用户名: 密码: 验证码:
高性能电子封装材料用环氧树脂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从提高电子封装塑料的耐湿热性能入手,侧重于环氧树脂设计与合成,通过加入不同种类的固化剂研究了耐高温、低吸水率的环氧树脂固化体系,并对固化树脂的结构、性能和固化机理进行了详细研究。
     1.通过亲核加成反应,两步法合成了含有极性砜基的双酚S型环氧树脂。利用非等温DSC方法,研究其与芳香胺、酸酐和咪唑的固化动力学和固化机理。
     2.成功合成了侧链含氟的三氟甲基苯基型环氧树脂。由于含有刚性的联苯结构,该材料具有较高的热分解温度和玻璃化转变温度。氟的引入提高了环氧树脂的疏水效果,降低了吸水率。
     3.利用合成的4-甲基苯基双酚单体,合成了新型的4-甲基苯基型环氧树脂。刚性的联苯结构赋予了理想的热稳定性和耐湿性。利用相同的合成方法,从分子设计出发,合成了新型含有刚性萘环的1,5-二苯甲酰-2,6-二缩水甘油醚萘。
     4.采用亲核加成反应合成了四甲基双酚F型环氧树脂。苯环上四个甲基的阻位效应,防止了副产物的生成。用四甲基联苯型环氧树脂共混改性四甲基双酚F型环氧树脂,进一步提高热分解温度和玻璃化转变温度,降低固化树脂的吸水率。
Since the1980s, the development of semiconductor industry was miniaturization,high integration, good reliability and flattened. The degree of integration wasdeveloping at a surprising rate every three years on average increased by4times.Integrated circuit (IC) is constituted of fine elements on the silicon chip and precisionof the line. Electronic packaging techenology is the key to this problem: outside dust,heat, moisture and mechanical shock. Furthermore, packaging techenology also playsas mechanical support and cooling functions.
     Epoxy molding plastic as microelectronics packaging material has become themost important packaging materials, because its low cost, high performance andreliability. Currently, more than95%of IC used epoxy molding compound aselectronic package material. In recent years, epoxy resin package molding compoundfollowed by the the rapid development of ultra-high-ICs. Although, new varietiesconstantly emerge, there also were some challenges. High temperature and low waterabsorption have always been purposed in high-performance epoxy moldingcompound. The epoxy molding resistance performance depended on the heatdistortion temperature and thermal oxidative stability of the cured product. Epoxymolding after absorption of mosture will lead to deterioration of the electricalproperties, mechanical properties and thermal stability, moreover, package crackingphenomenon occurs after expansion and vaporization of the water molecules,
     Focus on heat-resistant epoxy molding compound, the current approach was: onone hand, decreasing moisture absorption of the resin by introducing fluorine, siliconeand sulfone group, reducing the free volume and reducing the concentration of polargroups mehod to solve water absorption rate; on the other hand, introducing heatexcellent functional groups, such as biphenyl, heterocycle, naphthalene ring and so on.In the case of other performance did not decrease, the more heat rigid radicals, thegreater the high temperature mechanical properties and the heat resistance. Therefore,how to solve the epoxy molding compound and keeping a higher resistance andmaintains low water absorption was very necessary.
     The purpose of this article was to prepare a high-performance epoxy resin. Frommolecular design, biphenyl, a trifluoromethyl group, a naphthalene ring, a methylgroup and methylene structure were introduced into the molecular structure,expectantly, epoxy resin were both a superior high temperature performance andmoisture resistant packaging materials. In addition, blending a biphenyl structure ofthe epoxy resin not only improved the heat resistance and the glass transitiontemperature, but also decreased the water absorption of the epoxy molding compound.
     -SO_2-group had a higher electron cloud density than-C (CH3)2-group. BisphenolS epoxy resin exhibited a better performance than the bisphenol A epoxy resin. Firstby nucleophilic substitution reaction, bisphenol S and epichlorohydrin react underphase transfer catalyst. The amount of epichlorohydrin used in the synthesis process,the selection of phase-transfer catalyst, the amount of the alkali, the concentration ofalkali and the adding methods were discussed in detail, and the yield and the epoxyvalue were to evaluate the best synyhesis process. This process was simple and rapid,getting produce by the precipitated method. Epoxy exhibited its value in applicationwhen forming a three-dimensional network of insoluble and infusible with a curingagent. Therefore, we used three typical agents, aromatic amines, imidazole and acidanhydride, with non-isothermal method of DSC, discussed each curing agent underthe curing temperature and the curing kinetics. Coats-Redfern formula obtained adifferent degree of the apparent activation energy Ea. Ea increaseed with the conductof the reaction, indicating that the reaction was more difficult in the end of reaction. Curing mechanism of bisphenol S epoxy resin and the three type curing agents werediscussed in detail.
     Seconly, starting from molecular design, both containing a biphenyl structure,and a trifluoromethyl group-containing epoxy resin was prepared. By diazotization,coupling reaction and the reduction reaction, prepared trifluoromethylphenylhydroquinone. By nucleophilic substitution reaction, the two-step method synthesizedtrifluoromethylphenyl epoxy containing fluorine in the side chain. Since the3F-PQEcontained rigid biphenyl structure, all the curing system had a better thermal stability.All the IPDTs were more than410oC. Rigid DDM curing system owned a high glasstransition temperature. By introduction of the fluorine element, the contact angle ofthe four curing system were greater than90°, and3F-PQE-PA surface of the curedself-assembled, the contact angle was105.5°. DDM and PA curing systems alsoexhibit lower water absorption.
     Since the fluorined epoxy resin was relatively expensive, therefore, in chapterfive, by molecular design, prepared by a novel epoxy resin containing a biphenylstructure and a methyl group side chains. The glass transition temperature wasmeasured by DSC and DMA.4M-PQE/DDM had the highest glass transitiontemperature. The thermal stability of cure system: the aliphatic chain polyetheramines D230relative worst, DDM curing system of the aromatic amine had the bestthermal stability. IPDT values were more than400oC. DDM and PA system ownedlow water absorption. Imidazole ring of2MI with water could form hydrogen bonds,therefore, the water absorption increased. Naphthalene skeleton-containing epoxyresin was hot in the electronics packing field, a naphthalene ring could greatlyimprove Tg and thermal stability. Therefore, we designed an epoxy resin containing anaphthalene ring and a benzoyl group, which had a good heat-resistant property.
     Usually, the introduction of the flexible segment and the hard segment in themain chain improved the comprehensive performance of the material. Based on theabove principles, in the chapter six of this thesis, we had designed a new type ofepoxy resin that was introduced between the structure of the benzene ring of thebiphenyl-CH2-group, compared with the structure of the methylene bisphenol A type epoxy isopropyl group, there was a greater rotational reduced rigidity, increasing theflexibility and improving the use of beneficial processing. By aldol condensationreaction, and bit barrier effect of methyl groups on the benzene ring, to prevent theformation of byproducts, the successful synthetized of tetramethyl bisphenol F. Byelectrophilic substitution reaction, tetramethyl bisphenol F epoxy resin were synthesisby two-step process. Then, tetramethyl bisphenol F epoxy resin was blending with abiphenyl epoxy resin. With DDM curing agent, the tendency of Tg increased withincreasing the content of TMBP. Introduce huge biphenyl rigid segments, the chainmight be the proportion of internal rotation of a single bond occurred relativelyreduced, relatively difficult to rotate within, and thus obtained a high Tg and heatresistance temperature. All the curing system had lower water absorption.
引文
[1]阳范文,赵耀明.21世纪我国电子封装行业的发展机遇与挑战[J].半导体情报,2001,38:15–18.
    [2]张臣,沈能珏.电子封装材料现状与发展[J].新材料产业,2003,3:5–11.
    [3]阳范文,赵耀明.电子工艺技术[J].2001,22:238.
    [4]付中林,吴壁耀.电子封装材料用环氧树脂的进展[J].武汉化工学院学报,2003,25:47-50.
    [5]王立刚,沈伟,王天堂等.集成电路封装塑封料[J].2005.
    [6]黄强,顾明元.电子封装用金属基复合材料的研究现状[J].电子与封装,2003,3:22-25.
    [7]李晓云,张之圣,曹俊峰.环氧树脂在电子封装中的应用及发展方向[J].电子元件与材料,2003.
    [8] RIMDUSIT S and ISHIDA H. Development of new class of electronic packagingmaterials based on ternary systems of benzoxazine, epoxy, and phenolic resins [J].Polymer,2000,41:7941-7949.
    [9] XU J M. Plastic electronics and future trends in microelectronics [J]. SyntheticMetals,2000,155:1–3.
    [10]陈平,刘胜平,王德忠.环氧树脂及其应用[M].北京:化学工业出版社,2011.
    [11] JAMES D R, SAUERS I, PACE M O and et al. CEIDP2002Annual Report, ser.Conference on Electrical Insulation and Dielectric Phenomena. IEEE Dielectricsand Electrical Insulation Socitey,IEEE Publications,Piscataway New Jersey2002:542.
    [12]王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2001.
    [13]孙忠贤.电子化学品[M].北京:化学工业出版社,2001.
    [14]成兴明.环氧模塑料性能及其发展趋势[J].半导体技术,2004.
    [15]李书正.一步法双酚A合成环氧树脂新工艺[J].辽宁化工,1980,01.
    [16]于浩,路太平.双酚A-环氧氯丙烷醚化反应动力学[J].热固性树脂,1994,03.
    [17]日本专利公开昭56-134270.
    [18] FRANCIS A. Epoxide resin process [P]. US,3350353,1967.
    [19] SHIL W C, MA C C M. Synthesis and characterization of phenoxy resins preparedfrom diglycidyl ether of bisphenol A and various aromatic dihydroxyl monomer [J].Journal of Applied Polymer Science,1999,73:2367-2376.
    [20]刘守贵.固体双酚A型环氧树脂合成工艺述评[J].绝缘材料通讯,1999,06.
    [21]孙曼灵.环氧树脂应用原理与技术[M]。北京:机械工业出版社,2002.
    [22]李林楷.电子封装用环氧树脂的研究进展[J].国外塑料,2005,23,41-44.
    [23]张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报,2008,22:1-9.
    [24]周贤良,吴江晖等.电子封装用金属基复合材料的研究现状[J].南昌航空工业学院学报,2001,15:11-15.
    [25] KIM J H, JEONG S W, LEE H M. A thermodynam is study of phase equ ilibria inthe Au-Sb-Sn solder system [J]. Journal of Electronic Materials,2002,31:557-563.
    [26] WEI C, JIANG X L. Study on the thermal failure of metal substrates in electronicpackaging [J]. Journal of Experimental Mechanics,2003,18:17-22.
    [27] MARKSTEIN H W. A wide choice of mate rials for MCMs [J]. ElectronicPackaging and Production,2007,37(3):34-38.
    [28]邹盛欧.高性能聚合物的开发现状与课题[J].化工新型材料,1995,12:38.
    [29] ELECTRON P P. MCM process combines beryllia substrate [J]. ElectronicPackaging and Production,1996,36:81.
    [30] SILIANO R E, ROBER L. Multilayer ceramics: a revitalization [J]. ElectronicPackaging and Production,1996,36:47-51.
    [31]李善君,唐晓林.表面组装用高可靠性环氧塑封料[J].功能材料,1996,27:367.
    [32]刘济宽,朱宏,王晓梅,黄治国.环氧树脂高效固化促进剂的研制及应用[J].绝缘材料通讯,1988,1.
    [33]储九荣.环氧树脂高性能化的方法与机理[J].化工新型材料,1998,26:16.
    [34]周其凤.耐高温聚合物及其复合材料[M].北京:化学工业出版社,2004:301.
    [35] HERBSOMMER J A. Effect of epoxy molding compound on the electricalperformance of microelectronic devices [J]. IEEE Transactions on comonentsomponents packaging and manufacturing technology,2012,2:1293-1297.
    [36]杨明山,何杰等.大规模集成电路封装用环氧树脂模塑料制备[J].现代塑料加工应用,2008,20.
    [37] DISSADO L A, GRISERI V et al. Decay of space charge in a glassy epoxy resinfollowing voltage removal [J]. IEEE Trans Dielectr Electr Insul,2006,13:903-916.
    [38]李枚.微电子封装技术的发展与展望[J].半导体杂志,2000,2:32-36.
    [39] MAY CA. Epoxy resins [M]. Marcel Dekker,New York,1988,1–3.
    [40] PARK S J, JIN F L, LEE J R. Thermal and mechanical properties oftetrafunctional epoxy resin toughened with epoxidized soybean oil [J]. MaterialsScience and Engineering: A,2004,374:109–114.
    [41] WANG F, XIAO J, WANG J W et al. Study on curing kinetics of a diglycidylether of bisphenol A epoxy resin/microencapsulated curing agent system [J]. HighPerformance Polymers,2012,24:730-737.
    [42] DUAN J K, KIM C, JIANG P K. On-line monitoring of cycloaliphaticepoxy/acrylate interpenetrating polymer networks formation and characterizationof their mechanical properties [J]. Journal of Polymer Research,2009,16:45-54.
    [43] SHIH T I, DUH J G. Decapsulation method for flip chips with ceramics inmicroelectronic packaging [J]. Journal of Electronic Materials,2008,37:845-851.
    [44]侯雪光,王卫华.环氧固化剂的研究现状与未来[J].粘接,2008,1:49-51.
    [45] WONG C P, BOLLAMPALLY R S. Thermal conductivity,elasticmodulus,andcoefficient of thermal expansion of polymercomposites filled with ceramicparticles for electronic packaging [J]. Journal of Applied Polymer Science,1999,74:3396-3403.
    [46] HE H et al. High thermal conductive Si3N4particle filled epoxy somposites with anovel structure [J]. Journal of Electronic Packaging,2007,129(4):469-472.
    [47] PAINE R T et al. Polymer nanocomposites [M]. Albuquerque:ACS Publications,2001,27-38.
    [48] DING K H, WANG G L, ZHANG M. Preparation and optical properties oftransparent epoxy composites containing ZnO nanoparticles [J]. Journal ofApplied Polymer Science,2012,126:734-739.
    [49] LEVCHIK S, PIOTROWSKI A, WEIL E, et al. New developments inflameretardancy of epoxy resins [J]. Polymer Degradation and Stability,2005,88:57-62.
    [50]刘守贵,廖虹.国内邻甲酚醛环氧树脂生产与应用展望[J].热固性树脂,2001,4.
    [51]张知方.邻甲酚甲醛环氧树脂的最新进展[J].热固性树脂,1993,1,4648.
    [52] GAO N, LIU W Q et al. Synthesis and properties of transparent cycloaliphaticepoxy–silicone resins for opto-electronic devices packaging [J]. OpticalMaterials,2013,35:567-575.
    [53] NACERI A. Identification method of structural defects in glass fiber fabric/epoxyresin laminate [J]. Strength of Materials,2009,41(6):683-686.
    [54] SILIANO R E et al. Multilayer ceramics: a revitalization [J]. Electronic Packagingand Production,1996.
    [55] HUANG W, ZHANG Y, YU Y Z, et al. Studies on UV-stable silicone–epoxyresins [J]. Journal of Applied Polymer Science,2007,104:3954-3959.
    [56]沈源.环氧塑封料导热通道构造与导热性能[D].南京航空航天大学,2008.
    [57] WANG Z, PINNAVAIA T. Hybridorganic inorganic nanocomposites [J]. Journalof Materials Chemistry,1998,10:1820–1826.
    [58] XU R, MANIAS E, SNYDER A J et al. New biomedical poly (urethaneuera)-layered silicate nanocomposites [J]. Macromolecules,2001,34:337–339.
    [59] ZWEBEN C. Advances in composite materials for thermal management inelectronic packaging [J].1998,47-52.
    [60]杨明山等.集成电路封装用环氧树脂模塑料性能影响因素研究[J].塑料工业,2007,2:5-9.
    [61] HUA R, et al. Synthesis and characterization of a novel heat resistant epoxy resinbased on N,N’-bis(5-hydroxy-1-naphthyl) pyromellitic diimide [J]. Polymer,2008,49:5249-5253.
    [62] XU K et al. Synthesis and characterization of novel epoxy resin bearing naphthyland limonene moieties and its cured polymer [J]. Polymer,2004,45:1133–1140.
    [63] OCHI M, TAKAHASHI R and TERAUCHI A. Phase structure and mechanicaland adhesion properties of epoxy/silica hybrids [J]. Polymer,2001,42:5151-5158.
    [64] OCHI M. Net work chain orientation in the toughening process ofthe elastomermodified mesogenic epoxy resin [J]. Polymer,2001,42:9687-9695.
    [65] OCHI M, SHIMIZU Y, NAKANISHI Y et al. Effect of the network structure onthermal and mechanical properties of mesogenic epoxy resin cured with aromaticamine [J]. Jouranl of Polymer Science: Part B: Polymer Physics,1997,35:397-405.
    [66] OCHI M, TAKAHASHI H. Bonding properties of epoxy resin containingmesogenic group [J]. Polymer,2001,42:2379-2385.
    [67] ATSUHITO H, YASUYUKI M. Epoxy resin composition for semiconductorencapsulation:JP,02P057333[P/OL].2002,07
    [68]蔡红莉,那辉.新型含联苯结构的酚氧树脂的性能研究[J].高等学校化学学报,2006,27:372-374.
    [69]张春玲,那辉,牟建新等.含联苯结构的环氧树脂固化性能的研究[J].高等高校化学学报,2004,25:1756-1758.
    [70]谭怀山,欧雄燕,代堂军等.新型含联苯结构环氧树脂的合成与性能[J].化工新型材料,2008,36:49-50.
    [71]黎艳,刘伟区,宣宜宁.含氯硅烷P聚硅氧烷改性环氧树脂[J].应用化学,2005,22:176-179.
    [72] WU C S, LIU Y L, CHIU Y S. Epoxy resins possessing flame retardant elementsfrom silicon incorporated epoxy compounds cured with phosphorus or nitrogencontaining curing agents [J]. Polymer,2002,43:4277-4284.
    [73] CHAN Y N, HSU R S, et al. Mechanism of silicate platelet self-organizationduring clay-initiated epoxy polymerization [J]. The Journal of Physical ChemistryC,2010,114:10373–10378.
    [74] BROSTOW W, Patrick E, et al. Fluoropolymer addition to an epoxy: phaseinversion and tribological properties [J]. Polymer,2001,42:7971–7977.
    [75] LIANG G G, COOK W D. Diallyl ortho phthalate as a reactive plasticizer forpolycarbonate. Part I: Uncured system [A]. European Polymer Journal,2008,44:366–375.
    [76] GRIFFITH J R. Fluoropolymers as coating material [J]. Progress in OrganicCoating,1988,16:113-134.
    [77] LEE J R, JIN F L, PRAK S J. Study of new fluorine-containing epoxy resin forlow dielectric constant [J]. Surface and Coatings Technology,2004,180:650–654.
    [78] LIN Y H, et al. Superhydrophobic films of UV-curable fluorinated epoxy acrylateresins [J]. Polymer International,2010,59:1205-1211.
    [79] TAO Z Q. Synthesis and properties of novel fluorinated epoxy resins based on1,1-bis(4-glycidylesterphenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethane[J]. European Polymer Journal,2007,43:550-560.
    [80]炳恒.含氟环氧树脂[J].化工新型材料,1982,12.
    [81]王涛.双环戊二烯邻甲酚环氧树脂的合成与表征[J].现代化工,2007,27:203-205.
    [82] LIN C H, CHIANG J C, WANG C S. Low dielectric thermoset. I. synthesis andproperties of novel2,6-dimethyl phenol-dicyclopentadiene epoxy [J]. Journal ofApplied Polymer Science,2003,88:2607-2613.
    [83] Pan G Y, et al. Synthesis, characterization, and properties of novel novolac epoxyresin containing naphthalene moiety [J]. Polymer,2007,48:3686-3693.
    [84]任华等.一种新型含萘环结构高耐热型环氧树脂的合成[J].浙江大学学报(工学版),2007,41:848-852.
    [85]刘金刚,王德生,范琳等.环境友好型无卤无锑无磷阻燃环氧树脂的进展(I):苯酚-芳烷基型自熄性环氧树脂复合物[J].热固性树脂,2004,19:23-28.
    [86] XIE M R. Synthesis and properties of a novel, liquid, trifunctional, cycloaliphaticepoxide [J]. Journal of Polymer Science: Part A: Polymer chemistry,2001,39:2799-2804.
    [87]王忠刚,谢美然.一种耐热性液体脂环族环氧化合物及其制备方法[P].中国,CN1340504.
    [88] LIU W S, WANG Z G, XIONG LI et al. Phosphorus-containing liquidcycloaliphatic epoxy resins for reworkable environment-friendly electronicpackaging materials [J]. Polymer,2010,51:4776-4783.
    [89]王忠刚,刘万双.一类含磷三官能团液体脂环族环氧树脂及其制备方法[P].中国发明专利,2009,CN101423534.
    [90]王忠刚,刘万双.一类含磷双官能团液体脂环族环氧树脂及其制备方法[P].中国发明专利,2009,CN101423533.
    [91] KINJO N, OGATA M, NISHI K et al. Epoxy molding compounds asencapsulation materials for microelectronic devices [J]. Advances in PolymerScience,1989,88:1-48.
    [92] NAKAMURA Y, UENISHI S, KUNISHI T et al. IEEE, Trans Comp Hyb ManufTech VHMT-12,1987,4:502.
    [93]图奎峰.四甲基联苯二酚型环氧树脂/邻甲酚醛环氧树脂共混体系的制备及性能研究[D].长春吉林大学化学学院,2010.
    [94]梁伟荣.热致液晶聚合物增韧环氧树脂的研究[J].玻璃钢复合材料,1997,4:3-4.
    [95] FRANCIS B, THOMAS S, et al. Hydroxyl terminated poly(ether ether ketone)with pendent methyl group toughened epoxy resin: miscibility, morphology andmechanical properties [J]. Polymer,2005,46:12372–12385.
    [1] Erickson, Britt E. Bisphenol A under scrutiny. Chemical and Engineering News.[J]. American Chemical Society,2008.
    [2] National Toxicology Program, U.S. Department of Health and Human Services.CERHR Expert Panel Report for Bisphenol A.26November2007.
    [3] Canada GazettePart II.2010,144(21):1806–18.
    [4] MARTIN M. Canada first to declare bisphenol A toxic [J]. The Globe and Mail.Canada,2010.
    [5] KREPS R W F, A KLOOTWIJK. Thermoplastic poly (hydroxyalkyl diphenylsulfone) ethers [P]. US:3364178,1968.
    [6] STUTZ H, TESCH H. Curable epoxy resin compositions useful for composites [P].DE:3523318,1987.
    [7] SYKORA V, SPACEK V. Epoxy resin based on4,4’-dihydroxydiphenysulfone. I.Synthesis and reaction kinetics with4,4’-diaminodiphenylmethane and4,4’-diaminodiphenylsulfone [J]. Journal of Applied Polymer Science,1994,54:1463-1467.
    [8]液相色谱在环氧树脂生产中得到了应用[J].生命科学仪器,2007,5:14.
    [9]廖勇勇.风电叶片材料双酚F环氧树脂的合成研究[D].湘潭大学2009.
    [10] LI Z et al. Bisphenol formaldehyde/resorcin copolymerization epoxy resin [J].Thermosetting Resin,2005,20:15-17.
    [11] LI Y et al. Curing kinetics of bisphenol S epoxy resin and m-phenylenediaminesystem [J]. Thermosetting Resin,2005,20,5-8.
    [12] COATS AW and REDFERN J. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201:68-69.
    [13] DAI X et al. Study on the curing reaction of epoxy resin for RFI process [J].Journal of National University of Defense Technology,2007,29:22-26.
    [14]郭清兵等.环氧树脂固化动力学的非等温DSC研究[J].广东化工,2010,37:68-69.
    [15] LI YS, LI MS and CHANG FC. Kinetics and curing mechanism of epoxy andboron trifluoride monoethyl amine complex system [J]. Journal of PolymerScience Part A: Polymer Chemistry,1999,37:3614–3624.
    [16] BARTON JM. Kinetics of cure of epoxy resin system bisphenol-Adiglycidylether-di(4-aminophenyl)sulphone [J]. Polymer,1980,21:603-606.
    [17]陈平,刘胜平,王德忠.环氧树脂及其应用[M].北京,化学工业出版社,2011.
    [18] FARKAS A,STROHM PF.Imidazole catalysis in the curing of epoxy resins [J].Journal of Applied Polymer Science,1968,12(1):159-168.
    [19]潘鹏举等.2-乙基-4-甲基咪唑固化环氧树脂体系动力学模型[J].高分子学报,2006,1:21-25.
    [1] KIM JP,LEE WY,KANG JW,ea al. Fluorinated poly(arylene ether sulfide) forpolymeric optical waveguide devices [J]. Macromolecules2001,34:7817–7821.
    [2] FEI X,JUAN H,ZHANG H,et al. Synthesis of crosslinkable fluorinatedpolyesters for optical waveguide devices [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45:5923–5931.
    [3] FEIRING AE,CRAWFORD MK,FARNHAM WB,et al. Bis(fluoroalcohol)monomers and polymers: improved transparency fluoropolymer photoresists forsemiconductor manufacture at157nm [J]. Macromolecules,2006,39:1443–1448.
    [4] QI Y,DING J,DAY M,et al. Cross-linkable highly fluorinated poly(arylene etherketones/sulfones) for optical wave guiding applications [J]. Chemistry ofMaterials,2005,17,676–682.
    [5] POWELL KT,CHENG C,GUDIPATI CS,et al. Design, synthesis, andcharacterization of linear fluorinated poly(benzyl ether)s: A comparison studywith isomeric hyperbranched fluoropolymers [J]. Journal of MaterialsChemistry,2005,15:5128–5135.
    [6] MA J,BARTELS JW,LI Z,et al. Synthesis and solution-state assembly of bulkstate thiol-ene crosslinking of pyrrolidinone-and alkene-functionalizedamphiphilic block fluorocopolymers: From functional nanoparticles toanti-fouling coatings [J]. Australian Journal of Chemistry,2010,63:1159-1163.
    [7] POWELL KT,CHENG C,WOOLEY KL. Complex amphiphilic hyperbranchedfluoropolymers by atom transfer radical self-condensing vinyl (co)polymerization[J]. Macromolecules,2007,40:4509-4515.
    [8] JAMES DR,SAUERS I,PACE MO,et al. CEIDP2002Annual Report, ser.Conference on Electrical Insulation and Dielectric Phenomena. IEEE Dielectricsand Electrical Insulation Socitey, IEEE Publications, Piscataway New Jersey2002,542.
    [9] DISSADO LA,GRISERI V,PEASGOOD W,et al. Decay of space charge in aglassy epoxy resin following voltage removal [J]. IEEE Trans. Dielectrics andElectrical Insulation,2006,13:903-916.
    [10] TUNCER E,SAUERS I,JAMES DR,et a;. Electrical insulation characteristicsof glass fiber reinforced resins [J]. IEEE Transactions on AppiledSuperconductivity,2009,19:2359-2362.
    [11] TUNCER E,SAUERS I,JAMES DR,et al. Electrical properties of epoxy resinbased nano-composites [J]. Nanotechnology,2007,18:12-23.
    [12] ZHANG CL,NA H,CAO J,et al. Structure and characterization of a novelfluorine-containing epoxy resin [J]. Polymer Preprints,2002,43:469-470.
    [13] KANDOLA BK,BISWAS B,PRICE D,et al. Studies on the effect of differentlevels of toughener and flame retardants on thermal stability of epoxy resin [J].Polymer Degradation and Stability,2010,95:144-152.
    [14] SCHAFER A,SEBOLD S,WALTER O,et al. Novel high Tg fame retardancyapproach for epoxy resins [J]. Polymer Degradation and Stability,2008,93:557–560.
    [15] CULLIS CF and HIRSCHLER MM. The significance of thermoanalyticalmeasurements in the assessment of polymer flammability [J]. Polymer,1983,24:834-840.
    [16] Doyle CD. Estimating thermal stability of experimental polymers by empiricalthermogravimetric analysis [J]. Analytical Chemistry,1961,33:77-79.
    [17] PARK SJ and CHO MS. Thermal stability of carbon-MoSi2-carbon compositesby thermogravimetric analysis [J]. Journal of Material Science,2000,35:3525-3527.
    [18] SAAVEDRA JT,BECEIRO JL,NAYA S,et al. Effect of silica content onthermal stability of fumed silica/epoxy composites [J]. Polymer Degradation andStability,2008,93:2133–2137.
    [19] CHIU TC,CHOU IC,TSENG WC,et al. Preparation and thermal properties ofdiglycidylether sulfone epoxy [J]. Polymer Degradation and Stability,2008,93,668-76.
    [20] PARK SJ and JIN FL. Thermal stabilities and dynamic mechanical properties ofsulfone-containing epoxy resin cured with anhydride [J]. Polymer Degradationand Stability,2004,86:515-520.
    [21] GRASSIE N,GUY MI,TENNENT NH. Degradation of epoxy polymers: part4-thermal degradation of bisphenol-A diglycidyl ether cured with ethylenediamine [J]. Polymer Degradation and Stability,1986,14:125-37.
    [22]陈平,刘胜平,王德忠.环氧树脂及其应用[M].北京,化学工业出版社,2011.
    [23] TAO ZQ,YANG HX,FAN L,et al. Low-k and high thermal stable fluorinatedepoxy materials for advanced microelectronic packaging applications [J].Electronic Packaging Technology,2006, ICEPT '06.7th InternationalConference on2006;1-5.
    [1]陈平,刘胜平,王德忠.环氧树脂及其应用[M].北京:化学工业出版社,2011.
    [2]王姝,侯峰等.国内环氧树脂生产现状及发展趋势[J].氯碱工业,2004.
    [3] JANSEN BLJ,TAMMINGA KY,MEIJER HEH,et al. Preparation of thermosetrubbery epoxy particles as novel toughening modifiers for glassy epoxy resins [J].Polymer,1999,40:5601.
    [4] KUNTMAN A, KUNTMAN AH. Study on dielectric properties of a newpolyimide film suitable forinterlayer dielectric material in microelectronicsapplications [J]. Microelectronics Journal,2000,31:629.
    [5] XU JM. Plastic electronics and future trends in microelectronics [J]. Syntheticmetals,2000,115:1.
    [6] ZHANG CL,NA H,et al. Synthesis and characterization of diglycidyl ether epoxyresin containing biphenyl [J]. Polymer Preprint,2001,42(2):467.
    [7] PASCAULT JP, WILLIAMS RJJ. In: Epoxy polymers [M]. Weinheim:Wiley-VCH,2010.
    [8]潘鹏举,单国荣等.2-乙基-4-甲基咪唑固化环氧树脂体系动力学模型[J].高分子化学学报,2006.
    [9]王德中.环氧树脂生产与应[M].北京:化学工业出版社,2001.
    [10] SCHAFER A,SEBOLD S,WALTER O,et al. Novel high Tg fame retardancyapproach for epoxy resins [J]. Polymer Degradation and Stability,2008,93(2):557–60.
    [11] CULLIS CF, HIRSCHLER MM. The significance of thermoanalyticalmeasurements in the assessment of polymer flammability [J]. Polymer,1983,24(7):834-40.
    [12] KANDOLA BK,BISWAS B,PRICE D,et al. Studies on the effect of differentlevels of toughener and flame retardants on thermal stability of epoxy resin [J].Polymer Degradation and Stability,2010,95(2):144-52.
    [13] MAY CA. Epoxy Resins: Chemistry and Technology [M]. Dekke. NewYork,1988.
    [14] SU WF,LEE YC,PAN WP. Thermal properties of phthalic anhydride-andphenolic resin-cured rigid rod epoxy resins [J]. Thermochimica Acta,2002,392-393(1-2):395-8.
    [15] CHIANG CL,HSU SW. Synthesis, characterization and thermal properties ofnovel epoxy/expandable graphite composites [J]. Polym int,2010,59(1):119–126.
    [16] GRASSIE N,GUY MI,TENNENT NH. Degradation of epoxy polymers: part4-thermal degradation of bisphenol-A diglycidyl ether cured with ethylenediamine [J]. Polymer Degradation and Stability,1986,14(2):125-37.
    [17] HAN SO,DRZAL LT. Water absorption efects on hydrophilic polymer matrix ofcarboxyl functionalized glucose resin and epoxy resin [J]. Eur Polym J,2003,39(9):1791–17.
    [18] CHENG J,et al. Study on synthesis and thermal property of epoxy resincontaining naphthalene [J]. Journal of Fujian College of Forestry,2011,31(3):281-284.
    [1]刘凤岐,汤心颐.高分子物理[M].北京:高等教育出版社,2004.
    [2] BILLMEYER FW. Textbook of Polymer Science [M]. New York:IntersciencePublishers,1971,Chapter1.
    [3] FLORY PJ. Principles of Polymer Chemistry [M]. Ithaca,New York: CornellUniversity Press,1953.
    [4] ZHANG CL,NA H,Liu CG. Synthesis and demonstration of diglycidyl etherepoxy resin containing biphenyl [J]. Thermosetting Resin,2002,17:1.
    [5] MAY C A. Epoxy resins [M]. New York: Marcel Dekker1988,1.
    [6] PARK SJ,JIN FL,LEE JR. Thermal and mechanical properties of tetrafunctionalepoxy resin toughened with epoxidized soybean oil [J]. Mater Sci Eng A,2004,374:109-114.
    [7]张春玲,那辉,牟建新等.含联苯结构的环氧树脂固化性能的研究[J].高等学校化学学报,2004,25:1756-1758.
    [8] CULLIS CF, HIRSCHLER MM. The significance of thermoanalyticalmeasurements in the assessment of polymer flammability [J]. Polymer,1983,24:834-840.
    [9] KANDOLA BK,BISWAS B,PRICE D,et al. Studies on the effect of differentlevels of toughener and flame retardants on thermal stability of epoxy resin [J].Polymer Degradation and Stability,2010,95(2):144-52.
    [10] GRASSIE N,GUY MI,TENNENT NH. Degradation of epoxy polymers: part4ethermal degradation of bisphenol-A diglycidyl ether cured withethylenediamine [J]. Polymer Degradation and Stability,1986,14:125.
    [11] LIU WS, WANG ZG, XIONG L, et al. Phosphorus-containing liquidcycloaliphatic epoxy resins for reworkable environment-friendly electronicpackaging materials [J]. Polymer,2010,51:4776-4783.
    [12] SCHAFER A,SEIBOLD S,WALTER O,et a;. Novel high Tg flame retardancyapproach for epoxy resins [J]. Polymer Degradation and Stability,2008,93:557-560.
    [13] HAKALA K,VATANPARAST R,LI SY, et al. Monitoring of curing process andshelf life of the epoxy anhydride system with TICT compounds by thefluorescence technique [J]. Macromolecules,2000,33:5954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700