用户名: 密码: 验证码:
喜马拉雅中东段~(40)Ar/~(39)Ar年代学及热史演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对喜马拉雅造山带岩体的热史演化研究不仅能为山脉的隆起历史提供精确的年代学坐标,也能为检验造山带的隆起模型及新构造样式提供基础资料。在喜马拉雅造山带中东段,系统的针对岩体热史演化的研究尚处于起步阶段,喜马拉雅山的隆升之谜也一直没有彻底解开。本文选择位于喜马拉雅中段亚东地区的亚东—哲古拉剖面以及位于东喜马拉雅构造结的雅鲁藏布江沿岸派乡—扎曲段、那木拉峰西坡以及多雄拉峰东坡等四条剖面,利用精细的阶步加温和单次全熔~(40)Ar/~(39)Ar年代学方法,试图构建喜马拉雅中段及东喜马拉雅构造结岩体热史演化的年代学框架,以期解开喜马拉雅造山带中东段的抬升之谜。
     在喜马拉雅中段亚东地区,以出露于亚东县城以北约40 km处哲古拉地区的退变质高压麻粒岩为窗口,以其中的峰期变质矿物黑云母及退变质矿物角闪石的阶步加温~(40)Ar/~(39)Ar年代学方法约束的高压变质作用之后的两期退变质事件年龄分别为48.5和31.1 Ma,其寄主岩石黑云母钾长花岗岩中的黑云母和钾长石~(40)Ar/~(39)Ar年龄分别为11.5和12.6 Ma,为后期冷却年龄。同时,高压麻粒岩中的锆石U-Pb结果为17 Ma,为其被花岗岩捕掳的年龄,其寄主岩石中的锆石U-Pb年龄集中在>1800和841 Ma,为原岩年龄信息。在亚东县城以南的两处花岗质片麻岩中,锆石U-Pb年龄分别为1149和474 Ma,为原岩和泛非变质事件的年龄,黑云母单次全熔~(40)Ar/~(39)Ar年龄为11.3和11.0 Ma,磷灰石裂变径迹年龄分别为7和8 Ma。亚东以南岩体与哲古拉高压麻粒岩的寄主岩石中的黑云母~(40)Ar/~(39)Ar年龄一致,说明在亚东—哲古拉剖面上,岩体同时冷却至黑云母对Ar同位素体系的封闭温度(~320℃),推测之后在7~8Ma前近同时冷却至~110℃。
     根据亚东—哲古拉剖面的年代学信息,可以大致刻画高喜马拉雅结晶岩系的构造演化历史:高喜马拉雅结晶岩系的原岩在>1000 Ma前形成之后,经历了泛非变质事件的改造,之后随着印度大陆向欧亚大陆的俯冲碰撞,经历了高压变质事件,并在48.5和31.1 Ma退变质,在31.1~17 Ma期间发生部分熔融而滞留于中下地壳15~24 km深度处,在17~7 Ma前以通道流的方式快速折返至近地表,之后缓慢剥露于地表。
     东喜马拉雅构造结是气候与构造相互作用的典型地区,本文尝试使用单颗粒高精度单次全熔~(40)Ar/~(39)Ar法对采自雅鲁藏布江大峡谷下游墨脱县城以南约50 km处地东河段的细粒现代河沙进行年代学测试,建立东喜马拉雅构造结的热史演化序列,并通过与代表全球气候变化的18O、13C浓度变化曲线和印度大陆向北运动的速度、角度变化曲线的对比,揭示气候、构造因素与东喜马拉雅构造结热史演化的耦合,推定热史演化与气候、构造过程的关系。同时,本文对东构造结地区进行了大量地面定点样品的~(40)Ar/~(39)Ar年龄分析,结果表明,雅鲁藏布江沿岸派乡—扎曲段岩体及那木拉西坡共18件富钾矿物的阶步加温~(40)Ar/~(39)Ar年龄集中于1.3和2.5 Ma,而多雄拉东坡黑云母~(40)Ar/~(39)Ar年龄平均值为4 Ma左右。一方面,大量小于3 Ma的~(40)Ar/~(39)Ar年龄表明东构造结的大规模隆升开始于上新世中期,另一方面,多雄拉东坡与西坡~(40)Ar/~(39)Ar年龄的差异是由于南迦巴瓦—那木拉—多雄拉峰顶连线以西发育的北东走向掀斜构造所引起的差异性抬升和剥蚀所造成,该掀斜构造开始发育于4.0~2.2 Ma期间,且一直活动到现在,其动力源自气候与构造的共同作用。
     喜马拉雅中段与东构造结不尽相同的热演化历史说明二者的隆升方式和时代存在明显差异。喜马拉雅中段主要在17~7 Ma前以通道流的方式快速隆升,之后的抬升过程相对缓慢;东喜马拉雅构造结则主要在3 Ma以来,以地壳均衡作用为背景的掀斜式抬升为主要隆升模式。二者抬升的驱动力则较为相似,都是南北向挤压作用下的气候驱动,即是构造控制下构造与气候的共同作用。
Study on thermal history of Himalaya orogen provides not only accurate chronological coordinate on the cooling history, but also basic materials in verifying models related to the uplift of Himalaya. On central-east part of Himalaya orogen, systematic geochronological researches focusing on thermal evolution was neglectable, so the puzzle of how and when did Himalaya uplift has not been integrally explained. In this paper, four sections located respectively in Yadong-ZhergerLa in central Himalaya, Pai-Zaqu reach of Yalung-Tsangpo River, west slope section of NamuLa and east slope section of DuoxiongLa in Eastern Himalaya Syntaxis were chosen, and conventional and laser ~(40)Ar/~(39)Ar methods were used to build the framework of thermal evolution history of central-east part of Himalaya orogen, for the purpose of revealing the secret of uplif of central-east Himalaya.
     In Yadong district in central Himalaya, a retro-metamorphic high-pressure granulite and its country rock were focused and conventional ~(40)Ar/~(39)Ar tests were done. Two retro-metamorphic events in the retro-metamorphic high-pressure granulite, the ages of which were constrained by biotite and hornblende ~(40)Ar/~(39)Ar geochronology, happened at 48.5 and 31.1 Ma. Thereafter, two cooling ages of 11.5 and 12.6 Ma were yield, which were constrained by biotite and K-feldspar ~(40)Ar/~(39)Ar ages in the country rock, a biotite K-feldspar granite. At the same time, a cluster of 17 Ma zircon U-Pb age in the retro-metamorphic high-pressure granulite and two clusters of 841 and >1800 Ma zircon U-Pb ages were already published (Ji et al., 2004), the former of which suggests the time when the high-pressure granulite was captured, while the latter of which represent when did original rocks formed. In granitic gneiss located south of Yadong, two old zircon U-Pb ages (1149 and 474 Ma) and young biotite ~(40)Ar/~(39)Ar ages (11.3 and 11.0 Ma) and apatite fission track (AFT) ages (7 and 8 Ma) were yield. The old zircon U-Pb ages represent the time when original rocks formed and undergone Pan- African event subsequently, while the young ~(40)Ar/~(39)Ar and AFT results are cooling ages. Coincident biotite ~(40)Ar/~(39)Ar ages yield in rocks in the south of Yadong and in the high-pressure granulite shows that on the section of Yadong-ZhergerLa, rocks were cooled to 320℃contemporarily. According to geochronological data obtained in this study, a tectonic evolutional history of rocks currently exposed on the earth surface can be made: After forming before 841 Ma, the original rocks of High Himalaya Crystalline System were reformed by Pan-African event at ~474 Ma, then were undergone high pressure metamorphism at ~55 Ma (inferred) and two retro-metamorphic events at 48.5 and 31.1 Ma respectively, thereafter, they were persisted partial molten at depth of 15~24 km during 31.1~17 Ma, and were experienced fast extrusion event in the way of channel flow in the period of 17~7 Ma, then were exposed to the earth surface at a lower velocity.
     Eastern Himalaya Syntaxis is an important area in studying climatic-tectonic reciprocity. In this paper, single-crystal-high-precision laser ~(40)Ar/~(39)Ar method was used to build the thermal evolutional history of Eastern Himalaya Syntaxis by tests on river sediments on the lower reach of Yalung-Tsangpo River. The contrast of age statistical results against the figure showing the changes in rate and angle of convergence during India plate has been colliding against Eurasian plate since late Mesozoic and the diagram consisting of global deep-seaδ18O andδ13C records is done, for the purpose of revealing climatic and tectonic information on rock cooling and referring the relationship between thermal evolutional history and climate and tectonics. At the same time, plenty of geochronological data on ground samples were yield by conventional and laser ~(40)Ar/~(39)Ar tests. It shows that Pai-Zaqu reach of Yalung-Tsangpo River and west slope section of NamuLa yield ~(40)Ar/~(39)Ar age clusters of 1.3 and 2.5 Ma, while biotite ~(40)Ar/~(39)Ar age cluster of samples from east slope section of DuoxiongLa is about 4 Ma. Firstly, ~(40)Ar/~(39)Ar age clusters of <3 Ma reveal the fast cooling of eastern Himalaya Syntaxis since middle Pliocene. Secondly, the difference of ~(40)Ar/~(39)Ar age clusters between the west and east slope section of DuoxiongLa is the result of a titling structure, which strikes NE at the west side of Namjag-Barwa– NamuLa– DuoxiongLa, and which has been functioning since 4.0~2.2 Ma under the drive of both climatic and tectonic powers.
     The difference of thermal evolutional history between central Himalaya and Eastern Himalaya Syntaxis shows that they uplifted in different tectonic style at different period of time. In central Himalaya, massif was mainly uplifted in the tectonic model of channel flow during 17~7 Ma at a velocity of ~2 mm/a, then was extruded to earth surface at a much lower velocity. In eastern Himalaya Syntaxis, massif was mainly uplifted in the structural style of titling at a background of isostasy since 4.0~2.2 Ma. As for the drive power, both of them have been driving by climatic and tectonic power under the dominant control of N-S tectonic compression.
引文
[1] F·德蓬,索内特·雅克,刘国惠,金成伟,许荣华.1984.西藏南部三个深成岩带的化学.矿物特征和Rb-Sr法地质年龄测定.李光岑,儿麦尔西叶.1984.中法喜马拉雅考察成果(1980).北京:地质出版社,295-304
    [2]陈建军,季建清,余绍立.2008a.雅鲁藏布江大峡谷地貌响应时间域的定量计算.第四纪研究,28(2):264-272
    [3]陈建军,季建清,龚俊峰,庆建春.2008b.雅鲁藏布江大峡谷的形成.地质通报,27(4):491-499
    [4]陈文,李曙光,张彦,刘新宇.2003.苏鲁超高压变质带东海青龙山高压正片麻岩中白云母的40Ar/39Ar年代学研究.地质评论,49(5):537-543
    [5]丁林,来庆洲.2003.冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约.科学通报,48(8):836-842
    [6]丁林,钟大赉.1999.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑),29(5):385-397
    [7]丁林,钟大赉,潘裕生,黄萱.1995.东喜马拉雅构造结上新世以来快速抬升的裂变经迹证据.科学通报,40(16):1497-1500
    [8]杜军,马玉才.2004.西藏高原水变化趋势的气候分析.地理学报,59(3):375-382
    [9]耿全如,郑来林,董翰,孙志明,欧春生,王小伟.2008.冈底斯带东段鲁朗-墨脱地区中新世花岗岩的地球化学、年代学及成因.地质通报,27(1):69-82
    [10]龚俊峰,季建清,陈建军,桑海青,李宝龙,刘一多,韩宝福.2008.东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究.岩石学报,24(10):2255-2272
    [11]龚俊峰,季建清,桑海清,韩宝福,李宝龙,陈建军.2006.喜马拉雅中段哲古拉花岗岩中高压麻粒岩包体及其主岩的40Ar/39Ar年代学研究.岩石学报,22(11):2677-2686
    [12]何顺东.2001.藏东南迦巴瓦变质岩楔入体东边界阿尼桥断裂带构造变形性质年代学与构造意义.中国科学院地质与地球物理研究所硕士学位论文,1-45
    [13]胡世玲,郝杰,李日俊,戴橦谟,蒲志平.1999.大别山碧溪岭榴辉岩激光探针40Ar/39Ar年龄.地质科学,34(4):327-431
    [14]季建清,钟大赉,丁林,张进江,杨逸畴.1999.雅鲁藏布大峡谷地质成因.地学前缘,6(4):231-235
    [15]季建清,钟大赉,宋彪,朱美妃,温大任.2004.喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学.岩石学报,20(5):1283-1300
    [16]季建清.2000.青藏高原东南部新生代岩石圈构造演化、高原隆升及其环境效应.北京大学博士后出站报告,1-50
    [17]康铁笙,王世成.1991.地质热历史研究的裂变径迹方法.北京:科学出版社,1-112
    [18]雷永良,钟大赉,季建清,贾承造,张进.2008.东喜马拉雅构造结更新世两期抬升.剥露事件的裂变径迹证据.第四纪研究,28(4):584-590
    [19]雷永良.2006.东喜马拉雅构造结地区晚中新世以来的构造.地貌年代学研究.中国科学院博士学位论文,1-82
    [20]李德威,廖群安,袁宴明,万渝生,刘德民,张雄华,易顺华,曹树钊,谢德凡.2003.喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学.科学通报,48(20):2176-2179
    [21]李德威,廖群安,袁宴明,易顺华.2002.喜马拉雅造山带中段核部杂岩中基性麻粒岩的发现及构造意义.地球科学.中国地质大学学报,27:80(96)
    [22]李德威,廖群安,张雄华,易顺华,曹树钊.2003.喜马拉雅造山带中段深成相和超浅成相超镁铁岩的发现及意义.地球科学(中国地质大学学报),28:652(694)
    [23]李吉均,方小敏.1998.青藏高原隆起与环境变化研究.科学通报,43(15):1569-1574
    [24]李吉均,文世宣,张青松,王富葆,郑本兴,李炳元.1979.青藏高原隆起的时代、幅度和形式的探讨.中国科学(A辑),06:608-616
    [25]李齐,陈文寄.1999.MDD模式应用中若干问题的讨论-I.低温过剩Ar的扣除.科学通报,44(4):442-445
    [26]李曙光,侯振辉,李秋立.2005.超高压变质岩的放射性同位素体系及年代学方法.岩石学报,21(4):1229-1242
    [27]廖群安,李德威,袁晏明,储玲林,卢炼.2007.西藏高喜马拉雅定结和北喜马拉雅拉轨岗日古元古花岗质片麻岩的年代学及其意义.中国科学(D辑),37(12):1579-1587
    [28]廖群安,李德威,易顺华,卢练.2003.西藏定结高喜马拉雅石榴辉石岩-镁铁质麻粒岩的岩石特征及其地质意义.地球科学-中国地质大学学报,28(6):627-633
    [29]刘树文,张进江,舒桂明,李秋根.2005.藏南定结镁铁质麻粒岩矿物化学、PTt轨迹和折返过程.中国科学(D辑),35(9):810-820
    [30]刘顺生,张峰,胡瑞英,刘京发.1984.裂变径迹年龄测定-方法、技术和应用.北京:地质出版社,1-140
    [31]刘文灿,万晓樵,梁定益,李国彪,周志广,高德臻,张祥信.2004.江孜县幅、亚东县幅地质调查新成果及主要进展.地质通报,23:444-450
    [32]刘文灿,王瑜,张祥信,李惠民,周志广,赵兴国.2004.西藏南部康马岩体岩石类型及其同位素测年.地学前缘,11(4):491-501
    [33]刘焰,Wolfgang Siebel,王猛.2006.东喜马拉雅构造结陆内变形过程的研究.地质学报,80(9):1274-1285
    [34]潘保田,李吉均,陈发虎.1995.青藏高原:全球气候变化的驱动机与放大器(I)新生代气候变化的基本特征.兰州大学学报(自然科学版),31(3):120-128
    [35]庆建春,季建清,王金铎,彭青兰,牛向龙,葛志宏.2008.五台山新生代隆升剥露的磷灰石裂变径迹研究.地球物理学报,51(2):384-392
    [36]邱华宁,Wijbrans JR,施和生,李发嶙.2004.大别山碧溪岭榴辉岩450Ma年龄信息:石榴子石流体包裹体40 Ar/39Ar定年初步结果.地球化学,33(4):325-333
    [37]邱华宁,Wijbrans JR.2005.南大别碧溪岭榴辉岩加里东期40Ar/39Ar年代学信息.地球化学,34(5):418-427
    [38]邱华宁,彭良1997.40Ar-39Ar年代学与流体包裹体定年.合肥:中国科学技术大学出版社.1-100
    [39]桑海清,王松山,裘冀.1996.翼东太平寨麻粒岩中的辉石、角闪石、斜长石的40Ar-39Ar年龄及其地质意义.岩石学报,12(3):390-400
    [40]桑海清.2002.RGA 10质谱计德改进及在K-Ar、Ar-Ar同位素定年中的应用.质谱学报,23(4):241-247
    [41]宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30
    [42]孙东霞,季建清,张志诚,龚俊峰,陈建军,庆建春,钟大赉.2009.雅鲁藏布江中下游流域地貌差异演化的岩屑磷灰石裂变径迹证据.待刊
    [43]孙志明,耿全如,楼雄英,郑来林,李生,廖光宇.2004.东喜马拉雅构造结南迦巴瓦岩群的解体.沉积与特提斯地质,24(2):8-15
    [44]孙志明,郑来林,耿全如,李生,廖光宇,石文礼,张东.2004.东喜马拉雅构造结高压麻粒岩特征、形成机制及折返过程.沉积与特提斯地质,24(3):22-29
    [45]滕吉文,王谦身,王光杰,徐亚,张雪梅.2006.喜马拉雅“东构造结”地区的特异重力场与深部地壳结构.地球物理学报,49(4):1045-1052
    [46]王二七,王刚,樊春,石许华.2006.板块汇聚带的造山和重力垮塌作用及其力学成因:以雅鲁藏布江.喜马拉雅山汇聚带为例.地学前缘,13(4):18-26
    [47]王俊文,成忠礼,桂训唐,许荣华,张玉泉.1981.西藏南部某些中酸性岩体的铷.锶同位素研究.地球化学,3:242-246
    [48]王松山,葛宁洁,裘冀,桑海清.2000.南大别石马榴辉岩多硅白云母和石英脉的年龄及其地质意义.自然科学进展,10(11):1024-1028
    [49]王松山,葛宁洁,桑海清,裘冀.1999.多硅白云母过剩Ar成因及绿辉石Ar-Ar年龄谱意义:以南大别超高压榴辉岩为例.科学通报,44(24):2607-2613
    [50]王松山,裘翼.1999.燧石40Ar-39Ar马鞍形年龄谱形成机制探讨--以蓟县剖面铁岭组燧石为例.地球学报,20(4):363-367
    [51]王松山,桑海清,裘冀.1995.元古宙地球去气作用与撞击事件的探讨.地质地球化学,1995(4):92-97
    [52]王松山,桑海清,裘冀.1997.大气40Ar/39Ar端元值及其地质意义.地球学报,18(3):313-317
    [53]夏斌,徐力峰,张玉泉,李建峰,王彦斌.2008.西藏南部康马花岗岩锆石SHRIMP U-Pb年龄.矿物岩石,28(3):72-76
    [54]徐宗学,张玲,黄俊雄,巩同梁.2007.西藏地区气温、降水及相对湿度的趋势分析.气象,33(7):82-88
    [55]许荣华,金成伟.1986.西藏北喜马拉雅花岗岩带中段地质年代研究.地质科学,4:339 -348
    [56]许志琴,蔡志慧,张泽明,李化启,陈方远,唐泽民.2008.喜马拉雅东构造结--南迦巴瓦构造及组构运动学.岩石学报,24(7):1463-1476
    [57]许志琴,姜枚,杨经绥,薛光琦,宿和平,李海兵,崔军文,吴才来,梁风华.2004.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉.地学前缘,11(4):329-343
    [58]许志琴,杨经绥,梁风华,戚学祥,刘福来,曾令森,刘敦一,李海兵,吴才来,史仁灯,陈松永.2005.喜马拉雅地体的泛非.早古生代造山事件年龄记录.岩石学报,21(1):1- 12
    [59]许志琴,杨经绥,戚学祥,崔军文,李海兵,陈方远.2006.印度/亚洲碰撞--南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论.地质通报,25(1-2):1-14
    [60]尹安.2001.喜马拉雅.青藏高原造山带地质演化--显生宙亚洲大陆生长.地球学报,22(3):193-230
    [61]尹安.2006.喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态、剥露历史和前陆沉积的约束.地学前缘,13(5):416-515
    [62]翟鹏济,赵云龙.1996.裂变径迹定年法Zeta常数的测定.岩矿测试,15(1):13-16
    [63]张进江,季建清,钟大赉,丁林,何顺东.2003.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D缉),33(4):373-383
    [64]张祥信,刘文灿,周志广,赵兴国,梁定益.2005.藏南亚东地区前寒武纪亚东岩群的建立及其特征.现代地质,19(3):341-347
    [65]张志诚,王雪松.2004.裂变径迹定年资料应用中的问题及其地质意义.北京大学学报(自然科学版),40(6):898-905
    [66]章振根,刘玉海,王天武,杨惠心,徐宝慈.1992.南迦巴瓦峰地区地质.北京:科学出版社,1-185
    [67]郑来林,金振民,潘桂棠,耿全如,孙志民.2004.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化.地质学报,78(6):744-752
    [68]中国科学院青藏高原科学考察队.1983.西藏地貌[M].北京,科学出版社:3-6
    [69]钟大赉,丁林.1995.西藏南迦巴瓦地区发现高压麻粒岩.科学通报,40(14):1343
    [70]钟大赉,丁林.1996.东喜马拉雅构造结变形与运动学研究取得重要进展.中国科学基金,1:52-53
    [71]钟大赉,丁林.1996.青藏高原的隆起过程及其机制探讨.中国科学(D辑),26(4):289 -295
    [72]周晶,季建清,韩宝福,马芳,龚俊峰,徐芹芹,郭召杰.2008.新疆北部基性岩脉40Ar/39Ar年代学研究.岩石学报,24(5):997-1010
    [73]周志广,赵兴国,王克友,李文庆,张祥信.2003.西藏亚东地区前寒武纪结晶岩系岩石构造地层划分的岩石地球化学证据.现代地质,17(3):239-242
    [74]Ahmad T.Hams N,Bickle M,Chapman H,Bunbury J and Prince C.2000.Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series,Garhwal Himalayan.Geological Society ofAmerica Bulletin,112:467-477
    [75]Aichibald(summarized by Nature editors).1878.Rainfall in India.Nature,(Jan 1),273- 275
    [76]Aldrich LT and Nier AO.1948.Argon 40 in potassium minerals.Physical Review.74:876- 877
    [77]Allen PA.2008.From landscapes into geological history.Nature,451:274-276
    [78]Alsdorf D,Brown L and Nelson KD.Crustal deformation of the Lhasa terrane,Tibet plateau from project INDEPTH deep seismic reflection profiles.Tectonics,17(4):501-519
    [79]An ZS,John K,Warren LP and Stephen CP 2001.Evolution ofAsian monsoons and phased uplift of the Himalaya--Tibetan plateau since Late Miocene times.Nature,411:62-66
    [80]Arnaud NO and Kelley SP.1995.Evidence for excess Argon during high-pressure metamorphism in the Dora-Maira Massif(Western Alps,Italy),using a ultra-violet laser ablmion microprobe 40Ar/39Ar technique.Contributions to Mineralogy and Petrology.121:1-11
    [81]Beaumont C,Jaxnieson RA,Nguyen MH and Lee B.2001.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation.Nature,414:738-742
    [82]Beaumont C,Jamieson RA,Nguyen MH and Medvedev S.2004.Crustal channel flow:1.Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen.Journal ofGeophysical Reseamh,109,B06406,DOI:10.1029/2003 JB002809
    [83]Beaumont C,Nguyen MH,Jamieson RA and Ellis S.2006.Crustal flow models in large hot orogens.In:Law RD,Searle MP and Godin L.Channel Flow,Ductile Extrusion and Exhumation in Continental Collision Zones.Geological Society,London,Special Publications.268:91-145
    [84] Bookhagen B, Thiede RC and Strecker MR. 2005. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth and Planetary Science Letters, 231: 131 - 146
    [85] Booth AL, Chamberlain CP, Kidd WSF and Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geological Society of America Bulletin, 121(3/4): 385 -407
    [86] Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu YP, Idleman B, Hren M and Chamberlain CP. 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area. American Journal of Science, 304: 889 - 929
    [87] Boundy TM, Hall CM, Li G, Essene EJ and Halliday AN. 1997. Fine-scale isotopic heterogeneities and fluids in the deep crust: A 40Ar/39Ar laser ablation and TEM study of muscovites from a granulite-eclogite transition zone. Earth and Planetary Science Letters, 148:223-242
    [88] Brandon MT. 1992. Decomposion of fission-track grain-age distributions. American Journal Science, 292, 535 - 564
    [89] Brown LD, Zhao WJ, Nelson KD, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu XW and Che JK. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688 - 1690
    [90] Burbank DW 1992. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357: 680 - 683
    [91] Burchfiel BC and Royden LH. 1985. North-south extension within the convergent Himalayan region. Geology, 13: 679 - 682
    [92] Burchfiel BC, Chen Z, Hodges KV, Liu Y and Royden LH. 1992. The south Tibetandetachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of American Special Paper, 269: 1-41
    [93] Burg JP and Chen GM. 1984. Tectonics and structural formation of southern Tibet, China. Nature, 311:219-223
    [94] Burg JP, Davy P, Nievergelt P, Oberli F, Seward D, Diao ZZ and Meier M. 1997.Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova, 9: 53 - 56
    [95] Burg JP, Guiraud M, Chen GM and Li GC. 1984. Himalayan metamorphism anddeformations in the north Himalayan belt (southern Tibet, China). Earth and Planetary Science Letters, 69: 391 - 400
    [96] Burg JP, Nievergelt P, Oberli F, Seward D, Davy P, Maurin JC, Diao ZZ and Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239 - 252
    [97] Chemenda AI, Burg JP and Mattauer M. 2000. Evolution model of the Himalaya Tibet system: geopoem based on new modeling, geological and geophysical data. Earth and Planetary Science Letters, 174: 397 - 409
    [98] Chemenda AI, Mattauer M, Malavieille J and Bokun AN. 1995. A mechanism forsyncollisional rock exhumation and associated normal faulting: results from physical modeling. Earth and Planetary Science Letters, 132: 225 - 232
    [99] Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL and Wang PL. 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 394: 769 - 773
    [100] Clift PD and Blusztajn J. 2005. Reorganization of the western Himalayan river system after five million years ago. Nature, 438: 1001 - 1003
    [101] Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14-Myr agofrom a new minimum age for east west extension. Nature, 374: 49-52
    [102] Compston W, Williams IS, Kirschvink JL, Zhang Z and Ma G. 1992. Zircon U-Pb ages for the Early Cambrian time scale. Journal of the Geological Society, 149: 171-184
    [103] Copeland P and Harrison TM. 1990. Episodic rapid uplift in the Himalaya revealed by40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan. Geology, 18: 354 - 357
    [104] Cumming GL and Richarda JR. 1975. Ore lead isotope rations in a continuously changing earth. Earth and Planetary Science Letters, 28: 155 - 171
    [105] Currie BS and Rowley. 2006. Palaeo-latimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677 - 681
    [106] Currie BS, Rowley DB and Tabor NJ. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33(3): 181-184
    [107] Darby DA. 1990. Evidence for the Hudson River as the dominant source of sand on the US Atlantic shelf. Nature, 346: 828 - 831
    [108] Davies JH and von Blanckenburg F. 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129: 85 - 102
    [109] de Sigoyer J, Chavagnac V, Blichert TJ, Villa IM, Luais B, Guillot S, Cosca M and Mascle G. 2000. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 28: 487 - 490
    [110] de Sigoyer J, Guillot S, Lardeaux JM and Mascle G. 1997. Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). European Journal of Mineralogy, 9: 1073 - 1083
    [111] Debon F, Le Fort P, Sheppard SMF and Sonet J. 1986. The four plutonic belts of theTranshimalaya-Himalaya: a chemical, mineralogical, isotopic and chronological synthesis along a Tibet Nepal section. Journal of Petrology, 27: 281 - 302
    [112] DeCelles PG, Gehrels GE, Quade J, LaReau B and Spurlin M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288: 497 - 499
    [113] DeCelles PG, Quade J, Kapp P, Fan M, Dettman DL and Ding L. 2007. High and dry in central Tibet during the late Oligocene. Earth and Planetary Science Letters, 253: 389 - 401
    [114] Ding L and Zhong DL. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namche Barwa, eastern Tibet, Science in China, 42: 491 -505.
    [115] Ding L, Zhong DL, Yin A, Kapp P and Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192: 423 - 438
    [116] Dunkl I. 2002. Trackkey: a windows program for calculation and graphical presentation of fission track data. Computer and Geoscience, 28(1): 3-12
    [117] Edwards MA and Harrison TM. 1997. When did the roof collapse? Late Miocenenorth-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology, 25: 543 - 546
    [118] Ernst GW and Liou JG 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Francisan metamorphic belts. Geology, 23: 353 - 356
    [119] Finnegan NJ, Hallet B, Montgomery DR, Zeitler PK, Stone JO, Anders AM and Liu YP 2008. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. GSA Bulletin, 120: 142 - 155
    [120] Fitzgerald PG, Sorkhabi RB, Redfield TF and Stump E. 1995. Uplift denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology todetermine absolute uplift parameters. Journal of Geophysical Research, 100(B10): 20175 -20192
    [121] Fort M. 1996. Late Cenozoic environmental changes and uplift on the northern side of the central Himalaya: a reappraisal from field data. Palaeogeography, Palaeoclimatology, Palaeoecology, 120: 123 - 145
    [122] Frank W, Hoinkes G, Miller C, Purtscheller F, Richter W and Thoni M. 1973. Relations between metamorphism and orogeny in a typical section of the Indian Himalayas.Tschermaks Mineralogische und Petrographische Mitteilungen, 20: 303 - 322
    [123] Galbraith RF and Laslett GM. 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21(4): 459 - 470
    [124] Gansser A. 1964. Geology of the Himalayas. London, Wiley Interscience, 289p
    [125] Garzanti E. 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 17: 805 - 827
    [126] Garzione CN, Dettman DL, Quade J, DeCelles PG and Butler RF. 2000a. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology, 28(4): 339 - 342
    [127] Garzione CN, Quade J, DeCelles PG and English NB. 2000b. Predicting paleoelevation of Tibet and the Himalaya fromδ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 183: 215 - 229
    [128] Gehrels GE, DeCelles PG, Martin A, Ojha TP, Pinhassi G and Upreti BN. 2003. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt. GSA Today, 13(9): 4 -9
    [129] Giorgis D, Cosca M and Li S. 2000. Distribution and significance of extraneous argon in UHP eclogite (Sulu terrain, China): insight from in situ 40Ar/39Ar UV-laser ablation analysis. Earth and Planetary Science Letters, 181: 605 - 615
    [130] Gleadow AJW and Brown RW. 2000. Fission track thermochronology and the long-termdenudational response to tectonics. In: Summerfield M J (Eds). Geomorphology and Global Tectonics. Chichester. John Wiley and Sons Ltd., 57-75
    [131] Godderis Y, Francois LM and Veizer J. 2001. The early Paleozoic carbon cycle. Earth and Planetary Science Letters, 190: 181 - 196
    [132] Godin L, Gleeson TP, Searle MP, Ullrich TD and Parrish RR. 2006. Locking of southward extrusion in favour of rapid crustal-scale bucking of the Greater Himalayan in Nepal. In: Law RD, Searle MP and Godin L. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications, 268: 269 -292
    [133] Godin L, Parrish RR, Brown R and Hodges KV. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb geochronology and Ar/ Ar Thermochronology. Tectonics, 20(5): 729- 747
    [134] Grasemann B and Vannay JC. 1999. Flow controlled inverted metamorphism in shear zones.Journal of Structural Geology, 21(7): 743 - 750
    [135] Grasemann B, Fritz H and Vannay JC. 1999. Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. Journal of Structural Geology, 21: 837 - 853
    [136] Greco A, Martinotti G, Papritz K, Ramsay GJ and Rey R. 1989. The crystalline rocks of the Kaghan Valley (NE-Pakistan). Eclogue Geologicae Helvetiae, 82(2): 629 - 653
    [137] Green PF. 1981. A new look at statistics in fission track dating. Nuclear Tracks, 5: 77 - 86
    [138] Groppo C, Lombardo B, Rolfo F and Pertusati P. 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of metamorphic Geology, 25: 51 - 75
    [139] Grujic D, Casey M, Davidson C, Hollister LS, Kundig R, Pavlis T and Schmid S. 1996. Ductile extrusion of the higher Himalayan crystalline in Bhutan: evidence from quartz micro-fabrics. Tectonophysics, 260: 21 - 43
    [140] Grujic D, Hollister LS and Parrish RR. 2002. Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth and Planetary Science Letters, 198: 177-191
    [141] Guillot S, Allemand P, Le Fort P, Cosca M, Lardeaux, JM and De Sigoyer J. 1996. Metamorphic evolutions in the Himalayan belt related to the counterclockwise rotation of India. In: Abstracts of the 11th Himalaya-Karakorum-Tibet Workshop, Flagsta, 56 - 57
    [142] Guillot S, de Sigoyer J, Lardeaux JM and Mascle G 1997. Eclogitic metasediments from the Tso morari area (Ladakh, Himalaya): Evidence for continental subduction during India-Asia convergence. Contributions to Mineralogy and Petrology, 128: 197-212
    [143] Guillot S, Mascle G, Lardeaux JM, Colchen M and deSigoer J. 1995. A new discovery of eclogites from the Himalaya, Tso Morari dome unit (Northwestern India). Mitt Geol Inst ETHZurich Univ Zurich Neue Folge, 298: 84 - 87
    [144] Gunnell Y. 2000. Apatite fission track thermochronology: an overview of its potential and limitations in geomorphology. Basin Research, 12: 115 - 132
    [145] Harrison TM and Watson EB. 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology, 84: 66-72
    [146] Harrison TM, Copeland P, Kidd WSF and Yin A. 1992. Raising Tibet. Science, 255: 1663 -1670
    [147] Harrison TM, Duncan I and McDougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11): 2461 - 2468
    [148] Harrison TM, Grove M, Mckeegan KD, Coath CD. Lovera O and Lefort P. 1999. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya, Journal of Petrology, 40: 3 - 19
    [149] Harrison TM, Heizler MT and Lovera OM. 1993. In vacuo crushing experments and K-feldspar thermochronometry. Earth and Planetary Science Letters, 117: 169-180
    [150] Harrison TM, Heizler MT, Lovera OM and Chen WJ. 1994. A chlorine disinfectant for excess argon released from K-feldspar during step-heating. Earth and Planetary Science Letters, 123: 95 - 104
    [151] Harrison TM. 1981. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology, 78: 324 -331
    [152] Hauck ML, Nelson KD, Brown LD, Zhao WJ and Ross AR. 1998. Crustal structure of the Himalayan orogen at approximately 90°east longitude from INDEPTH deep reflection profiles. Tectonics, 17: 481 - 500
    [153] Hodges KV, Bowring S, Davidek K, Hawkins D and Krol M. 1998. Evidence for rapiddisplacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 26: 483 - 486
    [154] Hodges KV, Hurtado JM and Whipple KX. 2001. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 20(6): 799 - 809
    [155] Hodges KV, Parrish RR and Searle MP 1996. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 15(6): 1264 - 1291
    [156] Hodges KV, Parrish RR, Housh TB, Lux DR, Burchfiel BC, Royden LH and Chen Z. 1992. Simultaneous Miocene extension and shortening in the Himalayan orogen. Science, 258: 1446 - 1470
    [157] Holt WE. 2000. Correlated crust and mantle strain fields in Tibet. Geology, 28(1): 67 - 70 [158] Hubbard MS and Harrison TM. 1989. 40Ar/39Ar age constraints on deformation andmetamorphism in the MCT Zone and Tibetan slab, eastern Nepal Himalayas. Tectonics, 8: 865-880
    [159] Hurford AJ and Green PF. 1982. A users' guide to fission-track dating calibration, Earth and Planetary Science Letters, 59: 343 - 354
    [160] Hurford AJ and Green PF. 1983. The zeta age calibration of fission-track dating. Isotope Geoscience, 1: 285 -317
    [161] Hurford AJ. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology.Chemical Geology (Isotope Geoscience Section), 80: 171 - 178
    [162] James Z, Mark P, Lisa S, Ellen T and Katharina B. 2001. Trends, rhythms, and aberrations in global climates 65 Ma to present. Science, 292: 686 - 693
    [163] Jamieson RA, Beaumont C, Nguyen MH and Lee B. 2002. Interaction of metamorphism, deformation and exhumation in large convergent orogens. Journal of Metamorphic Geology, 20:9-24
    [164] Jean F, Claude J, Shen XJ, Kang WH, Lee DL, Bai JC, Wei HP and Deng HY. 1984. High heat flow in southern Tibet. Nature, 307: 32 - 36
    [165] Ji JQ, et al. 2009. Tectonic and thermogeochronological evolution of Namjag-Barwa massif, (in press)
    [166] Johnson C. 1997. Resolving denudational histories in orogenic belts with apatite fission track thermochronology and structural data: an example from southern Spain. Geology, 25(7): 623 - 626
    [167] Johnson NM, Stix J, Tauxe L, Cerveny PF and Tahirkheli RAK. 1985. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village , Pakistan J . Journal of Geology, 93: 27 - 40
    [168] Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman HU, Kausar AB and Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the India continental crust beneath Asia. Jouranl of Metamorphic Geology, 21: 589-599
    [169] Kare K. 2003. The K-Ar and Ar-Ar methods of dating. An English module
    [170] Kennedy WQ. 1964. The structural differentiation of Africa in the Pan-Africa (±500 m.y.) tectonic episode. Res. Inst. African Geol. Univ., Leeds 8th Ann. Rep., 48 - 49
    [171]Ketcham RA, Donelick RA and Donelick MB. 2000. AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research, 2(1): 1 -32
    [172] Kissel CCC, Blamart D and Turpin L. 1998. Magnetic properties of sediments in the bay of Bengal and the Andaman Sea: impact of rapid North Altantic Ocean climatic events on the strength of the Indian monsoon. Earth and Planetary Science Letters, 160: 623 - 635
    [173] Kretz R. Symbols for rock-forming minerals. American Mineralogist, 68: 277 - 279
    [174] Lee HY, Chung SL, Wang JR, Wen DR, Lo QH, Yang TS, Zhang YQ, Xie YW, Lee TY, Wu GY and Ji JQ. 2003. Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 205: 185 - 194
    [175] Lee J, Hacker BR, Dinklage WS, Wang Y, Gans P, Calvert A, Wan JL, Chen WJ, Blythe AE and McClelland W 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19(5): 872 - 895
    [176] Lee TY and Lawver LA. 1995. Cenozoic plate reconstruction of southeast Asia. Tectonophysics, 251: 85 - 138
    [177] LeFort P, Guillot S and Pecher A. 1997. High-pressure metamorphic belt along the Indus suture zone of NW Himalaya: New discoveries and significance. Paris, Academie DesSciences Comptes Rendus, 325: 773 - 778
    [178] LeFort P. 1975. Himalaya: the collided range. American Journal of Science, 275A: 1-44 [179] Lieut C. 1883. The Himalayas. Science, 2(39): 593 - 596
    [180] Link PK, Fanning CM and Beranek LP 2005. Reliability and longitudinal change ofdetrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode. Sedimentray Geology, 182: 101 - 142
    [181] Liu G and Einsele G. 1994. Jurassic sedimentary facies and paleogeography of the former India passive margin in southern Tibet. Geological Society of America Special Papers, 328: 75 - 108
    [182] Liu Y and Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15: 451 - 466
    [183] Liu Y, Berner Z, Massonne HJ and Zhong DL. 2006. Carbonatite-like dykes from the eastern Himalaya syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic belts. Journal of Asian Earth Science, 26:105 - 120
    [184] Lombardo B and Rolfo F. 2000. Two contrasting eclogite types in Himalayas: implications for the Himalayan orogeny. Journal of Geodynamics, 30: 37 - 60
    [185] Lombardo B, Pertusati P, Rolfo F and Visona D. 1998. First report of eclogites from the E Himalaya: implications for the Himalayan orogeny. Memorie di Scienze Geologiche dell' Universita di Padova, 50: 67 - 68
    [186] Ludwig KR. 2001. Squid 1.02: A User's Manual. Berkeley Geochronology Centre, Special Publication No.2: 1 - 19
    [187] Ludwig KR. 2003. User's manual for Isoplot/Ex Version3.0, A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4: 1 - 70
    [188] Maluski H, Matte P and Brunei M. 1988. Argon 39-Argon 40 dating of metamorphic and plutonic events in the north and high Himalayas belts (southern Tibet-China). Tectonics, 7(2): 299 - 326
    [189] Mark Q, Yu LJ, Liu XH, Christopher JLW, Mike S and David P. 2006. 40Ar/39Arthermochronology of the Kangpa Dome, southern Tibet: implications for tectonic evolution of the north Himalayan gneiss domes. Tectonophysics, All: 269 - 297
    [190] Martin HD. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40: 259 - 274
    [191] McDougall I and Harrison TM. 1999. Geochronology and thermochronology by the 40Ar/39Ar method. 2nd, New York, Oxford: Oxford University Press, 1 - 269
    [192] Meade BJ. 2007. Present-day kinematics at the India-Asia collision zone. Geology, 35(1): 81-84
    [193] Mukherjee A, Fryar AE and Thomas WA. 2009. Geologic, geomorphic and hydrologicframework and evolution of the Bengal basin, India and Bangladesh. Journal of Asian Earth Sciences, 34: 227 -244
    [194] Murphy MA and Harrison TM. 1999. Relationship between leucogranites and theQomolangma detachment in the Rongbuk valley, south Tibet. Geology, 27: 831 - 834
    [195]Najman Y, Pringle M, Godin L and Oliver G 2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410: 194-197
    [196] Nakata T. 1989. Active faults of the Himalaya in India and Nepal. Special paper Geological Society of America, 232: 243 - 264.
    [197] Nelson KD, Zhao WJ, Brown LD, Kuo J, Che JK, Liu XW, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan HD, Wei WB,Jones AG and Booker J. 1996. Partially molten middle crust beneath southern Tibet: synthesisi of project INDEPTH results. Science, 274: 1684 - 1688
    [198] Nier AO. 1950. A redetermination of the relative abundances of the isotopes of nitrogen , oxygen , argon and potassium. Physical Review, 77: 789-793.
    [199] Noble SR and Searle MP 1995. Age of crustal melting and leucogranite formation fromU-Pb zircon and monazite dating in the western Himalaya, Zanskar, India. Geology, 23(12): 1135-1138
    [200] O'Brien PJ, Zotov N and Law R. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435 - 438
    [201] Paola C. 2003. Floods of record. Nature, 425: 459
    [202] Parrish RR and Hodges KV. 1996. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequence, Nepalese Himalaya. GSA Bulletin, 108(7): 904 -911
    [203] Pell SD, Williams IS and Chivas AR. 1997. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands. Sedimentary Geology, 109:233-260
    [204] Peter M and Philip E. 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 346: 29 - 34
    [205] Pognante U and Spencer DA. 1991. First record of eclogites from the High Himalayan belt, Kaghan valley (northern Pakistan). European Journal of Mineralogy, 3: 613 - 618
    [206] Rowley DB, Pierrehumbert RT and Currie BS. 2001. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the late Miocene. Earth and Planetary Science Letters, 188: 253 - 268
    [207] Ruffet G, Feraud G, Ballevre M and Kienast JR. 1995. Plateau ages and excess argon in phengites: An 40Ar/39Ar laser probe study of Alpine micas (Sesia Zone, Western Alps, Northern Italy). Chemical Geology, 121: 327 - 343
    [208] Ruffet G, Gruau G, Ballevre M, Feraud G and Philippot P. 1997. Rb-Sr and 40Ar/39Ar laser probe dating of high-pressure phengites from the Sesia zone (Western Alps): Underscoring of excess argon and new age constraints and on the high-pressure metamorphism. Chemical Geology., 141: 1 - 18
    [209] Sachan HK, Mukherjee BK, Ogasawara Y, Maruyama S, Ishida H, Muko A and Yoshioka N. 2004. Discovery of coesite from Indus suture zone (ISZ), Ladakh, India: Evidence for deep subduction. European Journal of Mineralogy, 16: 235 - 240.
    [210] Scaillet S. 1996. Excess 40Ar transport scale and mechanism in high-pressure phengites: A case study from an eclogitized metabasite of the Dora-Maira nappe, western Alps. Geochimica et Cosmochimica Acta, 60 (6): 1075 - 1090
    [211] Scharer U, Xu RH and Allegre CJ. 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth and Planetary Science Letters, 77: 35 - 48
    [212] Scharer U. 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67: 191 - 204
    [213] Searle MP and Szulc AG. 2005. Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. Journal of Asian Earth Sciences, 25: 173-185
    [214] Searle MP, Law RD, Godin L, Larson KP, Streule MJ, Cottle JM and Jessup MJ. 2008. Defining the Himalayan Main Central Thrust in Nepal. Journal of the Geological Society, 165:523-534
    [215] Searle MP, Parrish RR, Hodges KV, Hurford A, Ayres MW and Whttehouse MJ. 1997. Shisha Pangma leucogranite, south Tibetan Himalaya: field relations, geochemistry, age,origin and emplacement. Journal of geology, 105: 295 - 317
    [216] Searle MP, Simpson RL, Law RD, Parrish RR and Waters DJ. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, high Himalay of Nepal-south Tibet. Journal of the Geological Society, 160: 345 - 366
    [217] Searle MP. 1999. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: examples from the Cho Oyu, Gyachung Kang and Everest leucogranite (Nepal Himalaya). Journal of Asian Earth Sciences, 17: 773 - 783
    [218] Seward D and Burg JP 2007. Growth of the Namche Barwa syntaxis and associatedevolution of the Tsangpo gorge: constraints from structural and thermochronological data. Tectonophysics, 451: 282 - 289
    [219] Sidney B. 1916. The palins of northern India and their relationship to the Himalaya mountains. Nature, 97: 391 - 393
    [220] Simpson RL, Parrish RR, Searle MP and Waters DJ. 2000. Two episodes of monazites crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya. Geology, 28: 403 - 406
    [221] Sircombe KN. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124: 47 - 67
    [222] Spencer DA and Gebauer D. 1996. SHRIMP evidence for a Permian age and a 44 Ma metamorphic age for the Himalayan eclogites (Upper Kaghan, Pakistan): Implications for the subduction of Tethys and the subdivision terminology of the NW Himalaya. Himalaya-Karakoram-Tibet Workshop 11th, Flagstaff, Arizona, USA, Abstract (eds Macfarlane AM, Sorkhabi RB, Quade J): 147 - 150
    [223] Spicer RA, Harris NBW, Widdowson M, Herman AB, Guo SX, Valdes PJ, Wolfe JA and Kelley SP 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421:622-624
    [224] Stephenson BJ, Searle MP, Waters DJ and Rex DC. 2001. Structure of the Main Central Thrust zone and extrusion of the high Himalayan deep crustal wedge, Kishtwar-Zanskar Himalaya. Journal of the Geological Society, 158: 637 - 652
    [225] Stewart RJ, Hallet B, Zeitler PK, Malloy MA, Allen CM and Trippett D. 2008. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 36(9): 711 -714
    [226] Tajika E. 1998. Climate change during the last 150 million years: reconstruction from a carbon cycle model. Earth and Planetary Science Letters, 160: 695 - 707
    [227] Tapponnier P, Peltzer G and Armijo R. 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications v. 19: 113-157
    [228] Thakur VC. 1980. Tectonics of the central crystallines of western Himalaya. Tectonophysics, 62: 141-154
    [229] Thiede RC, Bookhagen B, Arrowsmith JR, Sobel ER and Strecker MR. 2004. Climate control on rapid exhumation along the Southern Himalayan Front. Earth and Planetary Science Letters, 222: 791 - 806
    [230] Tonarini S, Villa IM, Oberli F, Meier M, Spencer DA, Pognante U and Ramsay JG 1993. Eocene age of eclogite metamorphism in Pakistan Himalaya: implication for India-Eurasia collision. Terra Nova, 5: 13-20
    [231] Vance D, Bickle M, Ivy-Ochs S and Kubik PW 2003. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters, 206: 273 - 288
    [232] Vannay JC and Grasemann B. 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. GeologicalMagazine, 138(3): 253 -276
    [233] Walker JD, Martin MW, Bowring SA, Searle MP, Waters DJ and Hodges KV. 1999.Metamorphism, melting and extension: age constraints from the high Himalayan slab of southeastern Zanskar and northwestern Lahoul, Journal of Geology, 107: 473 - 495
    [234] Wang Q, Zhang PZ, Freymueller JT, Bilham R, Larson KM, Lai XA, You XZ, Niu ZJ, Wu JC, Li YX, Liu JN, Yang ZQ and Chen QZ. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294: 574 - 577
    [235] Wang Y, Deng T and Biasatti D. 2006. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34(4): 309 - 312
    [236] Watson EB and Harrison TM. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295 - 304
    [237] Watts DR, Harris N, 2002 NASA GLENN SOARS Working Group. 2005. Mapping granite and gneiss in domes along the north Himalayan antiform with ASTER SWIR band ratios. GSA Bulletin, 117: 879 - 886
    [238] Wei WB, Unsworth M, Jones A, Booker J, Tan HD, Nelson D, Chen LS, Li SH, Solon K, Bedrosian P, Jin S, Deng M, Ledo J, Kay D and Roberts B. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292: 716 - 718
    [239] Williams IS and Claesson S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, 97': 205 -217
    [240] Wu CD, Nelson KD, Wortman G and Samson SD. 1998. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89°-90°E). Tectonics, 17(1): 28 - 45
    [241] Xu RH, Scharer U and Allegre J. 1985. Magmatism and metamorphism in the Lhasa block(Tibet): A geochronological study. Journal of Geology, 93: 41 - 57
    [242] Yin A. 2006. Cenozoic tectonic evolution of the Himalaya orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Science Reviews, 76: 1 - 131
    [243] Zeitler PK, Malloy MA, Kutney MP, Idleman B, Liu Y, Kidd WSF and Booth AL. 2006. Geochronological evidence for the tectonic and topographic evolution of SE Tibet: Eos (Transactions, American Geophysical Union), v.87, Fall Meeting Supplement, Abstract T32B-02
    [244] Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T and King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228: 195 - 212
    [245] Zhang JJ, Ji JQ, Zhong DL, Ding L and He SD. 2004. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Science in China (Ser. D), 47(2): 138-150
    [246] Zhang PZ, Peter M and William RD. 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 410: 891 - 897
    [247] Zhao WJ, Nelson KD and Project INDEPTH Team. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557 - 559
    [248] Zhong DL and Ding L. 1996. Discovery of high-pressure basic granulite in Namjagbarwa aera, Tibet, China. Chinese Science Bulletin, 41(1): 87-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700