用户名: 密码: 验证码:
高地应力软岩隧道超前应力释放变形控制机理及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高地应力软岩地层进行隧道施工,常发生围岩大变形,严重影响正常施工。采用传统方式支护高应力软岩隧道难以达到理想的效果,探索有效的围岩变形控制技术已成为当务之急。超前应力释放是一种新兴的围岩支护理论,煤炭部门已提出相关支护技术对部分深埋软岩巷道进行支护。铁路隧道与煤矿巷道相比差别较大,无法直接套用,当前针对铁路隧道并无合适的超前应力释放技术。况且目前超前应力释放技术的作用机理尚不十分明确,使得相关控制理论不成熟,造成超前应力释放技术的应用有一定不确定性。
     本文在充分调研国内外研究现状的基础上,以在建的兰渝铁路木寨岭和毛羽山隧道为依托工程,综合运用理论分析、数值仿真、现场试验和数理统计等手段,针对上述存在的问题进行了以下研究:
     (1)采用正交试验设计结合有限元的方法,对高地应力软岩隧道变形影响因素进行研究,分析各因素对围岩变形影响的敏感性,通过调查兰渝铁路木寨岭隧道7号斜井变形原因,进一步确定各因素影响变形的主次关系,并根据研究结果,明确采用超前应力释放技术控制变形的必要性。
     (2)建立隧道底鼓的力学模型,通过对模型的分析,明确了超前应力释放技术控制围岩变形的可行性,同时揭示了超前应力释放技术是以增大围岩塑性为代价减少围岩的变形。考虑超前应力释放实施过程中塑性区增大造成的围岩弱化,基于应变软化理论,推导了塑性区与支护变形压力的关系,依据结果曲线上的拐点,提出了超前应力释放需掌握“度”的原则,为超前应力释放技术的控制提供了理论基础。
     (3)采用FLAC3D数值计算软件分析了超前应力释放技术对围岩应力分布及塑性区发展的影响,明确了超前应力释放的作用机理。
     (4)结合高地应力软岩隧道的的特点,针对铁路隧道实际施工情况,提出三种超前应力释放技术措施——预留空间法、导洞超前法及钻孔法,根据本文提出的控制原则,对三种超前应力释放技术的关键参数进行优化,提出三种超前应力释放技术的最优设计方案。
     (5)在兰渝铁路毛羽山隧道进行导洞超前法及预留空间法两种超前应力释放技术的现场试验,分析围岩变形和支护受力情况。结果表明,合理的超前应力释放技术可有效减小围岩变形,保证支护体系稳定。
     本论文有图76幅,表29个,参考文献137篇。
The large deformation of surrounding rock often happens in the soft rock tunnel with highstress level construction, it seriously affected smooth construction. It can not achieve anideal effect by using traditional support pattern. Finding a valid deformation controltechnology becomes urgent affair. Stress pre-relief is a new support theory; the relatedtechnology has been applied on deep buried roadway by coal sector. But there is greatdifference between railway tunnel and roadway, can not apply mechanically. There is nosuitable stress pre-relief technology for railway tunnel. Moreover, the mechanisms of stresspre-relief remain unknown. It lead to the control theory is not mature and make thetechnology implementation with uncertainty.
     This article base on research status, and Lan Yu railway Mu Zhai Ling and Mao YuShan tunnels are backing project. Aiming at the above problems, the following studies arecarried on by the way of comprehensive use theoretical analysis, numerical simulation, fieldtest, and quantity statistics.
     (1)The deformation influence factors of soft rock tunnel with high stress level arestudied by combination of orthogonal test and finite element method, in order to analyze thefactors sensitivity of influence of surrounding rock. The reason of large deformation of MuZhai Ling tunnel No.7inclined shaft is investigated to make sure the primary and secondaryrelation of factors. According to the result, the article makes clear the necessity of usingstress pre-relief to control deformation.
     (2)The model of tunnel floor heave is built, and the result clarify the feasibility ofcontrolling the deformation by stress pre-relief, and reveal the stress pre-relief will enlargeplastic zone. Considering surrounding rock weaken caused by plastic zone enlarged, whenthe stress pre-relief technology implement, based on strain softening model, the relationshipbetween plastic zone and support pressure is derived. According to the inflection point of theresult curve, proposed the control principle for stress pre-relief.
     (3) Analyzing the influence of distribution of surrounding rock pressure and trend ofplastic zone for stress pre-relief by using the software FLAC3D, the result further clarify thetheory of stress pre-relief.
     (4) Combining the character of soft rock tunnel with high stress level, aiming at railwaytfunnel construction situation, proposed three kinds of stress pre-relief technology,including reserve-space way, pilot-heading way, drill hole way, based on principle which has been put forward, the key parameters of three kinds of stress pre-relief technology areoptimized, and put forward optimal plans.
     (5) The pilot-heading and reserve-space two kinds of stress pre-relief technology arecarried out in Lan Yu railway Mao Yu Shan tunnel. The tunnel deformation and the supportstress are analyzed. As the result, reasonable pre-relief technology can reduce thedeformation effectively and make sure the support system is stable.
引文
[1]傅冰骏.国际岩石力学发展动向[J].岩石力学与工程学报,1997,16(2):195-196
    [2]王梦恕.21世纪山岭隧道修建的趋势[J].铁道工程学报,1998,(增刊):4-7
    [3]关宝树.21世纪的地下空间利用[J].铁道工程学报,1998,(增刊):553-557
    [4]金鑫(译).陶恩隧道掘进中的一些经验[J].隧道译从,1976(2):50-54
    [5]刘达仁(译).阿尔贝格公路隧道掘进中的支护问题[J].隧道译丛,1970(5):32-42
    [6]邹崇富(译).惠那山隧道长平译断层中新奥法的设计和施工[J].隧道译丛,1986(l):37-46
    [7]张扯道.家竹著隧道施工中支护大变形的整治[J].世界隧道,1997(l):7-16
    [8]陈靖宇.木栅隧道工程之规划设计与施工[C].现代隧道技术编辑部编,第三届海峡两岸隧道与地下工程学术与技术研讨会论文集,成都,2002:20-25
    [9]中国公路学会.2003年全国公路隧道学术会议论文集[C].北京:人民交通出版社,2003
    [10]邓应祥译里昂-都灵间穿越阿尔卑斯山的高速铁路隧道[J].世界隧道1996,(3):20-25
    [11]郭放良,伍法权,钱卫平,张彦山.乌鞘岭长大深埋隧道围岩变形与地应力关系的研究[J].现代隧道技术,200625(11):2194-2199
    [12]李铁汉.高地应力梯度与岩体物理场[A].中国岩石力学与工程学会第四次学术大会论文集
    [A].北京:中国科学技术出版社,1996:657-663
    [13]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1999
    [14] BROWN E T, HOEK E. Technical note trends in relationships between measured in-situ stressand depth [J].Rock Mech.Min.Sci.and Geomech.Abstr.1978,15(4):211-215
    [15]赵德安,陈志敏,蔡小林,李双洋.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271
    [16] FUCHS K, MüLLER B.World stress map of the earth:a key to tectonic processes andtechnological applications[J]. Naturwissens-chaften,2001,88:357-371
    [17]陈志敏.不同岩性侧压比随深度变化规律探讨[J].西部探矿工程,2006,18(6):99-101
    [18]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [19]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.1
    [20]陶振宇.岩体初始应力对地下工程的影响[J].武汉水利电力学院学报,1980(3):12-17
    [21]薛玺成,郭怀志,马启超.岩体高地应力及其分析[J].水力学报,1987(3):52-58
    [22]姚宝魁,张承娟.高地应力坝区酮室围岩岩爆及其断裂破坏机制[J].水文地质工程地质,1985,(6):17-20
    [23]刘庆林.高地应力巷道围岩变形机理及加固技术研究.硕士论文[D].安徽理工大学,2008
    [24] H.Wanger. Design and support of underground exeavation in high stressed rock[J]. Key notePaper. In:Proc.of6th ISRMCongress, Montreal,1987(3):56-59
    [25]靖洪文,付国彬,董方庭.深井巷道围岩松动圈预分类研究[J].中国矿业大学学报,1996.2:45-49
    [26]何满潮.软岩的概念分类与支护对策[J].峰煤科技,1992,(2):34-37
    [27]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002
    [28]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [29]朱效嘉.软岩的强度特征及流变性[J].矿业科学技术,1997,25(2):36-41
    [30] R.Yoshinaka,M.Osada,T.V. Tran. Deformation Behavior of Soft Rocks during ConsolidatedUndrained Cyclic Triaxial Testing [J].Rock Mech. Min. Sei.&Geomeeh. Abstr.,1996,vol.33(6):557-572
    [31] R.Yoshinaka,M.Osada,T.V. Tran. Non-linear Stress-and Strain-Dependent Behavior of SoftRocks under Cyclic Triaxial Conditions [J].Rock Mech. Min. Sci.1998, vol.35(7):941-955
    [32] R.Yoshinaka, M.Osada,T.V. Tran. Pore Pressure Changesand Strength Mobilization of Soft Roc-ks in Consolidated-Undrained Cyclic[J].Rock Mech. Min. Sci.,1997,vol34(5):715-726
    [33] Ito.Y. Design and Construction by NATM.Through Fault Zone for Enasan Tunnel on CentralMotorway[J].Tunnels and Underground.1983.(14):7-14
    [34] John,M.&Strappler.G. Design and installation of tube umbrellas in soft ground tunneling Prog-ress in tunneling after2000.Bologna,pp.253-260
    [35] Aydan O., Akagi T.&Kawamoto T. The Squeezing Potential of Rocks around Tunnels:Theoryand Prediction[J].Rock Mechanics and Rock Engineering,1993,26(4):137-163
    [36]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(l):1-19
    [37]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,8(l):56-62
    [38]姜云,李永林,李天斌,王兰生.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004,(12):46-51
    [39]周宏伟,谢和平,左建平,杜盛浩,满轲,严春野.赋存深度对岩石力学参数影响的试验研究[J].科学通报,2010,55(34):3276-3284
    [40]靳晓光、李春晓、沈军辉.二郎山公路隧道围岩变形影响因素研究[J].地质灾害与环境保护,2010,11(1):58-62
    [41]杨会军,王梦恕.隧道围岩变形影响因素分析[J].铁道学报,2006,28(3):92-96
    [42]卿三惠,黄润秋.乌鞘岭特长隧道软弱围岩大变形特性研究[J].现代隧道技术,2005,42(2):7-14
    [43]钟长平,许汉才.围岩松驰变形影响因素初探[J].西安公路学院学报,1994,14(1):14-18
    [44]王晓辉.深部巷道变形损伤因素与支护对策分析[J].价值工程,200610(2):214-216
    [45]李桂炳,巩克玉,牛宝林.层状岩层巷道底板稳定性影响因素及变形防治[J].山东矿业学院学报,1997,16(4):363-367
    [46]汪洋,王晓睿,唐雄俊,李强,张炜,王元汉.高地应力条件下软岩隧道大变形数值模拟[J].2009,29(5):200-203
    [47] Malan D F. Time-dependent behavior of deep level tabular excavations in hard rock.[J].RockMech Rock Eng,1999,32(5):123-155
    [48] Malan D F. Simulation of the time-dependent behavior of excavations in hard rock.[J].RockMech Eng,2002,34(4)225-254
    [49] O.Aydan. The stabilization of Rock Engineering structures by bolts.[M].1989
    [50]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993
    [51]郑颍人.地下工程锚喷支护设计指南[M].北京:中国铁道出版社,1988
    [52]于学馥,乔瑞.轴变论和围岩稳定轴比三规律[J].有色金属,1981,(4):9-14
    [53]冯豫.新奥法与中国煤矿软岩巷道支护[J].中国煤矿软岩巷道支护理论与实践.1996
    [54]郑雨天.岩石力学的弹塑粘性理论基础[M].煤炭工业出版社,1988.5
    [55]郑雨天.论我国软岩巷道支护的基本框架和几个误区.中国煤矿软岩巷道支护理论与实践
    [M].中国矿业大学出版社,1996
    [56]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-23
    [57]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345
    [58]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[J].徐州:中国矿业大学出版社,1999:10-31
    [59]何满潮,景海河.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62
    [60]石家庄铁道学院等.乌鞘岭隧道修建技术[R].2008
    [61]李庶林,桑玉发.应力控制技术及其应用综述[J].岩土力学,1997,18(1):90-96
    [62]蒋金泉.高应力巷道基角钻孔爆破成缝卸压保护原理与参数[J].黑龙江矿业学院学报,2000,10(4):206-211
    [63] Serata S,et al. Optimization of the Stress Control Method to Improve Produetivity and Safety inUnderground Coal Mining.[J].In:Proc.5th Conf. onGrou. contr. in Min. June1986.156-166
    [64]钱鸣高,刘听成.矿山压力及其控制[M].北京,煤炭工业出版社.1992
    [65]吴爱样,韩斌,刘同有,杨长祥,邹龙.金川镍矿不良岩层巷道变形与支护研究[J].岩石力学与工程学报,2003,22(2):2595-2560
    [66] J.P.A. ROEST,贺永和译.在高应力状态下通过巷道围岩卸压圈保障巷道的稳定[J].隧道译丛,1991,(4):74-77
    [67]何富连.采动软岩巷道卸压工程的设计与实践[J].矿山压力与顶板管理,2002,(1):40-42
    [68]李金奎,崔世海.高应力软岩巷道基角深孔爆破卸压的试验研究[J].铁道建筑,2005(增刊),79-80
    [69]康红普.岩巷卸压法的研究与应用[J].煤炭科学技术,1994.22,(5):14-16
    [70]康红普.巷道围岩的侧下角卸压法[J].东北煤炭技术,1994,(2):26-29
    [71] J.Q.Jiang. Principle and Parameters of Relieving Protect by Drilling and Blasting to from Slot inBase Corner of High Stress Roadways[C]. Proceedings of International Symposium on GeologicalEnvironment of the Three Corges Reservoir Area and SecondSino-Japan Strata EnvironmentMechanics,1996:207-210
    [72]李学华,黄志增,杨宏敏,马立强.高应力硐室底鼓控制的应力转移技术[J].中国矿业大学学报,2006,35(3):296-300
    [73] Paine A S,Please C P. An improved model of fracture propagation by gas during rock blastingsome analytical results [J].International Journal of Rock Mechanics of Mining and Science,1994,31(6):699-706
    [74] Diering D H. Tunnels under high pressure in an ultra-deep Wifwatersr and goldmine[J]. Journalof the South African Institute of Mining and Metallurgy,2000,100:319-32
    [75]王启耀,杨林德,赵法锁.陡倾角层状岩体中地下洞室围岩的变形[J].长安大学学报(自然科学版),2006,26(5):69-73
    [76] B.Singh. Continuum characterization of jointed roekmass[J]. Rock mech&. Seienee.1973(10):311-349
    [77]唐大雄,刘佑荣,张文殊,王清.工程岩土学[M].地质出版社,1999
    [78] Kim Yong-II. Modeling the effect of water, excavation sequence and reinforce-ment onresponse of blocky rock masses [D].University of Colorado,1998
    [79] Kyung Hopark, BitupornTontavanieh, Joo-Gong Lee. A simple procedure for ground responsec-ury of circular tunnel in elastie-strain soft rock masses[J].Tunnelling and Underground Space Technology,2008,23(2):151-159
    [80]侯化国,王玉民.正交试验法[M].吉林人民出版社,1985
    [81]方开泰,马长兴.正交与均匀试验设计[M].北京:科学技术出版社,2001
    [82]郝拉娣,于化东.正交试验设计表的使用分析[J].编辑学报,2001.17(5):334-335
    [83]龚文惠,雷红军,宁虎.正交试验法在土工试验中的应用[J].土工基础,2006,20(5):78-80
    [84] Knaargh, K.nad Clough, R.W. Fnitie Element Application nihte Characterization of Elastie[J].Solids Structures,1971,(7):11-14
    [85]张晓咏,戴自航.应用ABAQUS程序进行节理岩质边坡稳定分析[J].广西大学学报:自然科学版2009,34(4):444-45
    [86]张晓咏戴自航应用ABAQUS程序进行节理岩质边坡稳定分析[J].广西大学学报:自然科学版,2009,34(4):444-450
    [87] G. S Desai. An aPPlieation of FEM for underground structures with nonlinear materials andjoints[J].In:Proe.5thint.congr on Rock Mechanies.198l:209-216.
    [88] SchwerLeonard E,Lindberg Herbert E.Finite elementslidelineapproach ofr calculating tunnelresponse in jointed rcok[J]. International Jounral for Numerical Analytical Methods in Geomechanics,1992,16(7):529-540
    [89] Crouch. S. L. Boundary Element Method in Solid Mechanics[M].London: George Allen&Unwin, l983
    [90]同济大学等.木寨岭隧道(单线)炭质板岩段支护结构及施工方法研究阶段报告(三)[R].2010
    [91]张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,40(2):5-12
    [92]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996
    [93] Serata S. and Cundey T. E. Reheologieal Method of Salt Cavity Design for UndergroundStorage of Solid, Liquid and Gaseous Matters.[J]. In:19th U.S. Sym On Rock Mech, Nevada,1978.187-189
    [94]翁汉民,李永林,等.高地应力条件下隧道大变形破坏机理的研究及其在二郎山隧道工程中的应用[R].研究报告,1999
    [95]代伟,徐双永,杨喆坤.木寨岭隧道大坪斜井软岩大变形原因分析及施工技术[J].隧道建设,2010,30(2):170-172
    [96] Bieniawski,Z.T. Time-dependent behavior of fractured rock[J].Rock Mechanics,Vol.2, No.3,1972
    [97]黄运飞,杨维怀.地下工程围岩维护的新途径——切缝弱化围岩法研究[J].重庆大学学报,1988,(3):40-45
    [98] Dube,A.K. Sqeezing under High Stress Conditions [A].Balkeme: Assessment and Prevention ofFailure Phenomenain Rock Engineering [C],1993
    [99] Singh S P. Chemieal. Destressing to Alleviate Rockbursts.[J].In:Proe.6th Int. Conf. on Grou.Contr. In Min.1987.70-78
    [100] Peng S S and Tsang P. Yield Pillar Design Under Strong Roof,Weak Coal,and Weak FloorConditionin U.S. Long wall Mining-A Case Study. Strata Control in Deep Mines[J].Balkema, Rotterdam,1990.13-29
    [101]孙广中,黄运飞.大型地下洞室稳定性维护的弱化原理及技术[J].中国科学院地质所科研报告,1988
    [102]王悦汉,张东升.巷道围岩卸压机理的力学模型[J].矿山压力与顶板管理,1993,(2):2-4
    [103]徐芝纶.弹性力学[M].北京:高等教育出版社.1990:81-84
    [104]井原怒.采用巷帮卸压法的巷道维护效果[J].井巷地压与支护,1985,(1)
    [105]陈庆敏.软岩巷道支护与围岩相互作用机理及支护技术的研究[D].徐州:中国矿业大学图书馆.1995
    [106] P.Egger. Design,and Construction Aspects of Deep Tunnels [J].Tunneling and UndergroundSpace Technology,2000,vol.15(4):403-408
    [107] T.Ramamurth V.K. Arova. Strength predictions for joint rocks in confined and unconfinedstates.[J].RockMech.Min.Sci.&Geomech.Abstraet.1994(31):9-22
    [108] MAXWELLSC,YOUNGRP,READRS. Amiero-velocity tool to assess the exeavation damagedzone [J].International Joumal of Rock Mechanicsand Miningsciences,1998,35(21):235-247
    [109]陈庆敏.软岩巷道支护与围岩相互作用机理及支护技术的研究[D].徐州:中国矿业大学图书馆.1995
    [110] Scholz C H. Microfracturing and the inelastic deformation of rock in compression[J]. Geophys.Res.1968,73(2):1417-1432
    [111]陈庆敏,张农,赵海云.岩石残余强度与变形特性的试验研究[J].中国矿业大学学报,1997,26(3):42-45
    [112]王彩根,陆士良,刘长海.软岩巷道支护阻力与围岩变形的关系[J].矿山压力与顶板管理,1995,(3):118-120
    [113]马念杰,侯朝炯.采准巷道矿压理论及应用[M].北京:煤炭工业出版社.1995
    [114]刘夕才,林韵梅.软岩扩容性对巷道围岩特性曲线的影响[J].煤炭学报,1996,21(6):596-600
    [115]山富二郎.考虑应变软化的弹塑性分析法——关于软弱岩体开挖中的力学研究[J].地下工程,1987(6):24-29
    [116] Serata S. Stress control methods. First international Conferenee on stability UndergroundMining.[J]. Vaneouver, Britisheolumbia, Canada,1982
    [117]李大伟,侯朝炯.围岩应变软化巷道锚杆支护作用的计算[J].采矿与安全工程学报,2008,25(1):123-126
    [118]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999
    [119] Kaiser P K, Guenot A, Morgenstern N R. Deformation of small tunnels; part IV-behaviorduring failure.[J]. Rock Mech&Min Sci Geomech Abstr,1985,22:141-152
    [120] Hoek E, Brown E T. Underground excavation in rock. London.[J]. The Institute of Mining andMetallurgy.1980
    [121]汤雷.依据扩容率判断围岩的稳定状态[J].西安科技大学学报,2005,25(1):128-131
    [122] Kaiser P K,Guenot A,Morgenstern N R. Deformation of small tunnels;part IV-behavior duringfailure.[J]. Rock Mech&Min Sci Geomech Abstr,1985,22:141-152
    [123] Kaiser P K,Guenot A,Morgenstern N R. Deformation of small tunnels;part IV-behavior duringfailure.[J]. Rock Mech&Min Sci Geomech Abstr,1985,22:141-152
    [124]孙广忠.岩体结构力字[M].科学出版社,北京,l988
    [125]冯夏庭,王泳嘉.深部开采诱发的岩爆及其防治策略的研究进展[J].中国矿业,1998,7(5):42-45
    [126]勾攀峰,汪成兵,韦四江.基于突变理论的深井巷道临界深度[J].岩石力学与工程学报,2004,23(24):4137-4141
    [127] John A. Hudson Engineering rock mechanics[M].Redwood Books Press,1997
    [128] F.O.Franclss. Weak Rock Tunneling [M].A.A.Balkema Press,1997
    [129] Kidybinski. Strata Control in Deep Mines [M].A.A.Balke-maPress,1990
    [130]李永刚.排孔弱化维护地下洞室围岩稳定的探讨[J].西北水资源与水工程19945(4):25-29.
    [131]陶振宇.岩石力学的理论与实践[M].水利出版社,1981.(1):364-365
    [132] Wittke, W. New Design Concept for Under-Ground Openings in Rocks [M]. Aachen:In FiniteElements in Geomeehanies,1972
    [133] Fairhurst C. Deformation, yield, rupture and stability of excavations at great depth [A].In:Fairhust C. ed. Rockburst and Seismacity in Mines [C]. Rotterdam:A.A.Balkema,1990.1103-1114.
    [134] Itasca Consulting Group, Inc.Flac (Fast Lagrangian Analysis of Continua) User Manuals,Version5.0, Minneapolis, Minnesota,2005
    [135] Itasca Consulting Group, Inc.Flac3D (Fast Lagrangian Analysis of Continua in3Dimensions)User Manuals, Version2.1, Minneapolis, Minnesota,2002
    [136]张民庆.兰渝铁路高地应力软岩隧道变形控制技术研究[R]铁道部工程管理中心,2010
    [137]王立川,熊朝东,赵玉良,职常应.采用导洞超前法全断面扩大隧道施工导洞临界长度初探[J].隧道建设,1997(1):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700