simulation of r-raySpectra From Natural Radionuclides Recorded by a NaI Detector in mthe arineEnvironment[J]. Applied Radiation and Isotopes,2006,64:116–123.
    [96]Mark M. Mathis, Darren J. Kerbyson, Adolfy Hoisie. A Performance Model ofnon-deterministic Pparticle Transport on Large-scale Systems[J]. FutureGeneration Computer Systems22,2006,324–335.
    [97]黄隆基,胡庆东.自然伽马能谱测井薄层响应[J].地球物理学报,1997,40(2):272-279.
    [98]Scott J. H., Dodd P. H, Droullard R. F., et al. Quantitative Iinterpretation ofGamma-ray logs[J]. Geophysics,1961,26(2):182-191.
    [99]Wahl J. S. Gamma-ray logging[J]. Geophysics,1983,48(11):1536-1550
    [100]王斌,范晓敏.围岩对自然伽马测井响应的数值模拟[J].吉林大学学报(地球科学版.2006,36(Sup):166-168.
    [101]Hezhu Yin,Guo Pingjun.Gamma Ray Tool Response Modeling[P]. UnitedStates(12) Patent Application Publication, US2010/0204971Al
    [102]刘国庆,刘江,张美玲等.自然伽马测井曲线高分辨率处理方法[J].测井技术,2002,26(3):194-197.
    [103]谢仲生,张少泓.核反应堆物理理论与计算方法[M].西安:西安交通大学出版社,2000.
    [104]Gary L. Mathis. Smoothing Spectral Gamma Logs-a Simple but EffectiveTechnique[J]. Geophysics,1997,52(3),p.363–367.
    [105]L.A.Jacobson. A Matched Filter Data Smoothing Algorithm[J]. IEEE NuclearScience,1989,38(1),1227-1231.
    [106]Peter Math′e, Sergei V Pereverzev. Geometry of Linear Ill-posed Problems inVariable Hilbert Scales[J]. Inverse Problems19,2000,789–803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700