用户名: 密码: 验证码:
经皮给药压敏胶及聚合物纳米粒经皮药物传递的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮给药制剂是一较有前景的给药方式,其中作为药物储库兼具压敏粘附作用的压敏胶对经皮给药制剂的作用效果有很大影响。本文针对经皮给药系统新型压敏胶及新型经皮给药技术需求,研制了三类亲水性压敏胶及两种药物纳米载体材料,并对其性能进行了研究。
     采用两步法制备了亲水性非离子聚氨酯压敏胶,即由二异氰酸酯与多元醇的混合物进行反应,生成预聚体,再经扩链制备出聚氨酯压敏胶。通过在聚氨酯主链上引入亲水的聚乙二醇嵌段来赋予压敏胶亲水性。通过物理共混的方法制备了PVP/PVA、PVP/聚乳酸两类共混体系亲水性压敏胶。粘附力学性能研究结果表明三类压敏胶均具有良好的粘附性、透气性及抗水性,适于经皮给药系统应用。
     采用TGA、DSC及DMA等方法详细分析了亲水性物质组成的共混压敏胶中水的存在状态,结果表明水与压敏胶中其它组分均能发生较强的氢键作用,体系中25%~35%的水可以增强压敏胶氢键网络的强度并保证体系良好的流动变形性,使共混体系表现出压敏胶的性能。以PVP/PDLLA共混体系压敏胶为例,研究了其组分间相互作用及结构特征。紫外光谱、红外光谱、拉伸实验及示差扫描量热法分析表明PVP与低相对分子质量的聚乳酸发生较强的氢键作用且相容性良好。
     以疏水性药物布洛芬和亲水性药物水杨酸作为药物模型,进行了大鼠皮体外渗透实验和大鼠活体实验,研究了压敏胶作为药物储库及胶粘层的经皮药物渗透性。大鼠体外及活体实验结果表明亲水性共混体系压敏胶本身具有自促透作用,利于药物的经皮扩散,较传统橡胶膏在药物渗透量上有很大的提高。
     本文还合成了聚D,L-乳酸-b-聚乙二醇共聚物(PEDLLA),聚氰基丙烯酸酯-g-聚乙二醇单甲醚共聚物(PEGECA)两种纳米载体材料,分别采用固相熔融分散法制备了负载紫杉醇的PEDLLA纳米粒子(PMT),纳米沉淀法制备出负载延胡索乙素的PEGECA纳米粒子(PEGECAT)。以纳米粒作为供试体系进行了体外经皮扩散渗透研究。利用HPLC,扫描电镜,红外光谱及核磁共振对接受液进行了分析,采用荧光电镜对经皮扩散后皮肤组织结构进行了观察,结果表明两种纳米粒均可以以完整的粒子形态负载药物扩散穿过皮肤,纳米粒的经皮渗透可能是通过了皮肤附属器路径和表皮路经而实现的。这一研究结果为难以经皮渗透的药物的经皮给药提供了新的手段。
Transdermal drug delivery system (TDDS) is a promising therapy instrument and pressure sensitive adhesives (PSA), which act as reservoir and adhesives in this system, may observably influence the curative effect of formulation. In this study, three kinds of hydrophilic pressure sensitive adhesives and two kinds of nanocarrier materials were prepared for technology requirement of TDDS and their properties were investigated.
     The two-step method was adopted to prepare non-ionic polyurethane pressure sensitive adhesive (PU PSA). It was synthesized by the condensation copolymerization of polymer glycol, diisocyanate and extender. Polyethylene glycol (PEG), which was introduced on the polyurethane chain, can offer good hydrophilicity to the PSA. By physical mixing methods, two types of hybrid hydrophilic PSA, respectively polyvinyl pyrrolidone/polyvinyl alcohol (PVP/PVA) blend system, PVP/ poly (D,L-lactic acid) (PVP/PDLLA) blend system, were prepared. Mechanical testing results show these kinds of adhesives can provide excellent adhesive strength to skin, good humidity permeation behavior and proper water resistance, which are suit for application in TDDS.
     TGA, DSC and DMA were utilized to analyze the states of water in hybrid hydrophilic PSA , and results reveal that a suitable amount of water (20~35wt%) in hybrid PSA system can enhance strength of hydrogen bonding net work and ensure its flowing deformability for its application as pressure sensitive adhesives. Interaction between components and structure character of hybrid PSA were investigated by choosing PVP/PDLLA system as a sample. UV spectrum, FT-IR spectrum, tensile testing and DSC analysis results indicate that strong hydrogen bonding interaction exists between PVP and PDLLA, and these two polymers can form good miscible blends.
     The transdermal permeation behaviour of drug from all kinds of PSA matrix was evaluated by using hydrophobic ibuprofen and hydrophilic salicylic acid as model drug. In vitro and in vivo experiment results show that hybrid hydrophilic PSAs facilitate the drug permeating across the rat skin due to their self-enhancing penetration ability, which is more efficient than tradition rubber PSA considering drug permeation amount.
     Paclitaxel-loaded methoxy poly(ethylene glycol)-b-poly(D,L-lactic acid) diblock copolymer nanoparticles (PMT) were prepared by solid dispersion technique and D,L-tetrahydropalmatine (THP)-loaded poly{[α-maleic anhydride-ω-methoxy- poly(ethylene glycol)]-co-(ethy cyanoacrylate)} (PEGECA) amphiphilic graft copolymer nanoparticles (PEGECAT NPs) were prepared by the nanoprecipitation technique. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using drug-loaded nanoparticles as donor system. HPLC, TEM, FT-IR and 1HNMR were used to assay the receptor fluid. The results showed that these two kinds of amphiphilic copolymer nanoparticles with the entrapped drug were able to penetrate the rat skin. Fluorescent microscopy measurements indicate that the nanoparticles can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology may provide transdermal feasibility for the drug which is hard to permeate across skin.
引文
[1] Tan HS, Pfister WR, Pressure-sensitive adhesives for transdermal drug delivery system, 1992,2: 60~69
    [2]元英进,刘明言,董岸杰,中药现代化生产关键技术,北京:化学工业出版社,2002, 231~232.
    [3]梁文权,经皮给药新剂型,北京:人民卫生出版社,1998:253~256
    [4]陆彬,药物剂型与新技术,北京:人民卫生出版社,1998:356~361
    [5] Hurkmans M, Bodde HE, Van Driel MJ, Skin irritation caused by transdermal drug delivery systems during long-term (5 days) application, Br J Dermatol, 1985, 112: 461~476
    [6] Chien YW, Development of transdermal controlled release drug delivery system: An overview. In : Kydonieus AF and Berner B, eds. Transdermal Delivery of drugs, Raton B, CRC press , 1987: 81~100
    [7] Jain Ak, Transdermal Delivery of imipramine hydrochloride:development and evaluation (in vitro and in vivo) of reservoir gel formulation, Biopharm. Drug Dispos, 2005, 26: 41~49
    [8] Tan HS, Pfister WR, Pressure-sensitive adhesives for transdermal drug delivery systems, PSTT, 1999, 2: 60~69
    [9] Arrowsmith DJ, Trans Inst Met Finsh, 1970, 48:88~97
    [10] Packham DE, Adhesive aspects of polymeric coating, New York, Plenum Press, 1983
    [11]陈子达,李玲,邹翰,医用胶粘剂的研究进展,化学与粘合,2001,1:21~28
    [12]梁秉文,经皮给药制剂,北京:中国医药科技出版社,1992,223~226
    [13] Langer RS, Medical applications of controlled release, CRC press, 1984, 1: 230~231
    [14]阿方萨斯,V.波丘斯,粘接与胶黏剂技术导论,北京:化学工业出版社,2005,209~237
    [15] Temin S C,In:Skeist I,Handbook of Adhesives,New York, NY NSA: Marcel Dekker,1990:133~135
    [16] Royx SD, Gutierrez M, Flynn GL, Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design, J Pharm Sci, 1996, 85:491~495
    [17] Satas D,Handbook of pressure sensitive adhesive technology,New York:Van Nostrand Reinhold,1989:71~74
    [18] Qinglin S, Qiang G, Shuqing Z, et al, Study on the composition design of the water emulsion acrylates pressure-sensitive adhesive, Chemical Engineering, 1996 24(2):65~67
    [19] Trenor S R, Suggs A E, Love B J, Influence of penetration enhancers on the thermomechanical properties and peel strength of a poly(isobutylene) pressure sensitive adhesive, J Mater Sci Lett 2002,12(17): 1321~1323
    [20] Christensen S F, Mckinley G H, Rheological modeling of the peeling of pressure-sensitive adhesives and other elastomers, Int J Adhesion & Adhesives, 1998, 18: 333~343
    [21] Bunker S, Staller C, Miniemulsion polymerization of acrylated methyl oleate for pressure sensitive adhesives, Int J Adhesion & Adhesives 2003,23:29~38
    [22] Ozawa T, Ishiwata S, KanoY, Acrylate copolymer/ultraviolet curable oligomer blends as pressure-sensitive adhesives, J Adhesion, 2000, 72(1):1~16
    [23]张一甫,谭淑珍,溶剂型三元共聚丙烯酸酯压敏胶粘剂的合成研究,化学与粘合, 2002,128(3):115~116
    [24]杨性坤,栗印环,改性聚丙烯酸酯压敏胶的研制,化学与粘合,2002, 59(2):63~64
    [25] Chiriac A P, The improvement of adhesive character of an acrylovinylic macromolecular compound, Polymer Testing, 2001, 20: 873~877
    [26] Yamamoto M, Nakano F, Doi T, et al,Synthesis and PSA performance study for novel acrylic and butyl acrylate block copolymers, Int J Adhesion & Adhesives, 2002, 22: 37~40
    [27] Kinning D J, Bulk, Surface and interfacial characterization of silicone-polyurea segmented copolymers, J Adhesion, 2001, 75(1): 1~26
    [28] Gordon G V, Schmidt R.G, PSA release force profiles from silicone liners: probing viscoelastic contributions from release system components, J Adhesion, 2000,72(2): 133~156
    [29]黄月文,有机硅胶粘剂,化学与粘合,2001,(1):25~28
    [30] Batt P P, Raul V A, Method of controlling release of an active or drug from a si- licone matrix, US 5597584, 1997-01-27
    [31] Tsunemine N, Tanaka Y, Banba A, Water-dispersion type pressure-sensitive adhesive composition, method of production thereof, and pressure-sensitive adhesive product employing the same, US 6121355, 2000-09-19
    [32] Backer T E,Proc Int’1 Symp Control Release Bioact Mater, 1998, 25:571~572
    [33] Hans-Heribert B, Dietmar S, Gel pads and a process for their preparation, US 4456642, 1984-07-26
    [34] Francis E G, Christian W J, George E S, Thermally reversible polyurethane hydrogels and cosmetic, biological and medical uses, US 5000955, 1991-03-19
    [35] Dietmar S, Heinz-Dieter E, Hartwig G, Gel compounds, their production and use, US 5362834, 1994-11-08
    [36] Minghetti Y, Cilurzo F, Tosi L, etal, Design of a new water-soluble pressure- sensitive adhesive for patch preparation, AAPS Pharm. Sci. Tech. 4 (2003) E8.
    [37] Mukherjee B, Mahapatra S, Gupta R,etal,A comparison between povidone- ethylcellulose and povidone-eudragit transdermal dexamethasone matrix patches based on in vitro skin permeation, Eur J Pharm Biopharm, 2005, 59: 475~483
    [38] Jevne AH, Hydrophilic pressure sensitive biomedical adhesive composition,US4593053,1986
    [39] Hopp MS, Developing custom adhesive systems for transdermal drug delivery products, Pharm Tech, 2002, 26(3):30~36
    [40] Spencer TS, Scott ES, Conjeevaram S, Adhesive interactions between polymers and skin in transdermal delivery systems, Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 1990,63(8):337~339
    [41] Chivers RA, Easy removal of pressure sensitive adhesives for skin applications, Int J Adhesion & Adhesives, 2001, 21:381~388
    [42]吉井文男等,有粘性的PVA水凝胶的制备方法,JP 9263671,1997-10-07
    [43] Mirzan T.Razzak et al,Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing, Radiation Physics and Chemistry, 2001,62:107~113
    [44]ミネソタ等,压敏胶粘剂组成物,JP 2013463,1990-01-17
    [45] James Ling Chen et al,Bandage for adhering to moist surfaces US3339546, 1967-04-17
    [46] James Ling Chen et al,Ostomy adhesive,US4253460,1981-03-03
    [47]翟茂林、哈鸿飞,水凝胶的合成、性质及应用,大学化学,2001,5:22~27
    [48] Prausnitz MR, Microneedles for transdermal drug delivery, Adv Drug Del Rev, 2004, 56 (5): 581~587
    [49] Doukas AG, Transdermal drug delivery with a pressure wave, Adv Drug Del Rev, 2004, 56, (5), 559~579
    [50] Mitracotri S, Ray D, Farrell J,et a1, Synergistic effect of ultrasound and sodium lauryl sulfate on transdermal dru g delivery, J Pharm Sci, 2000, 89(7): 892~900
    [51] Mitracotri S, Ray D, Farrell J,et a1, Enhancement oftransdermal transport using ultrasound and surfactants, Proc Intl Symp Control Rel Bioact Mater, 1999, 6(2): 176~177
    [52] Thomas NS, Panchagnula R, Combination strategies to enhance transdermal permeation of zidovudine(AZT), Pharmazie, 2003, 58(12):895~898
    [53] Prausnitz MR,Mitragotri S,Langer R, Current status and future potential of transdermal drug delivery[J].Nat Rev Drug Discov, 2004, 3(2): 115~124
    [54] Karande P, Jain A, Mitragotri S,Discovery of transdermal penetration enhancers by high-throughput screening, Nat Biotech, 2004, 22(2):192~197
    [55] Wang MY, Yang YY, Heng WS, Skin permeation of physostigmine from fatty acids-basedformulations: evaluating the choice of solvent, Int J Pharm, 2005, 290: 25~36
    [56] Szente L, Szejtli J, Hightly soluble cyclodextrin derivatives: chemistry,properties, and trends in development, Adv Drug Deliv Rev,1999, 36(1): 17~28
    [57] Lopez RF, CollettOt JH, Bentley MV. Influenee of cyclodextrin complexation on the in vitro permeatian and skin metabolismof dexamethasone, Int J Pharm, 2000, 200(1): 127~132
    [58] Godwin DA, Wiley CJ, Felton LA, Using cyclodextrin complexation to enhance secondary photoprotection of topically applied ibuprofen, Eur J Pharm Biopharm, 2006, 62: 85~93
    [59] Babu RJ, Pandit JK, Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir—type transdermal delivery systems, Int J Pharm, 2005, 288(2): 325~33
    [60] Vaddi HK, Ho PC, Chan YW, et a1, Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes, J Controlled Release, 2002, 81 (1/2): 121~133
    [61] Krishnaiah YSR, Satyanarayana V, Bhaskar P, Influence of menthol and pressure-sensitive adhesives on the in vivo performance of membrane-moderated transdermal therapeutic system of nicardipine hydroehloride in human volunteers, Eur J Pharm Biopharm, 2003, 55(3): 329~337
    [62] Higaki K, Amnuaikit C, Kimura T, Strategies for overcoming the stratum corneum; chemical and physical approaches, Am J Drug Deliv, 2003, 1(3): 187~214
    [63] Jain AK, Narishetty STK, Panchagnual R, Transdermal drug delivery of imipramine hydrochloride, I. Effect of terpenes, J Controlled Release, 2002, 79(1): 93~101
    [64] Amnuaikit C, Ikeuchi I, Ogawara K, et a1, Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use, Int J Pharm, 2005, 289(1/2): 167~178
    [65] Williams AC, Edwards HGM,Lawson EE,Molecular interactions between the penetration enhancer 1,8-cineole and human skin,J Raman Spectrosc,2006, 37: 361~366
    [66]朱振峰,杨菁,药物纳米控释系统的最新研究进展,国外医学生物医学工程分册,1998, 21(6): 327~333
    [67]张汝冰,刘宏英,李凤生,纳米技术在生物及医药学领域的应用,现代化工1999,19(7): 49~51
    [68]修志龙齐冬建,纳米技术在药物制剂中的应用,苏志国高技术通讯, 1996,9:56-59
    [69] Kim SW, Lee RG, Oster H, et al, Trans Amer Soc Artif Intern Organs, 1974, 20:449
    [70] Kreuter J, Alyautdin RN, Kharkewich DA, et al, Passage of peptides through the blood-brain barrier with colloidal polymer particles(nanoparticles), Brain Research, 1995, 674: 171~174
    [71] Groscurth P, Gipps E, Kreuter J, Distribution of polyhexylcyanoacrylate nano- particles in nude mice bearing human osteosarcoma, In: J Rygaard, N Brnner, N Graem, et al, eds, Basel Karger, 1985, 401
    [72]秦建民,李荫太,顺铂可降解淀粉微球兔胃动脉栓塞的实验研究,中华普通外科杂志,2000, 15(2): 91~95
    [73] Leo E, Cameroni R, Forni F. Dynamic dialysis for the drug release evaluation from doxorubicin-gelatin nanoparticles conjugates. Int J Pharm, 1999, 180(3):23~28
    [74]赵晶,王立新,明胶微球乙肝疫苗动物免疫效果研究,中华微生物学和免疫学杂志,2000,2(3):236~241
    [75] Weber C, Coester C, Kreuter J, et al. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm, 2000,194(1):91~100
    [76]徐希明,张钧寿,氟尿嘧啶白蛋白微球的制备及体外性质研究,中国药科大学学报,1999,30(5): 353~357
    [77] Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric systems for controlled drug release. Chem Rev,1999, 99: 3181-3198
    [78] Gres R, Minamitake Y, Peracchia M T, et al. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263: 1600~1603
    [79] Yoo HS, Park TG., Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer, J of Controlled Release, 2001, 70: 63~70
    [80] Shin I G, Kim S Y, Lee Y M, et al. Methoxy poly(ethylene glycol)/ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization. J of controlled release, 1998, 51: 1~11
    [81] Carino G P, Jacob J S, Mathiowitz E. Nanosphere based oral insulin delivery. J Controlled Release, 2000, 65(3): 261~270
    [82] Seijo B, Fattal E, Roblot T L, et al. Design of nanoparticles of less than 50nm diameter:characterization and drug loading. Int J Pharm, 1990, 62: 1~10
    [83] Heller J, Barr J, Ng S Y, et al. Poly (ortho esters)-their development and some recent applications. Eur J Pharm Biopharm, 2000, 50(6): 121~132
    [84]魏民,常津,聚原酸酯载药微球的制备及体外药物释放,中国生物医学工程学报,1999,18(2):228~230
    [85] Wenbin D, Methods for treating ovarian cancer, poly (phosphoester) com- positions, and biodegradable articles for same. US 6,350,464, 2002
    [86] Conway BR, Alpar HO. Double emulsion micruencapsulation of proteins as model antigens using polylactide polymers. Effect of emulsifier on the microsphere characteristics and release kinetics. Eur J Pharm Biopharm, 1996, 42: 42~48
    [87] Sturesson C, Artursson P, Svensson L, et al. Preparation and characterization of hydrophobic PLG microspheres suitable for oral vaccination with rotavirus. Proc Int Symp Controlled Release Bioact Mater, 1996, 23: 515~516
    [88] Niwa T, Takeuchi H, Hino T, et al. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior, J Controlled Release, 1993, 25: 89~98
    [89] Murakami H, Kobayashi M, Takeuchi H, et al, Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Power Technology, 2000,107: 137~143
    [90] Allemann E, Leroux J C, Gurnay R, et al, In vitro extended-release properties of drug-loaded poly(D,L-lactic) acid nanoparticles produced by a salting-out procedure. Pharm Res, 1993, 10: 1732~1737
    [91] Quintanar G D, Allemann E, Fessi H, et al, Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int J Pharm, 1999, 188: 155~164
    [92] Delie F, Berton M, Allemann E, et al. Comparison of two methods encapsulation of an oligonucleotide into poly(DL-lactic acid) particles. Int J Pharm, 2001, 214:25~30
    [93] Randolph T W, Randolph AD, Mebes M, et al. Submicron-sized biodegradable particles of poly (L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnol Prog, 1993, 9: 429~435
    [94] Calvo P, Remunan-Lopez C, Vila-Jato J L, et al. Novel hydrophilic chitosan and chitosan/polyethylene oxide nanoparticles as protein carriers. J Appl polym Sci, 1997,63:125~132
    [95] Fernandez-urrusuno R, Calvo P, Remunan-Lopez C, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res, 1999,16:1576~1591
    [96] Lim ST, Martin GP, Berry DJ, et al, Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release, 2000, 66:281~292
    [97] Ray K, Mao HQ, Lin KY, et al, Oral immunization with DNA-chitosan nanoparticles. Proc Intern Symp Control Rel Bioact Mater, 1999,26:348~349
    [98] Tian XX, Groves MJ, Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles. J Pharm Pharmacol, 1999,51:151~157
    [99] Tokumitsu H, Ichikawa H, Fuukumori Y, Chitosan-gadoperteic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res, 1999,16:1830~1835
    [100] Jung T, Breitenbach A, Kissel T, Sulfobutylated polyc(vinyl alcohol)-graft-poly (lactide-co-glycolide) facilitate the preparation of small negatively charged biodegradable nanospheres for protein delivery. J Control Rel, 2000,67:157~169 T[101] Pani KC, Gladieux G, Brandes G, et al, The degradation of n-butyl alpha- cyanoacrylate tissue adhesive, II. Surgery, 1968,63:481~489
    [102] Lherm C, Muller RH, Puiseux F, et al, Alkylcynoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm, 1992,84:13~22
    [103] Couvreur P, Kante B, Roland M, et al, Les perspectives d’utilisation des formes microdisperses comme vecteurs intracellulaires. Pharm Acta Helv, 1978,53:341~347
    [104] Couvreur P, Kante B, Roland M, Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphology and sorptive properties. J Pharm Pharmacol, 1979,31:331~332
    [105] Kawaguchi H, Fujimoto K, Mizuhara Y. Hydrogel microspheres III. Tem- perature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym Sci, 1992,270:53~57
    [106] Chung J E, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J controlled Release, 2000, 65: 93~103
    [107] Gref R, Miralles G, Dellacherie E, et al. Polyoxyethylene-coated nanospheres: effect of coating on zeta potential and phagocytosis. Polymer Int, 1999, 48: 251~256
    [108] Bronich T K, Kabanov A V, Kabanov V A. Soluble complexes from poly (ethylene oxide)-block- polymethacrylate anions and N-alkylpyridinium cations. Macromolecules, 1997,30:3519~3525
    [109] Yokoyama M, Miyauchi M, Yamada N, et al. Polymer micelles as novel drug carrier: adriamycin- conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Rel, 1990,11:269~278
    [110] Kabanov A V, Vinogradov S V, Suzdaltseva Y G, et al. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug Chem, 1995,6: 639~643
    [111] Kabanov A V, Bronich T K, Kabanov V A, et al. Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules, 1996,29:6797~6802
    [112] Kabanov A V, Kabanov V A. Interpolyelectrolyte and block ionomer complexes for gene delivery: physicochemical aspects. Adv Drug Deliv Rev, 1998,30:49~60
    [113] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev, 2001,47:113~131
    [114] Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999,16:3~27
    [115] Cevc G, Schatzlein A, Blume G, Transdermal Drug Carriers: Basic Properties, Optimization and Transfer Efficiency in the Case of Epicutaneously Applied Peptides, J Controlled Release, 1995, 36: 3~16
    [116] Cevc G, Blume G, Schatzlein A, Transfersome-mediated Transepidermal De- livery Improves the Regiospecificity and Biological Activity of Corticosteroids in Vivo, J Controlled Release, 1997, 45: 211~226
    [117]郭建新,平其能,孙国庆,等,柔性纳米脂质体作为环孢素经皮渗透载体的体外研究,中国药学杂志,2000,35(9):595~597
    [118]刘艳,胡新,崔晓峰,等,双氯芬酸钠柔性纳米脂质体的制备及离体透皮扩散的研究,中华临床医药,2002,3(14):12~14
    [119]翟光喜,王唯红,赵焰,等,低分子肝素柔性纳米脂质体的研究,山东大学学报,2002,40(3):240~242
    [120] Eury R, Patel R, Longe K, et al, Controlled release subdued, Chemtech, 1992, 22: 42~46
    [121] Vringer T, Ronde HAG, Preparation and structure of a water-in-oil cream containing lipid nanoparticles, Pharm Sci, 1995, 85: 466~472
    [122] Nangia A, Patil S,Berner B, et al, In vitro measurements of transepidermal water loss: a rapid alternative to tritiated water permeation for assessing skin barrier function, Int J Pharm, 1998, 170: 33~40
    [123] Duell EA, Kang S, Voorhees JJ, Unoccluded retinal penetrates human skin in vivo more effectively than unoccluded retinyl palmitate or retinoic acid, Invest, Dermatol, 1997, 109: 301~305
    [124] Sylvia A W, Rainer H M, The influence of solid lipid nanoparticles on skin hydration and viscoelasticity. Eur J Pharm Biopharm, 2003, 56: 67~72
    [125] Zhinan M, Huabing C, Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm, 2003,56: 189~196
    [126] Muller RH, Lucks JS, Arzneistofftrager Aus Festen Lipidteilchen Feste Lipid Nanospharen(SLN), EP0605497B1,1993-03-25
    [127] Jenning V, Sckafer-korting M, Gohla S, Vitamin A loaded solid lipid nano- particles for topical use:drug release properties, J Controlled Release, 2000, 66: 115~126
    [128] Jenning V, Gysler A, Schafer-korting M, et al, Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin, Eur J Pharm Biopharm, 2000, 49: 211~218
    [129] Santos MC, Mehnert W, Schafer-korting M, Solid lipid nanoparticles as drug carriers for topical glucocorticoids, Int J Pharm, 2000, 196: 165~167
    [130] Janes KA, Calvo P, Alonso MJ, Polysaccharide colloidal particles as delivery systems for macromolecules, Adv Drug Delivery Rev, 2001, 47:83~97
    [131] Machado A, Alonso MJ, Chitosan nanoparticles as ocular drug delivery systems, Acta Tech Legis Medicamenti, 1999, 10: 40~50
    [132] Illum L, Jabbal-Gill I, Hinchcliffe M, et al, Chitosan as a novel nasal delivery system for vaccines, Adv Drug Del Rev, 2001, 51: 81~96.
    [133] De Campos AM, Sanchez A,Alonso MJ, Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface, application to cyclosporinA , Inter J Pharm, 2001, 224:159~168
    [134] Cui ZR, Mumper RJ, Chitosan-based nanoparticles for topical genetic im- munization, Control Rel, 2001, 75: 409~419
    [135] Kreuter J, Mills SN, Davis SS, et al, Polybutylcyanoacrylate nanoparticles for the delivery of [75Se]norcholestenol, Int J Pharm, 1983, 16: 105~113
    [136] Grislain L, Couvereur P, Lenaerts V, et al, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int J Pharm, 1983, 15: 335~350
    [137] Scherer D, Einfluβvon polybutylcyanoacrylat-nanopartikeln auf die orale absorption von arzneistoffen, Dissertation, Frankfurt/Main,1992
    [138] Muller B, Kreuter J, Enhanced Transport of Nanoparticle Associated Drugs through Natural and Artificial Membranes-a General Phenomenon, Int J Pharm, 1999, 178: 23~32
    [139] Shim J, Kang HS, Park WS, et al, Transdermal delivery of mixnoxidil with block copolymer nanoparticles, J Controlled Release, 2004, 97:477~484
    [140] Delpech MC, Coutinho FMB, Waterborne anionic polyurethanes and poly (urethane-urea)s: influence of the chain extender on mechanical and adhesiveproperties, Polymer Testing , 2000, 19: 939–952
    [141] Nakamae K, Nishino T, Asaoka S, et al, Relationships between interfacial properties and structure of segmented polyurethane having functional groups, Int J Adhesion & Adhesives, 1999, 19: 345~351
    [142] Sudaryanto, Nishino T, Asaoka S, et al,Incorporation of methyl groups into hard segments of segmented polyurethane: microphase separation and adhesive properties, Int J Adhesion & Adhesives, 2001,21:71~75
    [143] S?rensen BF, Cohesive law and notch sensitivity of adhesive joints, Acta Materialia ,2002,50: 1053~1061
    [144] Feldstein MM, Shandryuk GA, Kuptsov SA, et al, Coherence of thermal transitions in poly(N-vinyl pyrrolidone)–poly(ethylene glycol) compatible blends 1. Interrelations among the temperatures of melting, maximum cold crystallization rate and glass transition, 2000, Polymer 41: 5327~5338
    [145] Feldstein, MM, Kuptsov SA, Shandryuk GA, Coherence of thermal transitions in poly(N-vinyl pyrrolidone)–poly(ethylene glycol) compatible blends 2. The temperature of maximum cold crystallization rate versus glass transition, Polymer, 2000, 41: 5339~5348
    [146] Feldstein, MM, Kuptsov SA, Shandryuk GA, et al, Coherence of thermal transitions in poly (N-vinyl pyrrolidone)–poly(ethylene glycol) compatible blends 3. Impact of sorbed water upon phase behaviour, Polymer, 2000, 41: 5349~5359
    [147] Feldstein MM, Shandryuk GA, Plate NA, Relation of glass transition tem- perature to the hydrogen-bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers. Part 1. Effects of hydroxyl group number in plasticizer molecule, Polymer, 2001, 42: 971~979
    [148] Feldstein, MM, Kuptsov SA, Shandryuk GA, et al, Relation of glass transition temperature to the hydrogen-bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers. Part 2. Effects of poly(ethylene glycol) chain length, Polymer, 2001, 42: 981~990
    [149] Feldstein MM, Roos A, Chevallier C, Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethylene glycol), Polymer, 2003, 44: 1819~1834
    [150] Roos A, Creton C, Novikov MB, et al, Viscoelasticity and tack of poly(vinyl pyrrolidone)–poly(ethylene glycol) blends,J Polym Sci, Polym Phys, 2002, 40: 2395~2409
    [151] Kim S J, Yong S G and Kim S I, Effect of the water state on the electrical bending behavior of chitasan/poly(diallydimethylammonium chloride) hydrogels in NaCl solutions, J Polym Sci., Polym Phys, 2004, 42:914~921
    [152]殷敬华,阎春珍,张宏放,聚乙烯醇/聚乙烯基吡咯烷酮共混体系相容性研究,高分子学报,1990,6:682~687
    [153]张宏放,莫志深,薛小美,等,PVA/PVP共混物的聚集态结构,应用化学,1990;7(3):47~50
    [154] Cassu SN and Felisberti MI,Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blends: miscibility, microheterogeneity and free volume change,Polymer,1997, 38: 3907~3911
    [155] Cassu SN and Felisberti MI,Poly(vinyl alcohol) and poly(vinylpyrrolidone) blends: 2. Study of relaxations by dynamic mechanical analysis, Polymer, 1999 40: 4845~4851
    [156]杨延莲,栾玉霞,庞玢,等,PVP/HEC分子间绵台作用机理探讨,化学物理学报,2002,15(2):141~145
    [157] Olabisi O, Robeson LM, Shaw MT, Polymer-polymer miscibility, New York: Academia Press, 1979
    [158] Ward IM, Mechanical properties of solid polymers, New York: Wiley, 1983, Chapter 2.
    [159] Creton C, Leibler L, J Polym Sci, Polym Phys Ed 1996, 34: 545~54.
    [160] Dahlquist CA, In: Patrick RL, editor. Treatise on adhesion and adhesives, vol. 2. New York: Dekker, 1969
    [161] Satas D, In: Satas D, editor, Handbook of pressure-sensitive adhesive tech- nology, 3rd ed. Warwick, Rhode Island: Satas and Associates, 1999, 171~203.
    [162] Roos A, Creton C, Proceedings of the 25th Annual Meeting Adhesion Society, Orlando, FL, USA, 2002
    [163] Chen WN, Luo WJ, Wang SG, Bei JZ, Synthesis and properties of poly (L-lactide)-poly (ethylene glycol) multiblock copolymers by coupling triblock copolymers. Polym Advan Technol , 2003, 14: 245~253
    [164] Dong YC, Feng SS, Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs, Biomaterials, 2004, 25: 2843~2849
    [165] Cevc G, Lipid vesicles and other colloids as drug carriers on the skin, Adv Drug Deliv Rev, 2004, 56: 675~ 711
    [166] Williams AC, Barry BW, Penetration enhancers, Adv Drug Deliv Rev, 2004, 56: 603~ 618

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700