用户名: 密码: 验证码:
大壁虎运动行为研究及仿壁虎机器人研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中壁虎超凡的运动能力得益于脚底50万根纳米级刚毛所产生的强大吸附力以及能轻松外翻、内收和扭转的脚趾对脚底刚毛进行简单、有效和精巧的运动控制。因此,分析壁虎的运动行为和步态特征,研制具有尺寸效应的仿壁虎微纳米刚毛阵列,并应用于仿壁虎机器人十分必要。
     本文以壁虎科的大壁虎为仿生对象,从运动行为、结构、运动仿真、控制、阵列制备、脚掌仿生这几个方向入手,研制仿壁虎机器人。主要研究内容如下:
     (1)利用自行搭建的实验系统,分别研究大壁虎在地面,墙面,天花板运动的步态和体态规律,大壁虎从地面过渡到墙面的步态规律。方法是通过摄像系统和辅助装置记录不同表面上壁虎的运动过程,并利用特征参数和图表来分析其运动规律。为机器人的结构设计,平面运动步态和地壁过渡步态规划以及步态仿真提供有力的生物学参考。
     (2)介绍仿壁虎机器人结构设计和技术特点。对机器人腿部关节机构进行正向与逆向运动学分析。对3种不同结构类型的仿壁虎机器人进行了机构分析。运用虚拟样机技术规划机器人地面和墙面爬行对角步态以及身体呈S型的对角步态和三角步态,并开发出基于机器人结构参数和运动特征的平面运动步态规划软件;同时还进行了地面—墙面过渡步态规划仿真和分析计算。
     (3)通过真空模具浇注法制备出硅橡胶基和聚氨酯基的微米级粘附阵列一级结构,并在支杆末端制备了硅橡胶基末端膨大二级结构。利用微摩擦试验机(UMT)测试了粘附阵列的切向粘附性能。结果表明:末端膨大结构增大了有效接触面积,提高了切向粘附性能。沿支杆斜切方向短距离的滑移可适当增加切向力,但随着滑移距离加大,切向力随之下降,并保持在一定范围内波动,趋于常值;末端膨大二级结构粘附阵列的粘附力随法向载荷增加而增大,当法向载荷超过一定值后,切向力逐渐减小,加载15mN的法向预载力产生最大的切向粘附力84.668mN;正向滑移产生的最大切向粘附强度1.140N/cm~2明显大于逆向滑移产生的最大切向粘附强度0.223N/cm~2。
Gecko’s excellent moving ability is thought to derive from van der Waals force generated between the millions of keratinous hairs/setae and the contact surface, and the gecko’s foot which can perform simple, effective and precise control such as the well-known adduction and rotation of pad and the twist of foot-toe. So, it is necessary to study the gecko’s mobile behavior and gait characteristics and to fabricate the size-effect biomimetic micro/nano-scale ahsive arrays for applications of the gecko-like robot.
     As an object, Gekko gecko (gekkonidae) is widely studied from the following viewpoints of moving behavior, structure characterizations, kinematics simulation, control, and bio-mimic fabrication to develop the gecko-like robot. The main research contents are summarized as follows: (1) By using self-made testing system, we studied the gait and posture rules when the gecko moves on the ground, the wall, and the ceiling. We also studied the rules of the transition courses such as from the ground to the wall. By means of auxiliary CCD system, gecko's movements on the different plane were detailed recorded. Based on those data, we successfully designed the characteristic parameters and charts to analyze the movement rules. Those rules are useful for the robot design, gait simulation and gait planning (gait on the plane and transition gait).
     (2) Inspired by above observations, we analyzed the forward and reverse kinematics of the joint mechanisms from Gecko, and tried to design the detaied structural and technical parameters for gecko-like robot. Additionally, three mobile mechanisms related to the gecko-like robot were successively introduced. By using virtual prototyping technology, we drew a highly sketch image for the robot’s gait from ground to wall, and a highly image for the“S-shaped”body diagonal gait. A plane gait planning software was developed based on structural parameters and movement characteristics.
     (3) This chapter prepared silicone rubber base and polyurethane-based gecko-inspired adhesion array primary structure by vacuum casting mold. Then on this basis has prepared the enlargement of silicone rubber-based secondary structure. Finally, use micro-friction testing machine (UMT) to have tested the tangent adhesion properties of the adhesion array. The results show that: the terminal enlargement structure increases the effective contact area, improve the tangential adhesion properties, with slider a short distance should be increased adhesion, but decreases with the sliding distance increased, and keep within a certain range; The adhesion force increases with the increase of the normal load and finally comes to the maximum tangential adhesion force of 84.668mN under the preload 15mN, when the normal load exceeds a certain value, the adhesion strength decreases, and maintains on this fluctuates, tends to the constant; The maximum shear adhesion strength of sliding with the setae is about 1.140N/cm2, significantly greater than that sliding against the setae produces the shear adhesion strength is about 0.223N/cm~2.
引文
[1]林良明.仿生机械学.上海交通大学出版社, 1991.4.
    [2]路甬祥.仿生学的意义与发展,科学中国人, 2004.04:22~24.
    [3]杜家纬.二十一世纪仿生学研究对我国高新技术产业的影响,世界科学,2004.02 :12~16.
    [4]机器人技术软科学研究组.我国机器人技术需求分析与研究重点探索.机器人技术与应用, 2001.2:1-5.
    [5] Nishi A. Development of wall-climbing robots. Journal of Computers and Electrical Engineering, 1996,22(2):123-149.
    [6] Bahr B, Li Y, Najafi M. Design and suction cup analysis of a climbing robot. Journal of Computers and Electrical Engineering, 1996,22(3):193-209.
    [7] Zhang Y, Nishi A. Low-pressure air motor for wall-climbing robot acuration. Mechatronics, 2003, 13(4): 377-392.
    [8]周本濂.复合材料的仿生研究.物理, 1995, 24: 577-582.
    [9]任露泉,佟金.生物脱附与机械仿生-多学科交叉新技术领域.中国机械工程, 1999, 10(9): 984-986.
    [10] Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. PNAS, 2005, 102(45): 16293-16296.
    [11] Alibardi L. Ultrastructural autoradiographic and immunocy to chemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus (Gekkonidae, Raptilia). Tissue & Cell, 2003, 35:288-296
    [12]戴振东,于敏,吉爱红,等.动物驱动足摩擦学特性研究及仿生设计.中国机械工程,2005,16:1454-1457.
    [13]王巍,宗光华.气动擦窗机器人的控制和环境检测.液压与气动, 2001, (1) : 4-7.
    [14]张俊强,张华,万伟民.履带式爬壁机器人磁吸附单元的磁场及运动分析.机器人, 2006, 28 (2) : 219– 223.
    [15]吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人, 2005.5, 27(3): 284-288.
    [16]陈东辉,佟金,李重焕.人和动物的步态与步行机器人.吉林大学学报(工学版), 2003, 33(4): 121-125.
    [17]张培锋,王洪光,房立金,等.一种新型爬壁机器人机构及运动学研究.机器人, 2007, 29(1): 12-17.
    [18] Minor M, Dulimarta H, Danghi G, et al. Design, implementation, and evaluation of an under-actuated miniature biped climbing robot. Proceedings of the IEEE /RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2000. 1999 - 2005.
    [19]田兰图.油罐检测爬壁机器人技术及系统研究.清华大学硕士学位论文. 2004.5.
    [20]刘淑霞,王炎,徐殿国,等.爬壁机器人技术的应用.机器人, 1999, 21 (2) : 148-155.
    [21]刘淑霞,赵言正,王炎.高楼壁面清洗机器人及相关技术的研究.自动化博览, 1999,(05):22-25.
    [22]李满天,黄博,刘国才,等.模块化可重构履带式微小型机器人的研究,机器人, 2006, 28(5): 548-552.
    [23]王巍,宗光华.气动擦窗机器人的控制和环境检测.液压与气动, 2001, (1): 4-7.
    [24]张厚祥,刘荣,王巍,宗光华.爬壁机器人气动位置伺服控制研究.北京航空航天大学学报, 2004, (08): 705-708.
    [25]刘荣,田林.影响负压爬壁机器人性能的关键因素分析.北京航空航天大学学报, 2009, (05): 608-611.
    [26] Unver O, Murphy M, Sitti M. Geckobot and Waalbot: Small-Scale Wall Climbing Robots. AIAA 5th Aviation, Technology, Integration, and Operations Conference. Piscataway, NJ, USA, 2005:1-10.
    [27] Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. Proceedings of the IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2004: 431-436
    [28] Daltorio K A, Horchler A D, Gorb S, et al. A small wall-walking robot with compliant, adhesive feet. Proceedings of the International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2005: 3648-3653.
    [29] Full R J. Biological Inspiration from the Poly-PEDAL Laboratory. http://polypedal. berkeley.edu/twiki/bin/view/Poly-PEDAL/About Robotics
    [30] RiSE. SpinyBot Pages. http://bdml.stanford.edu/twiki/bin/view/Rise/SpinyBot.
    [31] Kim S, Trujillo S, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 2008, 24(1): 1-10.
    [32] Muybridge E. Animals in motion. Dover Publications Inc, New York, 1957:1-74.
    [33] McGhee R B. Some finite state aspects of legged locomotion. Math Biosci, 1968,2:67~84.
    [34] Hirose S, Kikuchi H, Umetani Y. The standard circular gait of the quadruped walking vehicle. Journal of the Robotics Society of Japan, 1984, 2(6):545~556.
    [35] Hirose S. A study of design and control of a quadruped walking vehicle. The International Journal of Robotics Research, 1984 , 3(2): 113~133.
    [36] Song S M, Waldron K J. An analytical approach for gait study and its application on wave gaits. The International Journal of Robotics Research, 1987, 6:60~71.
    [37] Hirose S, Yoneda K. Dynamic and static fusion control of quadruped walking vehicle. IEEE Int.Workshop.on Intelligent Robots and Systems. Tsukuba, 1989:199~204.
    [38] Chen X D, Watanabe K, Izumi K. Study on the control algorithm of the transnational crawl for a quadruped robot. Systems Man and Cybernetics, IEEE SMC, 1999, 6:953~958.
    [39] Hugel V, Blazvic P. Towards efficient implementation of quadruped gaits with duty factor of 0.75. Procs Of the 1999 IEEE Int. Conf. on Robotics&Automation, 1999:2360~2365.
    [40] Kodjabachian J, Meyer J A. Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance int artificial insects. IEEE Trans on Neural Networks, 1998, 9(5):796~812.
    [41] Hornby G S, Takamura S, Yokono J, et al. Evolving obust gaits with AIBO. Procs.Of the 2000 IEEE Int.Conf.on Robotics&Automation, 2000:3040~3045.
    [42]马培荪,马烈.全方位四足步行机器人JIUWM-II转弯步态控制的研究.上海交通大学学报, 1995, 29(5): 97~92.
    [43]陈佳品,程君实,等.四足机器人对角小跑步态的研究.上海交通大学学报, 1997, 31(6): 1771~1775.
    [44]孙汉旭.四足步行机器人研究. [北京航空航天大学硕士学位论文],北京:北京航空航天大学,1989.
    [45]潘俊民,程君实.四足步行机器人斜坡运动的研究.机器人, 1991, 13(4):22~26.
    [46]汪琼.四足步行机器人楼梯行走步态的稳定性及控制.桂林:全国第三届青年机器人学术讨论会论文集, 1990:23-27.
    [47]甘建国,朱玮,干东英.六足步行机跟导步态研究.机器人, 1994, 16(4): 234~236.
    [48]汪劲松,张伯鹏.全方位双三足步行机器人―步行模式规划.清华大学学报(自然科学版), 1994, 34(5): 63~71.
    [49]方亚彬,江村超.四足机器人溜蹄步态动步行的研究.机器人, 1995, 17(1): 134~136.
    [50]赵铁石,赵永生,黄真.仿蟹步行机构模型灵活度分析.中国机械工程, 1998, 9(3): 55~57.
    [51]徐小云,颜国正,丁国清.微型六足仿生机器人及其三角步态研究.光学精密工程, 2002, 10(4): 42~45.
    [52]姜勇,王洪光,房立金.基于主动试探的微小型爬壁机器人步态控制.机械工程学报, 2009, 45(7):56-62.
    [53] Autumn K, Liang Y A, Hsieh T. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(8): 681-685.
    [54] Autumn K, Metin S, Liang Y A, et al. Evidence for van der waals adhesion in gecko setae. PNAS, 2002, 99(19): 12252-12256.
    [55] Sun W X, Neuzil P, Kustandi T S, et al. The nature of the gecko lizard adhesive force. Biophysical Journal, 2005, 89(2):14-17.
    [56] Gao H J, Wang X, Yao H M, et al. Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 2005, 37: 275-285.
    [57] Dai Z D, Sun J R. Davi Y, et al. Morphology and contact mechanics influence adhesive characteristics of Dung Beetle’s bristle and Gecko’s setae. Progress in Natural Science, 2007, 17(9):1074-1081.
    [58] Yu M, Ji A H, Dai Z D. Effect of micro-scale contact state of polyurethane surface on adhesion and friction. Journal of Intelligent Material Systems and Structures, 2006, 17: 819-822.
    [59] Tian Y, Pesika N, Zeng H B. Adhesion and friction in gecko toe attachment and detachment. PNAS, 2006,12: 19320-19325.
    [60] Michael P M, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small, 2009,5(2): 170-175.
    [61] Lee J, Majidi C, Schubert B, et al. Sliding induced adhesion of stiff polymer microfiber arrays: 1. Macroscale behaviour. Journal Royal Society, Interface, 2008, 5: 835-844.
    [62] Lee J, Majidi C, Schubert B, et al. Sliding-induced adhesion of stiff polymer microfibre arrays. II. macroscale behaviour. Journal of The Royal Society Interface, 2008 , 5(25): 835-844.
    [63] Autumn K, Dittmore A, Santos D, et al. Frictional adhesion: a new angle on gecko attachment. J Exp Biol, 2006,209(18):3569-3579.
    [64] Autumn K, Peattie A N. Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 2002,2: 1080-1090.
    [65] Hansen W, Autumn K. Evidence for self-cleaning in gecko setae. PNAS, 2005, 102:385-389.
    [66] Autumn K, Majidi C, Groff R E, et al. Effective elastic modulus of isolated gecko setal arrays. The Journal of Experimental Biology, 2006, 209: 3558-3568.
    [67] Yurdumakan B, Raravikar N R, Ajayan P M, et al. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun, 2005, 30: 3799—3801
    [68] Northen M T, Turner K L. A batch fabricated biomimetic dry adhesive. J Nanotechnol, 2005, 16: 1159—1166
    [69] Ge L H, Sethi S , Ci L J, et al. Carbon nanotube-based synthetic gecko tapes. PNAS, 2007, 104:10792-10795.
    [70] Qu L T, Dai L M, Stone M , et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 2008, 322(328):238-242.
    [71]陈士荣,梅涛,倪林,等.仿壁虎微纳米粘附阵列的工艺制作. MEMS器件与技术, 2006, 9: 434-437.
    [72]任鸟飞,汪小华,王辉静,等.仿壁虎微纳米粘附阵列研究进展. MEMS器件与技术, 2006, 8: 386-392.
    [73]王辉静.仿壁虎微米阵列的加工及其粘附作用分析. MEMS器件与技术, 2008,3: 162-165.
    [74]莫桂冬.仿壁虎机器人脚掌粘性材料的仿生学研究.[南京航空航天大学硕士论文]南京:南京航空航天大学, 2008.
    [75] Santos D, Kim S, Spenko M, et al. Directional adhesive structures for controlled climbing on smooth vertical surfaces. 2007 IEEE Int Conf Rob Autom, 2007, 4: 1261-1267.
    [76] Kim S, Spenko M, Trujillo S, et al. Smooth vertical surface climbing with directional adhesion. IEEE Trans Rob, 2008, 24, 65-74.
    [77] Santos D, Spenko M, Parness A, et al. Directional adhesion for climbing: theoretical and practical considerations. J Adhes Sci Technol, 2007, 12: 1317-1341.
    [78] Aksak B, Murphy M P, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir, 2007, 23: 3322-3332.
    [79] Geim A K, Dubonos S V, Grigorieva I V, et al. Microfabricated adhesive mimicking gecko foot-hair. Nature Material, 2003, 2: 461-463.
    [80] Aranzazu D C, Christian G, Eduard A. Contact shape controls adhesion of bio-inspired fibrillar surfaces. Langmuir, 2007, 23: 10235-10243.
    [81] Gorb S, Varenberg M, Peressadko A, et al. Biomimetic mushroom-shaped fibrillar adhesivemicrostructure. J R Soc Interface, 2007, 4: 271-275
    [82] Gorb S, Varenberg M. Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol, 2007, 12: 1175-1183
    [83] Gorb S, Sinha M, Peressadko A, et al. Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspiration Biomi-metics, 2007, 2: 117-225.
    [84] Gorb S, Varenberg M. Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface, 2007, 4: 721-725.
    [85] Murphy M P, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spheri-cal and spatula tips. J Adhes Sci Technol, 2007, 12: 1281-1296
    [86] Aksak B, Murphy M P, Sitti M. Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. IEEE Int Conf Rob Autom, 2008, 5: 3058-3063.
    [87] Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett, 2006, 89: 261911-1—3.
    [88] Jeong H, Lee S, Kim P, et al. High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force. Colloids Surf A, 2008, 313: 359-364.
    [89]陈东辉,佟金,李重焕,等,人和动物的步态与步行机器人,吉林大学学报(工学版),2003, 33 (4): 121-125.
    [90]欧阳兴,陈恳,徐凯,等.弹性变形对仿人机器人步态规划的影响分析.机床与液压,2003, 5:19-21.
    [91]钱晋武,龚振邦,张启先.多足爬壁机器人步态规划和运动仿真,高技术通讯, 1996, 18-21.
    [92] Ritter D. Axial muscle function during lizard locomotion. The Journal of Experimental Biology. 1996, 199(11): 2499-2510.
    [93] Raoul V, Peter A, Bieke V. Variation in morphology gait characteristics and speed of locomotion in two populations of lizards. Biological Journal of the Linnean Society, 1998, 63: 409-427.
    [94] Raoul V, Peter A, Bieke V. Variation in morphology gait characteristics and speed of locomotion in two populations of lizards. Biological Journal of the Linnean Society, 1998, 63: 409-427.
    [95] Zaaf A, Van R D, Herrel A, et al. Spatio-temporal gait characteristics of level and verticallocomotion in a ground-dwelling and a climbing gecko. The Journal of Experimental Biology, 2001, 204(7): 1233–1246.
    [96] Irschick D J, Vanhooydonck B, Herrel A, et al. Effects of loading and size on maximum power output and gait characteristics in geckos. J Exp Biol. 2003, 206(22): 3923-3934.
    [97] Autumn K, Hsieh S T, Dudek D M, et al. Dynamics of geckos running vertically. J Exp Biol, 2006, 209: 260-272.
    [98] Bergmann P, Irschick D J. Effects of temperature on maximum acceleration, deceleration and power output during vertical running in geckos. J Exp Biol. 2006, 209: 1404-1412.
    [99] Bergmann P J, Irschick D J. Effects of temperature on maximum clinging ability in a diurnal gecko: evidence for a passive clinging mechanism? J Exp Zool. 2005, 303A(9): 785 - 791.
    [100] Li H K, Dai Z D, Shi A J, et al. Angular observation of joints of gecko’s moving on horizontal and vertical surfaces. Chinese Science Bulletin, 2009.2, 54(4):592-598.
    [101]张志勇.精通MATLAB 6.5版.北京:北京航空航天大学出版社, 2003.3:148-152.
    [102] Schmiedel J P. The mechanics of and robotic design for quadrupedal galloping. [Ph D Dissertation]. The Ohio State University, 2001.
    [103] Farley C T, Ko T C. Mechanics of locomotion in lizards. Journal of Experimental Biology, 1997, 200: 2177-2188.
    [104] Dickinson M H, Farley C T, Full R J, et al. How animals move: an integrative view. Science, 2000, 288(7):100-106.
    [105] Dai J S, Rees J J. Mobility in metamorphic mechanism of foldable/erectable kinds. Trans ASME: J Mech Design, 1999, 121(3): 375-382.
    [106]戴建生,丁希仑,邹慧君.变胞原理和变胞机构类型.机械工程学报, 2005, 41(6): 7-12.
    [107]李端玲,戴建生,张启先,等.基于构态变换的变胞机构结构综合.机械工程学报, 2002, 38(7): 12-16.
    [108]金国光,高峰,丁希仑.变胞机构的分类及其构态分析.机械科学与技术, 2005, 24(7): 764-767.
    [109]金国光,丁希仑,张启先.变胞机构全构态动力学模型及其数值仿真研究.航空学报, 2004, 25(4): 401-405.
    [110]杨廷力.机器人机构拓扑结构学.北京:机械工业出版社, 2004:1-244.
    [111]刘晓燕,戴振东,曾小龙,等.大壁虎附肢肌的定量研究.解剖学研究, 2005, 27(4): 292-301.
    [112]牧野洋,谢存禧.空间机构及机器人机构学.北京:机械工业出版社, 1987:1-265.
    [113]戴振东,张昊,张明,代良全,孙久荣.非连续约束变结构机器人运动机构的仿生:概念及模型.科学通报, 2007,52(2):236-239.
    [114]马香峰.机器人机构学.北京:机械工业出版社, 1991:1-274.
    [115]黄真,李秦川.少自由度并联机器人机构的型综合原理.中国科学E辑:技术科学, 2003, 33(9): 813-819.
    [116] So B R, Yi B J, Kim W, et al. Design of a redundantly actuated leg mechanism. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, 2003: 4348-4353.
    [117]韩济生.神经科学纲要.北京:北京医科大学中国协和医科大学联合出版社, 1993:1-894..
    [118] Miriam A A R, George V L. Motor patterns and kinematics during backward walking in the pacific giant salamander: Evidence fornovel motor output. J Neurophysiol, 1997, 78: 3047-3060
    [119]熊有伦.机器人技术基础.武汉:华中科技大学出版社, 1996.
    [120]蔡自兴.机器人学.北京:清华大学出版社, 2000.
    [121]王立权,孙磊,陈东良,等.仿生机器蟹样机研究.哈尔滨工程大学学报, 2005, 26(5): 591-595.
    [122] McGhee R B. Some finite state aspects of legged locomotion. Mathematics Biosciences, 1968, 2:67-84.
    [123]王新杰.多足步行机器人运动及力规划研究. [华中科技大学博士学位论文].华中科技大学, 2005. 8.
    [124]孙丽红,汪小华,梅涛,等.基于ADAMS的仿壁虎爬壁机器人的运动仿真.计算机仿真, 2007, 24(9): 133-136.
    [125] Dillmann R, Huck M A. Software system for the simulation of robot based manufacturing Process. Int J of Robotics and Autonomous systems, 1996, 2(1): 53-61.
    [126] Hawker G, Buehler M. Quadruped trotting with passive knees-design, control, and experiments. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2000: 3046-3051.
    [127] Johnson K L, Kendall K, Roberts AD. Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London, Series A, 1971, 324:84-125.
    [128] Johnson K L, Greewnood J A. An adhesion map for contact of elastic spheres. Journal of Colloid and Interface Science, 1997, 192:326-333.
    [129]刘彬.仿壁虎微粘附阵列的设计、制备及粘附性能研究.南京:南京航空航天大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700