用户名: 密码: 验证码:
适用于TBM驱动离合器摩擦片的摩擦材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全断面岩石掘进机(Tunnel boring machine,TBM)是目前世界上最先进的大型现代化隧道掘进作业系统,TBM工作时冲击振动剧烈,关键零部件(如刀具、刮渣板、摩擦片等)损毁严重。目前,我国使用的TBM关键易损件完全依赖进口。TBM驱动离合器摩擦片是其重要的动力传输部件之一,本论文将结合TBM驱动离合器的工况条件和失效形式,从摩擦材料组份特点出发,通过理论分析和试验研究,研究一种摩擦磨损性能优异、机械强度高、热稳定性好、环保无污染、能够满足TBM驱动离合器摩擦片使用性能要求的混杂纤维增强聚醚醚酮基复合摩擦材料,实现TBM驱动离合器摩擦片的国产化。
     通过对TBM驱动离合器摩擦片工况分析和现有摩擦材料的分析,确定了材料体系;通过采用均匀设计的组分筛选试验确定了材料最佳配比(质量百分比,wt.%):基体聚醚醚酮(PEEK)16.1%,304不锈钢纤维含量为4.7%,碳纤维含量为12.5%,腰果壳粉含量为13.6%,填料中重晶石粉11.1%,铬铁矿粉5.1%,石墨和硫化锑为11.5 %,铝粉6.2 %,高岭土和萤石为10.7%。
     通过对成型工艺特点的分析,依据正交试验设计原理,对热压和固化工艺参数进行了正交试验,以密度、硬度和冲击强度为指标进行了性能试验,确定了最佳成型工艺;成型工艺采用干法工艺,包括干混合、预压、热压成型、热处理及机加工等工序。热压处理工艺为:温度310~340℃,压力25~40 MPa,保温时间3~5 min/mm。固化处理工艺为:80℃×30 min,150℃×30 min,270℃×30 min,310~320℃×12 h。
     在最佳成型工艺和最佳配比的条件下,材料在100-350℃时摩擦系数稳定在0.394-0.476,热衰退率4.8%,具有很好的热恢复性。材料的磨损率在350℃时为0.310×10-7 cm3(N·m)-1,具有良好的摩擦磨损性能及良好的抗弯强度和冲击韧性。
     通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、红外光谱分析仪(FT-IR)、X射线光电子能谱(XPS)等微观分析,转移膜是该材料具有优异性能的关键。结果表明:低于200℃时,以磨粒磨损机理为主;在200~350℃时,表面形成较完整的转移膜,以粘着磨损为主,兼有磨粒磨损;高温阶段未发生基体的热分解,磨屑大多为细小片状。表面膜的形成可以稳定摩擦系数和降低磨损,表面膜主要是钡、铁的氧化物或硫化物。表面膜结构有两种:一种是单晶或多晶粉末填料包围PEEK基体的胞状结构,另一种是PEEK基体和摩擦填料形成的网状结构。
     通过人工神经网络预测材料组分与材料摩擦磨损性能间的关系。结果表明:对于由材料组分预测材料摩擦磨损性能的网络,确定的最佳网络结构为5-[29]1-2,训练函数为trainlm,输入与隐含层、隐含层与输出层之间的传递函数分别为对数型函数logsig和直线型函数purelin。根据材料摩擦磨损性能预测材料组分的最佳网络结构为2-[300]1-[150]2-4,训练函数为trainscg,输入与隐含层、隐含层与输出层之间的传递函数分别为对数型函数logsig、tansig和直线型函数purelin。用人工神经网络对复合摩擦材料的配方与性能进行预测有较高的准确度。
     通过对研制的复合纤维增强聚醚醚酮复合摩擦片材料在TBM驱动离合器上的应用试验,结果表明:不锈钢/碳纤维复合纤维增强聚醚醚酮复合摩擦材料能满足TBM离合器正常工作状态下传递扭距的使用要求,而且具有过载保护功能,可以在TBM上推广使用。
Tunnel boring machine (TBM) is the most advanced system for great tunnel grubbing, and TBM clutch friction plate is one of the most important parts for power transferring. When boring, TBM suffered heavy impact and librating loading, the main parts, such as scraper, scratch plates and friction plates, etc., are easy damaged and these accessories have to depend on imports at present. TBM clutch plates are one of the most important driving transfer parts. TBM clutch plates are worn heavily due to the complicated geologic condition. With the development of long and great tunnels in railways, highways and undergrounds, it is a key problem to develop friction materials with high properties. The purpose of this dissertation is to develop a new kind of friction composites suitable for TBM clutch plates.
     The work state and failure form of TBM clutch friction plates,as well as the present friction materials, were analyzed in this paper. The uniform design method of 5 factors and 27 levels was used to design and optimize the match composition (wt%) : bonder Polyether-ether-ketone (PEEK) 16.1%, 304 stainless steel fiber 4.7%, carbon fiber 12.5%, cashew nut powder 13.6%, chromite powder FeCr2O4 11.1%, barite powder BaSO4 5.1%, graphite and sulfide stibium Sb2S3 11.5%, aluminum powder 6.2%, kaolin powder and fluorite CaF2 10.7%.
     According to the orthogonal test, the parameters of hot-press and curing process were determined by testing density, hardness and impact strength. Specimens were manufactured by the conventional dry-processing procedure for friction linings, comprising mixing, pre-heating, hot pressing and heat treatment. The specimens were hot-pressed at 310-340°C and 25-40 MPa, holding 3-5 min/mm, then the molded specimens were post-cured at 80°C, 150°C, 270°C for 30min respectively and 310°C for 12 hours.
     For samples of the optimized match composition, the friction coefficient was stable between 0.394-0.476 at 100-350°C, and the heat-fading ratio was 4.8%. The wear loss was 0.31×10-7 cm3(N·m)-1 at temperature of 350°C. meaning the perfect properties of stability and recovery with higher bending strength and impact toughness.
     The friction and wear mechanism was analyzed through observing the worn surface morphology by scanning electron microscope (SEM), Field-emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectrometry (IR). The results showed that the wear mechanism is that the particle abrasion occurs at low temperature, the adherence abrasion and particle abrasion take place at the temperature between 200~350°C. The transferred layer is formed, and big debris particles of lath-shape and sheet-shape are found on the worn surface. The thermal degradation of the PEEK does not occur until its temperature rises to higher than 350°C.
     The process of abrasion is the repeating cycles that the friction materials undergo continuous furrowing, mechanical abrasion, adhesion, formation of transfer film, deformation, propagating and growing of microcrack, delamination, fatigue and wear. The friction film exerts a great impact on the tribological properties of the friction couple. In sliding process, plate shaped transfer films are a compositional mix of components including barite (BaSO4), sulfide stibium (Sb2S3), chromite powder(FeCr2O4), steel fibres and grey cast disc of the mate materials. The composite materials undergo a series of mechanical, thermal and chemical changes that compounds of barium, iron and sulfur formed on the contact interface. Two kinds of surface film structure are formed: one is cystiform microstructure with PEEK matrix surrounded by single or multi-crystal powder of fillers; the other is meshwork generated by resin base and friction fillings. The superficial structure of friction material after wear test is composed of three layers. The first is surface film that was worn and torn continually during abrasion process as a result of friction force and heat. The second is transition layer with a thickness of about 0.3mm and could be translated into film incessantly. The third layer is friction material keeping the initial state before abrasion test.
     The BP artificial neural network is adopted to develop an intelligent design system for semi-metallic friction material. For the network of property forecast, the best network architecture is decided as 5-[29]1-2. The train function is trainlm,and logsig is the functions between input and hidden layers, purelin between hidden and output layers. For the network of ingredient forecast, the best network architecture is 2-[300]1-[150]2-4. The train function is trainscg,and logsig, tansig are the functions between input and hidden layers, purelin between hidden and output layers.Test results showed that the trained network can accurately forecast the friction coefficient and wear rate, the error between forecast results and the experimental results is small and sufficient to meet the needs of practical application.
     The developed stainless/carbon fibers reinforced PEEK friction plates were used in Tunnel Boring Machine and their wear loss was smaller than that of asbestos friction facings. The developed friction materials exhibited stable friction coefficient and lower wear ratio and are suitable for clutch Disc either in normal or in sliding conditions.
引文
1 M. Yoshihito, M. Kyoichi. Development of Tunnel Boring Machine for High-speed Excavation. Komat'su Technical Report, 2000, 46: 64-70
    2 S. Kahraman. Historical Review of Tunnel Boring Machine (TBM) data. CIM Magazine, 2007, (2): 107-108
    3钱七虎,李朝甫.全断面掘进机在中国地下工程中的应用现状及前景展望.建筑机械, 2005, (5): 28-35
    4王涛,朱文坚.摩擦制动器.广州:华南理工大学出版社, 1992: 23-34
    5路易斯B.纽曼(美)著.张云民,汤希庆译.摩擦材料最近进展.北京:中国建筑工业出版社, 1986: 24-89
    6张元民.有机摩擦材料进展.摩擦材料文集(上), 1984, (5): 1-7
    7陶婉蓉,吴叙勤,张元民.高性能聚合物基复合材料.上海:上海科学技术出版社, 1989: 123-156
    8 M.G. Jacko, P.H.S. Tsang, S.K. Rhee. Automotive Friction Materials Evolution During the Past Decade. Wear, 1984, 100: 503-515
    9曾天卷,陶毕华,朱瑞宏.玻璃纤维在摩擦材料领域的应用.玻璃纤维, 1997, 25(3): 14-17
    10 N.S.M. Eltayeb; B.R. Yousif. Evaluation of Glass Fiber Reinforced Polyester Composite for Multi-pass Abrasive Wear Applications. Wear, 2007, 262: 1140-1151
    11 Z.B. Chen, X.J. Liu, R.G. Lu, T.S. Li. Mechanical and Tribological Properties of PA66/PPS Blend. III. Reinforced with GF. Journal of Applied Polymer Science, 2006, 102: 523-529
    12 Q. Jan, A. Van den Filip, D. De Liesbet. Frictional Behavior of Glass Fiber Reinforced Polyester under Different Loads. Materials Science Forumence., 2007, 561/565: 639-642
    13李志军,韦玮,等.玻璃纤维增强酚醛树脂基摩擦材料摩擦磨损性能研究.西安交通大学学报, 2000, (4): 67-72
    14 B. Suresha, G. Chandramohan, et al.. Three-body Abrasive Wear Behaviour of Carbon and Glass Fiber Reinforced Epoxy Composites. Materials Science and Engineering. A, 2007,443:285-291
    15 J.P. Giltronr. The Role of the Counter Face in the Friction and Wear of Carbon-fiber-rein-forced Thermosetting resin .Wear, 1970, 16: 359-364
    16 J.S. Chen, J.H. Jia, H.D. Zhou, J.M. Chen, S.Y. Yang, L, Fan. Tribological Behavior of Short-fiber-reinforced Polyimide Composites under Dry-sliding and Water-lubricated Conditions. Journal of Applied Polymer Science, 2008, 107: 788-796
    17 Y.J. Shi, X. Feng, H.Y. Wang, X.H. Lu. Tribological Properties of PTFE Composites Filled with Surface-treated Carbon Fiber. Journal of Materials Science, 2007, 42: 8465-8469
    18 J. Li, X.H. Cheng. Evaluation of Tribological Performance of Surface-treated Carbon Fiber- reinforced Thermoplastic Polyimide Composite. Journal of Applied Polymer Science, 2008, 107: 1147-1153
    19 Y.J. Shi, X. Feng, H.Y. Wang, X.H. Lu, Tribological Properties of PTFE Composites Filled with Surface-treated Carbon Fiber. Journal of Materials Science, 2007, 42: 8465-8469
    20刘旭军,李同生,等.芳纶纤维织物摩擦磨损性能的研究.摩擦学学报, 1999,19(1): 23-27
    21 S.J. Kim, H. Jang. Friction and Wear of Friction Materials Containing Two Different Phenolic Resins Rein Forced with Aramid Pulp. Tribology International, 2000, 33: 477-484
    22刘旭军,李同生.表面处理对芳纶织物粘接性能及摩擦性能的影响.高分子材料科学与工程, 2000, 16(1): 74-76
    23刘佩华,刘旭军,吕仁国,李同生.芳纶/玻纤混杂纤维增强摩阻材料的研究.机械工程材料, 2000, 24(3): 38-39
    24 X. Feng, H.Y. Wang, Y.J. Shi, D.H. Chen, X.H. Lu. The Effects of the Size and Content of Potassium Titanate Whiskers on the Properties of PTW/PTFE Composites. Materials Science and Engineering. A, 2007, 448: 253-258
    25 Y.C. Kim, M.H. Cho; S.J. Kim; H. Jang. The Effect of Phenolic Resin, Potassium Titanate, and CNSL on the Tribological Properties of Brake Friction Materials. Wear, 2008, 264: 204-210
    26吴训锟,王昌松,冯新.晶须状填料对酚醛树脂摩擦材料性能的影响,润滑与密封, 2007, 32(11): 122-126
    27 M. Kristkova, Z. Weiss, P. Filip. Hydration Properties of Vermiculite in Phenolic Resin Friction Composites. Applied Clay Science. 2004, 25: 229-236
    28郝华伟.海泡石及硅灰石纤维的矿物学特性及其在无石棉刹车片中的应用.非金属矿, 2003, 26(5): 56-57
    29王云鹏,马云海,佟金,等.硅灰石/海泡石纤维混杂增强摩擦材料的摩擦学行为.电子显微学报, 2006, 25: 163-164
    30 L. Han, L. Huang. Optimization of Ceramic Friction Materials. Composites Science and Technology, 2006, 66(15): 2895-2906
    31 S.Z. Chen, J.H. Lin; C.P. Ju. Effect of Graphite Content on the Tribological Behavior of a Cu-Fe-C Based Friction Material Sliding against FC30 Cast Iron. Materials Transactions, 2003, 44, 1225-1230
    32王文辉,肖凯,郑聃.新型重负荷铜基金属陶瓷摩擦材料的研究.粉末冶金技术, 2007, 25(5): 344-347
    33 H. Jang, K. Ko, S.J. Kim, et a1.. The Effect of Metal Fibers of the Friction Performance of Automotive Brake Friction materials. Wear, 2004, 256(3-4): 406-414
    34赵建明,吴鹏.半金属基提速客车盘形制动闸片摩擦特性的研究.机械设计与制造, 1999, 28(4): 19-21
    35梁爽,陈光雄,戴焕云,等.纤维增强合成闸片摩擦磨损特性的试验研究.摩擦学学报, 2006, 26(6): 590-594
    36刘美玲,刘咏,刘伯威.钢纤维对摩擦材料性能的影响.粉末冶金技术, 2007, 25(5): 340-343
    37 X. Jia, X.M. Ling. Friction and Wear Characteristics of Polymer-Matrix Friction Materials Reinforced by Brass Fibers. Journal of Materials Engineering and Performance, 2004, 13: 642-646
    38苏堤,黄伯云.金属纤维增强型摩擦材料与灰铸铁滑动摩擦性能.中南大学学报(自然科学版), 2007, 38(4): 583-588
    39肖祥麟.摩擦学导论.上海:同济大学出版社, 1990: 23-56
    40 D. Severin; S. Dorsch. Friction Mechanism in Industrial Brakes. Wear. 2001, 249(9): 771-779
    41 D. Tabor. Tribology-the last 25 Years. Tribology International. 1995, 28: 7-10
    42 M. Scherge, D. Shakhvorostov; K. Pohlmann. Fundamental Wear Mechanism of Metals. Wear. 2003, 255: 395-400
    43 C. Hsieh; Y.F. Chen; S.Y. Lee. A New Friction Model Based on a Hypothetical Friction Mechanism. 6th IASTED International Conference on Modelling, Simulation and Optimization. 2006: 28-33
    44 E. Hiroshi, S. Jun, T. Yoji. Sliding Friction Mechanism on Ultra Precision Surface in Atomic Scale. The 1st Asia International Conference on Tribology (ASIATRIB' 98), Beijing, China, October 12-15, 1998, 1: 314-318
    45 I. Yoshiro. Theory of Wear. Japanese Journal of Tribology. 2000, 45(6): 517-527
    46 Y. Sahin. Tribological Behavior and Wear Surface Analysis of Metal-matrix Composites. Journal of Materials Science, 1999, 34: 875-880
    47 E. Mikael, L. John, J. Stafan. Wear and Contact Conditions of Brake Pad on Glass. Wear, 2001, 249: 272-278
    48 L. Starczewski, J. Szumniak. Mechanisms of Transferring the Matter in a Friction Process in a Tibology System of Polymeric Composite-metal. Surface and Coatings Technology, 1998, 100-101: 33-37
    49 S.K. Rhee, M.G. Jacko, PH.S. Tsang. The role of Friction Film in Friction: Wear and Noise of Automotive Brakes. Wear, 1991, 146: 89-97
    50罗成,苏堤,贺奉嘉,等.氧化膜对半金属汽车刹车材料摩擦磨损性能的影响.中南工业大学学报, 1999, 30 (3): 28 8-291
    51 X.C. Feng, Z.P. Lu, R.J. Zhang. Analysis of the Transferred Film Formed during Sliding Wear for Carbon Fibre Reinforced Polyetheretherketone and its Composites. Journal of Materials Science, 1999, 34: 3513-3524
    52 S. Perry, S. Lee, Yong-Seok Shon. The Relationships between Interfacial Friction and the Conformational Order of Organic Thin Films. Tribology Letters, 2001, 10(1-2): 81-87
    53黄丽,徐定宇.改性聚酰亚胺摩擦磨损性能的研究.复合材料学报, 1999, 16(1): 63-66
    54 W. Osterle, M. Griepentrog, T.Gross, et al.. Chemical and Microstructural Changes Induced by Friction and Wear of Brakes. Wear, 2001, 251: 1469-1476
    55И.М.费多尔钦科(苏).现代摩擦材料.北京:冶金工业出版社, 1983: 1-12
    56 J. Bijwe. Composites as friction Materials: Recent Developments in Non-Asbestos Fiber Reinforced Friction Materials-A Review. Polymer Composites, 1997, 18: 378-396
    57 B.K. Satapathy, J. Bijwe. Performance of Friction Mmaterials Based on Variation in Nature of Organic Fibres Part I. Fade and Recovery Behavior. Wear, 2004, 257: 573-584
    58 V.M. Kryachek. Friction Composites: Traditions and New Solutions (Review) II. Composite Materials Journal Powder metallurgy and metal ceramics, 2005, 44: 5-16
    59 N. Chand, S.A.R. Hashmi, S. Lomash, A. Naik. Development of Asbestos Free Brake Pad. Journal of the Institution of Engineers. Mechanical Engineering Division, 2004, 85: 13-16
    60曾泽斌.摩擦材料配方的正交设计.汽车工艺与材料. 1999, 4: 29-29, 44
    61朱文坚,王涛.无石棉(半金属)配方的模糊优化设计及其应用.机械设计, 1991, (1): 10-13
    62 Y.A Lu. Golden Section Approach to Optimization of Automotive Friction Materials. Journal of Materials Science, 2003, (38): 1081-1085
    63 C.F. Tang, Y.F. Lu. Optimization of an Industrial Friction Material Formulation. Tribology Transactions, 2003, 46: 19-23
    64 Y. Lu. A Combinatorial Approach for Automotive Friction Materials: Effects of Ingredients on Friction Performance. Composites Science and Technology. 2006, 66: 591-598
    65 D.M. Elzey, R. Vancheeswaran, S.W. Myers, R.G. McLellan. Intelligent Selection of Materials for Brake Linings. 18th Annual Brake Colloquium and Engineering Display, San Diego, California, USA, 2000: 181~186
    66 D.M. Elzer, R. Vancheeswaran, S. Myers, R. Mclellan. Multi-criteria Optimization in the Design of Composites for Friction Applications. The International Conference on Brakes (Brakes 2000): 197-206
    67 Y.H. Kim, J.J. Lee. A Study on the Friction Characteristics of Automotive Composite Brake Pads Using Taguchi Method, International Journal of Modern Physics B, 2003, 17: 1845-1850
    68 S.S. Mahapatra, A. Patnaik, A. Satapathy. Taguchi Method Applied to Parametric Appraisal of Erosion Behavior of GF-reinforced Polyester Composites. Wear, 2008, 265: 214-222
    69 G. Drava. Application of Chemometrics to the Production of Friction Materials: Analysis of Previous Data and Search of New Formulation. Chemometrics and Intelligent Laboratory Systems, 1996, 32: 245-249
    70 K. Takahisa, S. Hiroshi. Friction Material Design for Brake Pads using Database. Tribology Transactions, 2001, 44(1): 137-141
    71 K. Fang, J. Li. Some New Results on the Uniform Design. Chinese Science Bulletin. 1995, 40(4): 268-272
    72方开泰.均匀设计与均匀设计表.北京:科学出版社, 1994: 13-18,35-63
    73 R. Li, K.J. Dennis, Y.C. Lin. Uniform Design: Design, Analysis and Applications. International journal of materials & product technology. 2004, 20: 101-114
    74 G.Y. Zhang, B.S. Fang. A Uniform Design-based Back Propagation Neural Network Model for Amino Acid Composition and Optimal pH in G/11 Xylanase. Journal of Chemical Technology & Biotechnology, 2006, 81: 1185-1189
    75 D.C. Barto. Modelling of Materials for Automotive Braking. International Materials Reviews, 2004, 49: 379-385
    76 M.H. Cho, E.G. Bae, H. Jang, et al.. The role of Raw Material Ingredients of Brake Linings on the Formation of Transfer Film and Friction Characteristics. SAE Intenational, 2001
    77 M.H. Cho, S.J. Kim, D. Kim; H. Jang. Effects of Ingredients on Tribological Characteristics of a Brake Lining: An Experimental Case Study. Wear, 2005, 258: 1682-1687
    78 H. Jang, K.Ko, S.J. Kim, R.H. Basch, J.W. Fash. The Effect of Metal Fibers on the Friction Performance of Automotive Brake Friction Materials, Wear, 2004, 256: 406-414
    79 A.P. Harsha, U.S. Tewari. Tribological Studies on Glass Fiber Reinforced Polyetherketone Composites. Journal of Reinforced Plastics and Composites, 2004, 23(1): 65-81
    80 B.K. Satapathy, J. Bijwe. Performance of Friction Materials Based on Variation in Nature of Organic Fibers, PartⅡ. Optimization by Balancing and Ranking Using Multiple Criteria Decision Model (MCDM). Wear, 2004, 257: 585-589
    81 S.C. Ho, J.H. Chern Lin; C.P. Ju. Effect of Fiber Addition on Mechanical and Tribological Properties of a Copper/phenolic-based Friction material. Wear, 2005, 258: 861-869
    82 H. Zhang, Z. Zhang, K. Friedrich. Effect of Fiber Length on the Wear Resistance of Short Carbon Fiber Reinforced Epoxy Composites. Composites Science and Technology, 2007, 67: 222-230
    83 J. Li, X.H. Cheng. The Effect of Carbon Fiber Wear Properties of Carbon Composites Content on the Friction and Fiber Reinforced Polyimide. Journal of Applied Polymer Science, 2008, 107: 1737-1743
    84 S.J. Kim, J. Ho. Friction and Wear of Friction Materials Containing two Different Phenolic Resins Reinforced with Aramid Pulp. Tribology International, 2000, 33: 477-484
    85 S.J. Kim, J. Ho. Friction and Wear of Friction Materials Containing two Different Phenolic Resins Reinforced with Aramid pulp. Tribology International, 2000, 33: 477-484
    86尹衍升,李静,马洪涛.树脂粘结剂对汽车摩擦材料性能的影响.复合材料学报, 2004, 21(6): 104-107.
    87 S.C. Ho; J.H. Chern Lin; C.P. Ju. Effect of Phenolic Content on Tribological Behavior of Carbonized Copper-phenolic Based Friction material. Wear, 2005, 258: 1764-1774
    88孟春玲,张力,张扬.基体和增强体对聚合物基摩擦材料性能影响研究.玻璃钢/复合材料, 2007, (6): 46-48
    89 K. Friedrich, Z. Zhang, A.K. Schlarb. Effects of Various Fillers on the Sliding Wear of Polymer Composites, Composite Science Technology, 2005, 65: 2329-2343
    90鲁知音,管琪明,何林,刘勇.无机填料对制动摩擦材料摩擦磨损性能的影响.矿产综合利用, 2007, (6): 33-36
    91 M.H. Cho, J. Ju; S.J. Kim; H. Jang. Tribological Properties of Solid Lubricants (graphite) for Automotive Brake Friction Materials. Wear, 2006, 260: 855-860
    92 M.H. Cho, J. Ju; S.J. Kim; H. Jang. Complementary Effects of Solid Lubricants in the Automotive Brake Lining. Tribology International, 2007, 40: 15-20
    93 M. Boz,A. Kurt.The Effect of A1203 on the Friction Performance of Automotive Brake Friction Aterials. Tribology International, 2007, 40(7): 1161-1169
    94 M.H. Cho, D.S. Kim. Effects of Ingredients on Tribological Characteristics of a Brake lining: An Experimental Case Study. Wear, 2005, 258(11-12): 1682-l687
    95 K.W. Hee, P. Filip. Performance of Ceramic Enhanced Phenolic Matrix Brake Lining Materials for Automotive Brake Linings. Wear, 2005, 259(7-12): 1088-1096
    96 C. Li, Z. Zhang, Y. Lin, F. Klause. Tribology Properties of High Temperature Resistant Polymer Composites with Fine Particles. Tribology International, 2007, 40: 1170-1178
    97 M. Bozl, A. Kurt. Effect of ZrSiO4 on the Friction Performance of Automotive Brake Friction Materials. Journal of materials Science & materials, 2007, 23(6): 843-850
    98 N. Axén, I.M. Hutchings, S. Jacobson. A Model for the Friction of Multiphase Materials in Abrasion. Tribology International, 1996, 29: 467-475
    99徐强,张辛红,等.人工神经网络在材料科学中的应用与展望.材料科学与工艺, 2005, 13(4): 76-83
    100何林,孙静,等.人工神经网络和优化方法相结合在复合材料研究中的应用.硅酸盐通报, 2004, (1): 85-89
    101阳范文.材料性能预测和配方的人工神经网络研究方法.合成材料老化与应用. 2001, (1): 15-19
    102左秀荣,薛向欣,姜茂发,张庆才,顾文俊.利用人工神经网络研究合金元素对SCM822H钢性能的影响.钢铁研究学报, 2002, 14(3): 51-54
    103 S. Malinov, W. Sha. Application of Artificial Neural Networks for Modelling Correlations in Titanium Alloys. Materials Science and Engineering. A, 2004, A365: 202-211
    104宋仁国,董敏. 7175铝合金工艺优化的遗传算法.材料科学与工程, 1998, 16(1): 28-31
    105 Y. Lu. Fade and Recovery of Friction materials. 34th Internaitonal SAMPE Technical Conference, Baltimore, Maryland, USA, 2002: 170-177
    106郭新涛.复合材料摩擦片热衰退机理初步研究.玻璃钢/复合材料, 2002, (6): 15-16
    107刘献伟,刘治猛,等.刹车片用酚醛树脂摩擦复合材料研究进展.中国塑料.2 007, 21(3): 10-14
    108 H. Jang, K. Ko, S.J. Kim, R.H. Basch, J.W. Fash. The Effect of Metal Fibers on the Friction Performance of Automotive Brake Friction Materials. Wear, 2004, 256: 406-414
    109 A.P. Harsha, U.S. Tewari. Tribological Studies on Glass Fiber Reinforced Polyetherketone Composites, Journal of Reinforced Plastics and Composites, 2004, 23(1): 65-81
    110陆怡平,杜杨.酚醛树脂增韧改性及其在摩擦材料中的应用.非金属矿, 1998, 3(123): 54-56
    111豆立新,龚烈航,沈健,等.复合材料添加剂对改性PTFE的摩擦转移膜的形成和稳定作用.复合材料学报, 2004, 21(2): 65-69.
    112 J. Bijwe, N. Majumdar, B.K. Satapathy. Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials, Wear, 2005, 259: 1068-1078
    113 B.H. McCormick. The Interactions of Phenolic Polymers in Friction Materials. International Conference Braking 2002: from the Driver to the Road, Leeds, UK, 2002: 355-367
    114 T.S. Li, P.H. Cong, X.J. Liu, et al.. Tribophysical and Tribochemical Effects of a Thermoplastic Polyimide. Journal of Materials Science, 2000, 35: 2597-2601
    115 M. Masoomi, A. Katbab, H. Nazockdast. Damping Behavior of the Phenolic Based Composite Friction Materials Containing Thermoplastic Elastomers (TPEs). Iranian Journal of Chemistry and Chemical Engineering, 2006, 25: 35-40
    116 T. Sinmazcelik. Thermal Aging Effects on Mechanical and Ttribological Performance of PEEK and Short Fiber Reinforced PEEK Composites, Materials & Design, 2007, 28: 641-648
    117吴培熙,沈健.特种性能树脂基复合材料.北京:化学工业出版社, 2003: 189
    118刘少琼,蹇锡高,黄河,等.新型耐热树脂基复合材料的性能研究.高分子材料科学与工程, 2002, 18(6): 97-100
    119 N. Chand, S.A.R. Hashmi, S. Lomash, A. Naik. Development of Asbestos Free Brake Pad. Journal of the Institution of Engineers (India), Mechanical Engineering Division. 2004, 85(1): 13-16
    120王满增,赵田臣,等. TBM驱动离合器摩擦片失效及预防.矿山机械. 2003, 31(12): 55-57
    121徐明新,杜立杰. TBM离合器摩擦片失效成因及对策.建筑机械. 2004, (7): 94-97
    122机械设计手册编委会.机械设计手册:联轴器、离合器与制动器,机械工业出版社, 2007:
    123黄小伦,戴雄杰.半金属摩擦材料表面层的摩擦性能的探讨.摩擦学学报, 1986, (4): 17-19
    124周建钊,张辅荃.离合器摩擦片的温升分析.机械设计与研究, 1998, (1): 50-52
    125周建钊,高亚明.主离合器摩擦片温度场的数值解法.解放军理工大学学报(自然科学版), 2003, 4(1): 58-62
    126 Károly Váradi. Numerical and Finit Element Contact Temperature Analysis of Real Composite-steel Surfaces in Sliding Contact. Tribology International. 1998, 31(11): 669-686
    127 I.L.M. Ahmed, P.S. Leung, P.K. Datta. Contact Analysis of the Disc Brake by Finite Element Methods. European Conference on Vehicle Noise and Vibration London,UK, 2002:3-15
    128 A.R. AbuBakar, H. Ouyang, H. Jang. Wear Prediction of Friction Material and Brake Squeal Using the Finite Element Method. Wear, 2008, 264: 1069-1076
    129曹献坤.盘式制动器摩擦片的温度场研究.武汉理工大学学报, 2001, 23(7): 22-24
    130 X.R. Zhang, X.Q. Pei, Q.H. Wang. Tribological properties of MoS2 and Carbon Fiber Reinforced Polyimide Composites. Journal of Materials Science. 2008, 43: 4567-4572
    131 S. Quintelier. Wear Behavior of Carbon Fiber-reinforced Poly(phenylene sulfide). Polymer Composites. 2006, 27: 92-98
    132 Z.B. Chen, X.J. Liu, T.S. Li, R.G. Lu. Mechanical and Tribological Properties of PA66/PPS Blend. II. Filled with PTFE. Journal of Applied Polymer Science. 2006, 101: 969-977
    133 H.Y. Xu, Z.Z. Feng, J.M. Chen, H.D. Zhou. Tribological Behavior of the Carbon Fiber Reinforced Polyphenylene Sulfide (PPS) Composite Coating under Dry Sliding and Water Lubrication. Materials Science and Engineering. A, 2006, 416: 66-73
    134 M.H. Cho, S. Bahadur. A Study of the Thermal, Dynamic Mechanical, and Tribological Properties of Polyphenylene Sulfide Composites Reinforced with Carbon Nanofibers. Tribology Letters, 2007, 25: 237-245
    135 M.S. Kim, I.R. Jeon, K.H. Seo, D.J. Kim. Polymerization Characteristics and Thermal Degradation Study of Poly(Phenylene Sulfide Ketone). Journal of Applied Polymer Science, 2000, 76(8): 1329-1337
    136 Z. Zhang, C. Breidt, L. Chang, K. Friedrich, Wear of PEEK Composites Related to TheirMechanical Performances. Tribology International, 2004, 37: 271-277
    137 G. Zhang, H. Yu, C. Zhang, H. Liao, C. Coddet. Temperature Dependence of the Tribological Mechanisms of Amorphous PEEK (polyetheretherkentone) under Dry Sliding Conditions, Acta Materialia, 2008, 56: 2182-2190
    138 R. Park, J. Jang. Performance Improvement of Carbon Fiber/Polyethylene Fiber Hybrid Composites. Journal of Materials Science, 1999, 34: 2903-2910
    139 Ch. Zhang, C.T. Wang. Non-asbestos Friction Material Based on Kevlar Fiber and Vermiculite. Proceedings of 2th International Symposium on Tribo-fatigue, 2000, 10: 475-479
    140曹献坤,闻荻江,等. 1-2-3型摩擦制动复合材料的研究.复合材料学报, 2000, 17(2): 94-97
    141曹献坤,梁磊.玻纤蛭石混杂增强摩擦制动材料的研制.材料开发与应用. 2000, 15(2): 17-20
    142郭洪涛,张佐光.碳纤维/芳纶桨粕摩阻复合材料初步研究.复合材料学报, 2001, 18(2): 50-53
    143任德亮,廖波,肖福仁,许昌玲.高韧性埋弧焊烧结焊剂.新技术新工艺, 2004, (4): 34-36
    144许昌玲,任德亮等.烧结焊剂的熔化特性在其配方设计中的应用.焊接. 2005, (12): 26-29
    145 R.A. Issa, D. Fletcher. Neural Networks in Engineering Applications. Procedings of the 29th Annual Conference Colorado State University, Fort Collin’s, Colorado, 1993: 177-186
    146 S.P. Jones, R. Jansen, R.L. Fusaro. Preliminary Investigation of Neural Network Techniques to Predict Tribological Properties. Tribology Transactions, 1997, 40(2): 312-320
    147 K. Velten, R. Reinicke, K. Friedrich. Wear Volume Prediction with Artificial Neural Networks. Tribology International, 2000, 33: 731-736
    148 K. Friedrich, K. Velten. Prediction on Tribological Properties of Short Fibre Composites Using Artificial Neural Networks. Wear, 2002, 12: 16-29
    149 D. Aleksendric; C. Duboka. Fade Performance Prediction of Automotive Friction Materials by means of Artificial Neural Networks. Wear, 2007, 262: 778-790
    150张志勇,刘瑞桢.掌握和精通MATLAB.北京:北京航空航天大学出版社, 1998: 23-25
    151 A.K. Hildred, P.C. Brooks and D.C. Barton. Micromechanical Modelling of Friction Materials. SAE International, 2001, 1: 3133-3142
    152 D. Dowson. History of Tribology. London: Longman Group Limited, 1997
    153温诗铸.摩擦学原理.北京:清华大学出版社, 1990: 78-82.
    154 M.G. Jacko. Physical and Chemical Changes of Organic Disc Pads in Service. Wear, 1978, 46: 163-175
    155 M.G. Jacko, P.H.S Tsang, S.K. Rhee. Wear Debris Compaction and Friction Film Formation of Polymer Composites. Wear, 1989, 133: 23-38
    156 M. Eriksson, F. Bergman, S. Jacobson, Surface Characterization of Brake Pads after Running under Silent and Squealing Condition, Wear, 1999, 232: 163-167
    157 F. Bergman, M. Eriksson, S. Jacobson. Influence of Disc Topography on Generation of Brake Squeal. Wear, 1999, 225-229:621-628
    158 M. Eriksson, S. Jacobson, Tribological Surfaces of Organic Brake Pads. Tribology International, 2000, 33: 817-827
    159 X.C. Feng, R.J. Zhang. Analysis of Electron Spectroscopy for Chemical Analysis of the Transferred Film Formed During Sliding Wear for Carbon Fiber Reinforced Polyetheretherketone and its Composites.Materials Science and Engineering A, 1999, 17(1): 29-34
    160 A. Wirth, R. Whitaker. The Role of Transfer Films Chemistry in Automotive Friction Couples. In: Proceedings of the Int. Congr. X-ray Optics and Microanalisis. 1992
    161 A. Wirth, D. Eggleston and R. Whistaker. A Foundamental Tribochemical Study of the Third Body Layer Formed during Automotive Friction Braking, Wear, 1994,179: 75-81
    162 H. Mueser Martin, O. Wenning Ludgar, Robbins Mark. Simple Microscopic Theory of Amonton’s Laws for Static Friction. Physical Review Letters. 2001, 86(7): 1295-1298
    163 S. Fujisawa, E. Kishi, Y. Sugawara, Seizo Morita. Atomic-scale Friction Observed with a Two-dimensional Frictional-force Microscope. Physical Review B, 1995, 51(12): 7849-7857
    164 L. Krim. Resource Letter: FMMLS-1: Friction at Macroscopic and Microscopic Length Scales. Am. J. Phys. 2002,70 (9): 890-897
    165 E. Gnecco, R. Bennewitz, et al.. Friction and Wear on the Atomic Scale. Wear. 2003, 254: 859-862
    166 J. Ringlein, M. O. Robbins. Understanding and Illustrating the Atomic Origins of Friction, Am. J. Phys., 2004, 72(7): 884-891
    167李学锋,李维敏,等.原子力显微镜对材料表面微摩擦性能研究进展.合成材料老化与应用. 2007, 36(4): 25-29
    168 T.H. Fang, W.J. Chang. Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation. Microelectronics Journal. 2005, 36: 55-59
    169 C. Gibbs, J.W. Bender, A study of the nanotribological fatigue of ultra-high molecular weight polyethylene, Tribology Letters, 2006, 22(1): 85-93
    170孙智,周华茂,等.纳米Fe2O3颗粒填充UHMWPE复合材料摩擦表面的原子力显微分析.电子显微镜学报. 2007, 26(2): 138-141
    171 N.M. Alexeyev. On the Motion of Material in the border Layer in Solid Friction, Wear, 1990, 139: 33-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700