用户名: 密码: 验证码:
废弃生物质螺旋增压式连续闪爆过程机理及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用废弃生物质中的植物纤维与塑料制备复合材料时,通常会对植物纤维进行预处理。在植物纤维各种预处理方法中,由于蒸汽爆破预处理不会对环境造成任何破坏,且生产率高,在各种方法中具有突出的优势。目前国内对植物纤维改性多采用间歇式蒸汽爆破技术,而间歇式蒸汽爆破技术的产量低,且需要附加蒸汽设备,使整机体积庞大,成本较高,从而限制了其广泛应用,因此有必要对连续式闪爆设备及其理论展开研究。
     单螺杆连续式闪爆设备的物料输送过程与传统单螺杆挤出机的固体输送极为相似,但单螺杆连续式闪爆设备的压缩比比单螺杆挤出机压缩比大很多。因此对于单螺杆连续式闪爆设备而言,物料不再是不可压缩,螺槽也不是展开成传统的平直螺槽,而是考虑物料的密度和速度均为变化的基础上,建立楔形螺槽的物理模型,再借鉴传统单螺杆挤出机的固体输送理论,对单螺杆连续式闪爆设备中固体生物质材料进行运动分析和受力分析,建立数学模型,进一步分析物料在单螺杆连续式闪爆设备中建压和温度升高的过程。口模的设计尺寸对闪爆效果也有较大影响,同样建立了口模的环形物料输送物理模型,并对环形物料进行运动分析和受力分析,建立压力数学模型,进一步分析口模水平段长度对闪爆压力的影响规律。另外通过摩擦力做功的原理建立了物料沿螺槽方向的温度数学模型,分析了喂料量、主轴转速等对闪爆温度的影响规律。在理论分析基础上,自行设计了单螺杆连续式闪爆设备,并在该设备上附加背压和温度测试模块,利用背压和旋转轴上靠近口模处温度近似观察闪爆压力和温度的变化规律。
     在自行设计的单螺杆连续式闪爆设备上开展了各种实验研究,由于直接测量口模处压力非常困难,实验中利用螺杆背压近似代替闪爆压力,以观察闪爆压力的变化规律。虽然通过螺杆背压可以近似反映闪爆压力的变化,但背压测量装置结构复杂,也并非闪爆设备所必需的附加装置,因此研究了主机电流与螺杆背压之间的关系,发现二者有很好一致性,则可以通过主机电流来反映闪爆压力的变化。实验中还研究了闪爆温度与物料闪爆前后含水率差值之间的关系,发现二者有很好一致性,则可以用含水率差值来反映闪爆温度的变化。通过更换具有不同直径和水平段长度的口模,测试不同尺寸条件下的闪爆压力,找出了口模尺寸对闪爆压力的影响规律。最后通过实验研究了喂料量和主轴转速等工艺参数对闪爆压力和温度的影响。
     由于单螺杆连续式闪爆设备物料的输送能力差、产量低、混合能力差、自清洁性不好等缺点,有必要进一步开展输送能力强、产量高、混合能力强、自清洁性好的三螺杆连续式闪爆设备的研究。根据三螺杆连续式闪爆设备输送能力强的特点,建立了机筒内物料的正位移输送模型,计算出混合段、输送段、增压段等各段的―C‖形小室的体积,利用体积压缩建立压力数学模型,分析了物料在三螺杆连续式闪爆设备中建压的过程,并进一步求得该闪爆设备的产量理论计算公式。自行设计了三螺杆连续式闪爆设备,并专门设计了进料连续、均匀、喂料量可控的生物质材料计量进料装置和在线快速补水装置。
     在自行设计的三螺杆连续式闪爆设备上开展一系列实验,首先研究了闪爆温度与物料闪爆前后的含水率差值之间的关系,同样发现闪爆温度与含水率差值有很好的一致性;接着研究了喂料量、物料初始含水率和粒径大小等工艺参数对闪爆压力和温度的影响。在前章闪爆设备产量的理论分析基础上,进行了产量的实验测试,找出了产量与主轴转速间的关系。由于在连续式闪爆设备的压力和温度理论分析中应用到压力与密度关系的经验公式,其中涉及到一个重要参数,即物料参数,因此在最后通过实验求得了物料在常温及160℃时的物料参数,为进一步深入开展三螺杆连续式闪爆设备的理论和实验研究打下基础。
     通过对自行设计的单螺杆式、三螺杆式连续闪爆设备的研究,首次建立了连续闪爆设备内物料的压力和温度数学模型,揭示了连续闪爆过程机理及其闪爆效果,并预测了该过程中压力与温度的建立规律,与实验结果有较好的一致性。通过实验发现闪爆压力与主机电流、闪爆温度与物料闪爆前后的含水率差值有很好的一致性;口模直径减小和水平段长度增加均会增加闪爆压力,喂料量增加也可以增加闪爆压力,但会降低闪爆温度,主轴转速增加可以闪爆温度升高,但会降低闪爆压力;物料初始含水率越低,以及物料粒径越小,闪爆温度均越高。
The plant fiber of waste biomass should be pretreated regularly when it is processed withplastics to make composites. Among variety means of pretreatments, the steam explosion willnot damage anything to the environment, and the pretreatment productivity was high, whichare special advantages among all methods. The plant fiber modification usually adoptedintermittent steam explosion technology in domestic currently, however, the productivity ofwhich is low, and a steam equipment is needed for production. It makes the machine volumehuge, increases the production cost. Accordingly, the application is limited extremely, thus,the exploration on continuous steam explosion equipment and theory is of great significance.
     It was extremely similar that the solids conveying of single-screw extruder and thematerials conveying of single-screw continuous steam explosion equipment. However, thecompression ratio of the latter was much higher than that of the former. Thereby, for single-screw continuous steam explosion equipment, materials were no longer incompressible, andthe spiral grooves were not the traditional flat ones. Considering the basis that both thedensity and the velocity of materials were varying, a physical model of wedge-shaped spiralgrooves was established; on the other aspect, depending on the solids conveying theory oftraditional single-screw extruder, the movement and the force condition of solid biomassmaterials that processed in the continuous steam explosion equipment were analyzed. Then amathematical model was established, which made it possible to analyze the process ofpressure building and temperature increasing for the materials in the single-screw continuoussteam explosion equipment.
     It was a huge impact on the steam explosion effect with different designing diedimension. Thereby a physical model was built for the annular materials conveying of the die,and the movement and the force condition was analyzed for the annular materials, a pressuremathematical model was built. Moreover, the influence principle was analyzed for the diehorizontal section length to the steam explosion pressure. Furthermore, a temperaturemathematical model for the materials along the spiral groove direction was built according tothe principle of frictional force acting.
     Variety of experiments were carried out in the own designed equipment, since it wasrather difficult to measure the die pressure directly, then the steam explosion pressure wassubstituted by the screw backpressure, so that the variation principle for steam explosionpressure can be observed. The relationship between screw backpressure and main electriccurrent was studied, it was found that there was a consistency between them, which meant itcould be used to reflect the variety of the former. Furthermore, the relationship between the steam explosion temperature and the moisture content difference in materials that before andafter steam explosion. It was also found that there was a consistency between them, themoisture content difference could be used to represent the former. Through changing dieswith different diameters and horizontal lengths, different steam explosion pressures weremeasured, the principle was found that how the die sizes effected on steam explosionpressures. Some experiments were carried out to investigate how the parameters of materialvolume and main axis speed influenced the steam explosion pressure and temperature.
     Disadvantages for single-screw continuous steam explosion equipment performed as:low production, poor self-cleaning property, weak material conveying and mixing capacity. Itwas necessary to study triple-screw continuous steam explosion equipment which wouldovercome those disadvantages above. According to its powerful material conveying capacity,a positive displacement conveying model for the materials in the barrel was established. Itcontained calculating volumes of―C‖type chambers in mixing section, conveying section,pressurized section separately. After that, a mathematical model was built through volumecompression, which was used to analyze the pressure building process in the triple-screwcontinuous steam explosion equipment for the materials, furthermore, the theoreticalcalculating equation for the production of the equipment could be obtained. The triple-screwcontinuous steam explosion equipment was designed by our own. In addition, the online rapidreplenishment device, and the biomass materials metering feeding device, which could feedcontinuously, uniformly, controllable were designed specially.
     A series of experiments were carried out in the own designed triple-screw continuoussteam explosion equipment, Firstly, the relationship between steam explosion temperature andthe moisture content difference in materials that before and after steam explosion, it wasfound that there was a consistency between them; Moreover, the influence of technologicalparameters on steam explosion pressure and temperature, which contained feeding volume,original moisture content and particle size. Based on the theoretical analysis of equipmentproduction, a real production experiment was carried out, and the relationship that betweenthe production and the main axis speed was found. As the empirical equation related withpressure and density was applied in the theoretical analysis of pressure and temperature in thecontinuous steam explosion equipment, an important parameter was referred to, namely thematerial parameter, it was obtained when the temperature was at25oC and160oC separatelythrough experiments, which was laid a solid foundation for intensive research on theories andexperiments of triple-screw steam explosion equipment.
     Through the above theoretical analysis, the mathematical model for the pressure andtemperature in the continuous spiral pressurized steam explosion, the approximate analyticalsolution were obtained which contained the pressure, velocity, density and temperature of thematerials along the directions of spiral groove and die; The theoretical calculation formula ofthe production and the approximate analytical solution of the pressure along the direction,which revealed how the equipment do effect to the materials: The pressure and temperature ofthe materials were accumulated to a certain, which were then released through the die. It wascalled the mechanism of steam explosion effect, which provided theoretical guidance for thedesigning of continuous spiral pressurized equipment. It was found in the experiments thatthere was a coincidence in the steam explosion pressure and the main engine current; steamexplosion temperature and the moisture content difference in materials that before and aftersteam explosion. One varying patterns reflected the other; both the diameter decreasing of dieand the length increasing of horizontal section elevated the steam explosion pressure, theincreasing materials feeding volume also elevated the steam explosion pressure, however, itreduced steam explosion temperature, the speed increasing of main axis elevated the steamexplosion temperature, however, it decreased the steam explosion pressure; the lower of theoriginal moisture content, the higher of the steam explosion temperature.
引文
[1] Asokan P.,Firdoous M.,Sonal W..Properties and potential of bio fibres, bio binders,and bio composites[J].Reviews on Advanced Materials Science,2012,30:254-261.
    [2] Omar Faruk, Andrzej K. Bledzki, Hans-Peter Fink. Bio-composites reinforced withnatural fibers:2000-2010[J].Progress in Polymer Science,2012,37(11):1552-1596.
    [3]罗伟,杨万泰.可再生资源基生物质材料的研究进展[J].高分子通报,2013,4:36-40.
    [4] Rohit Datara,Jie Huanga,Pin-Ching Manessa,Ali Mohagheghia,Stefan Czernika,Esteban Chornetb.Hydrogen production from the fermentation of com stover biomasspretreated with a steam-explosion process[J]. International Journal of Hydrogen Energy,2007,32:932-939.
    [5] Jagadeesh Dani,Sudhakara P., Prasad C. Venkata.A study on the mechanical propertiesof bio-composites from renewable agro-waste/poly(lactic acid)[J].Journal of BiobasedMaterials and Bioenergy,2013,7:163-168
    [6] JieBing Li,Gunnar Henriksson,Goran Gellerstedt.Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steamexplosion[J].Bioresource Technology,2007,98:3061-3068.
    [7] Afrifah K A, Hickok R A, Matuana L M. Polybutene as a matrix for wood plasticcomposites[J]. Composites Science and Technology,2010,70(1):167-172.
    [8] Aslan Bayram1, Ramaswamy S.1, Raina M.1, Bio-composites: Processing ofthermoplastic biopolymers and industrial natural fibres from staple fibre blends up tofabric for composite applications[J]. Tekstil ve Muhendis,2012,19:47-51.
    [9] Kim Ki-Wook1, Lee Byoung-Ho1, Kim Hyun-Joong. Thermal and mechanical propertiesof cassava and pineapple flours-filled PLA bio-composites[J]. Journal of ThermalAnalysis and Calorimetry,2012,108:1131-1139.
    [10]张敏,强琪,李莉.不同植物纤维/PBS复合材料的性能差异比较[J].高分子材料科学与工程,2013,29:69-73.
    [11] Cheng, Qingzheng, Tong, Zhaohui, Dempere, Luisa. Disk Refining and UltrasonicationTreated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites[J].Journalof Polymers and the Environment,2013,21:648-657.
    [12]石红锦.可生物降解塑料的合成方法和现状[J].橡塑技术与装备,2013,39(2):17-19.
    [13]白一峰,佟文清.植物纤维工艺性能及其复合材料应用研究进展[J].高科技纤维及应用,2013,38:62-67.
    [14] Nathan Mosier,Charles Wyman, Bruce Dale, et al. Features of promising techonlogiesforpretreatment of lignocillulosic biomass[J].Bioresource Technology,2005,96(6):673-686.
    [15] Saha Badal C.Hemicellulose biocoversion[J].Ind Microbiol Biotechnol,2003,30(5):279-291.
    [16]张健.木质纤维素的物理预处理技术[J].轻工科技,2013,2:34-36.
    [17]李本贵.植物纤维与热塑性塑料复合界面相容性研究[J].企业技术开发,2006,25(1):24~26.
    [18]郑玉涛,陈就记,曹德榕.改进植物纤维/热塑性塑料复合材料界面相容性的技术进展[J].纤维素科学与技术,2005,13(1):45~55.
    [19]苏晓芬,生瑜.木塑复合材料界面改性方法研究进展[J].广州化工,2013,41(3):25~27.
    [20]杨娟,滕虎,刘海军.纤维素乙醇的原料预处理方法及工艺流程研究进展[J].化工进展,2013,32(1):97~103.
    [21] Khunrong T., Punsuvon V., Vaithanomsat P.. Production of ethanol from pulp obtainedby steam explosion pretreatment of oil palm trunk[J].Energy Sources, Part A,2011,33:221-228.
    [22] Shafiei Marzieh, Kabir Maryam M., Zilouei Hamid. Techno-economical study of biogasproduction improved by steam explosion pretreatment[J]. BioresourceTechnology,2013,148:53-60.
    [23] Sapci Zehra, Morken, John, Linjordet, Roar. An investigation of the enhancement ofbiogas yields from lignocellulosic material using two pretreatment methods: Microwaveirradiation and steam explosion[J]. BioResources,2013,8:1976-1985.
    [24] Boluda-Aguilar María1, López-Gómez Antonio. Production of bioethanol byfermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion[J].Industrial Crops and Products,2013,41:188-197.
    [25] Hui Lanfeng, Zhao Ting, Si Chuanling. Steam explosion pretreatment and ethanolextraction of wheat straw[J]. Advanced Materials Research,2011,183-185:635-638.
    [26] Y Sun, J Cheng. Hydrolysis of lignocellulosic materials for ethanol production[J].Bioresource Technology,2002(83):1–11.
    [27]张鑫,刘岩.木质纤维素原料预处理技术的研究进展[J].节能与环保,2005,(3):18-20.
    [28]李翠珍,黄斌,罗太安.纤维素的酸预处理研究[J].浙江化工,2005,35:11.
    [29] Chang Juan, Cheng Wei,Yin Qingqiang,Effect of steam explosion and microbialfermentation on cellulose and lignin degradation of corn stover [J].BioresourceTechnology,2012,104:587-592.
    [30] Cui Li, Liu Zhong, Si Chuanling.Influence of steam explosion pretreatment on thecomposition and structure of wheat straw[J]. BioResources,2012,7:4202-4213.
    [31] Gong Lingxiao, Huang Luolian, Zhang Ying.Effect of steam explosion treatment onbarley bran phenolic compounds and antioxidant capacity[J]. Journal of Agricultural andFood Chemistry,2012,60,7177-7184.
    [32] Marou ek Josef. Study on commercial scale steam explosion of winter brassica napusSTRAW[J].International Journal of Green Energy,2013,10:944-951.
    [33] Wang Ning, Chen Hong-Zhang.Manufacture of dissolving pulps from cornstalk by novelmethod coupling steam explosion and mechanical carding fractionation[J]. BioresourceTechnology,2013,139:59-65.
    [34] Marson WH.U.S.PAT.16556186an,1928.
    [35]王许涛.生物纤维原料汽爆预处理技术与应用研究.河南农业大学博士论文,2008.
    [36] Cantarella M,Cantarela L,Gallifueoo A,eta1.Comparison of different detoxificafionmethods for steam-exploded poplar wood as a Substrate for the bioproduction of ethanolin SHFand SSF[J].Proeess Biochemistry,2004,39(11):1533-1542.
    [37] Marou ek Josef. Finding the optimal parameters for the steam explosion process of hay[J]. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia,2012,35:170-178.
    [38] Fang Haixia, Deng James, Zhang, Xiao. Continuous steam explosion of wheat straw byhigh pressure mechanical refining system to produce sugars for bioconversion [J].BioResources,2011,6:4468-4480.
    [39]瞿金平.螺杆注射式植物纤维蒸汽爆破装置及方法.中国发明专利申请号200910036569.2.
    [40] Chen Wen-Hua,Tsai Chia-Chin, Lin Chih-Feng. Pilot-scale study on the acid-catalyzedsteam explosion of rice straw using a continuous pretreatment system[J]. BioresourceTechnology,2013,128:297-304.
    [41]唐爱民,粱文芷.纤维素预处理技术的发展[J].林产化学与工业,1999,19(4):81-88.
    [42] Mosier N, Wyman S, Dale C, eT al.Features of Promising Technologies forPretreatment of Lignocellulosic Biomass[J]. Bioresour Technol,2005,96(6):673-686.
    [43]黄崇杏,王双飞,杨崎峰.低压蒸汽爆破处理对蔗渣浆化学组分的影响[J].造纸科学与技术,2005,24(2):16-18.
    [44]张德强,黄镇亚,张志毅.木质纤维生物量一步法(SSF)转化成乙醇的研究(I)-木质纤维原料蒸汽爆破预处理的研究[J].北京林业大学学报,2000(11):43-46.
    [45廖双泉,马凤国,廖建和.蒸汽爆破处理对剑麻纤维组分分离的影响[J].热带作物学报,2003,9(3):27-30.
    [46]廖双泉,马凤国,邵自强等.椰衣纤维的蒸汽爆破处理技术[J].热带作物学报,2003,3(1):17-20.
    [47]胡松喜.连续式蒸汽爆破对PBS/植物纤维复合材料力学性能的影响.华南理工大学硕士论文,2010,9.
    [48]闫军,冯连勋.蒸汽爆破技术的研究[J].现代农业科技,2009,11:278-280.
    [49]廖双泉,邵自强,马风国.剑麻纤维蒸汽爆破处理研究[J].纤维素科学与技术,2003,3(1):45-49.
    [50] Partick Nivelleau de La Bruniere a1.Digestion method and installation with preheating oflignocelluloses materials in solid phase:US,5,198,075[P]:1993-03-30.
    [51] Williams BA,Poel AFB,Boer H,et a1.The use of cumulative gas production todetermine the effect of steam explosion on the fermentability of two substrates withdifferent cell wall quality.Journal Science Food Agriculture,1995,69:33-39.
    [52] Mamers H,Yuritta JP,Menz DJ.Explosion pulping of bagasse and wheatstraw.Tappi,1981,64(7):93-96.
    [53Mamers H,Yuritta JP,Menz DJ.Explosion pulping of annual and fast growingplants.Appita,1979,33(3):201-205.
    [54]王松若,蒸汽爆破改性植物纤维/PE复合材料研究,华南理工大学硕士论文,2008.
    [55]季英超,张超波,姜凤琴.稳压时间对大麻韧皮纤维闪爆脱胶效果的影响[J].纺织学报,2008,1(29):66-68.
    [56]吴孝任.加拿大爆破法制浆发展情况[J].国外造纸,1990,9(5):32-35.
    [57]王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学工程,2006(1):37-42.
    [58]罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005(5):53-56.
    [59]陈洪章,陈继贞,刘健.麦草蒸汽爆碎处理的研究(I)-影响麦草蒸汽爆碎处理因素及其过程分析[J].纤维素科学与技术,1999,6(2):60-67.
    [60] Abatzojlou N,Chornet E,Belkacemi K. Phenomenological Kinetics of Complex Systems:the Development of a Generalized Severity Parameter ND Its Application toLignocellulosics Fractionation.Chem[J].Emg.Sci,1992,(47),1109.
    [61] T Jeoh,F A Agblevor. Characterizatio and fermentation of steam exploded cotton ginwaste[J].Biomass&Bioenegy,2001(21):109-120.
    [62] T Jeoh. Steam Explosion Pretreatment of Cotton Gin Waste for Fuel EthanolProduction[D].Blacksburg: Virginia Tech University,1998.
    [63]廖双泉.剑麻纤维蒸汽爆破预处理研究[C].北京理工大学化工与材料学院,2002:46-47.
    [64]廖双泉,马凤国,廖建和.蒸汽爆破对剑麻纤维组分分离的影响[J].热带作物学报,2003,24(3):27-30.
    [65] J.R.Mentx. Steam Explosion Technology[J].1991Pulping Conference:83-88.
    [66] Secondary Fiber Recycling. TPPIPRESS.1993:97-100.
    [67] R.H. Marehessault,et al. Deinking of Xerographic Prints assisted by Steam-Explosion[J].PPC,1997,98(5):59-62.
    [68]胡健,曾靖山,邓炽嵩.草类原料爆破法制浆抄造高强瓦楞原纸[J].造纸科学与技术,2003,22(2):1-3.
    [69]杨崎峰.蔗渣蒸汽爆破法制浆工艺及其机理研究广西大学硕士毕业论文,2005.
    [70] Yang J,Chang J,Lim B,et a1.Utilization of lignocellulosic biomass:Acidhydrolysisof explodes wood after delignification.[J]TAPPIK,1997,29(4):18—27.
    [71] Marchessault RH,Debzl EM,Excffier G.Deinking of xerographic prints assisted bysteam explosion.Pulp and Paper Canada,1997,98(5):59—62.
    [72]王双飞,王宝棣,温志英.静电印刷废纸膨化脱墨工艺的研究[J].中国造纸,2001,20(6):2-7.
    [73]刘志军.蒸汽处理铅笔板材的物性变化[J].北京林业大学学报,2001,23(6):42-45.
    [74] Pavlo and Peter,Effect of high temperature on wood color,dimentional stability andmechanical properties of Spruce wood,Holzforschung,57(2003):539-546.
    [75] Patricia Burtin,Christian Jay,modification of hydrid walnuts wood color and phenoliccomposition under various conditions,Holzforschung,54(2000):33-38.
    [76]刘一星.蒸汽处理对五树种压缩变形恢复率力学性质的影响[J].林业机械与木工设备,2003,31(5):23-27.
    [77] Oner Unsal,The effect of steaming on the equilibrium moisture content of beechwood,Forest Products Jornal,2004.6,54(6):90-94.
    [78] Chen and Workman,effect of steaming on some physical and chamical properties ofblack walnut heartwood,Wood and Fiber,1980.4:218-227.
    [79]陈洪章,李佐虎.无污染秸秆汽爆新技术及其应用[J].纤维素科学与技术,2002,10(3):47-52.
    [80]张连慧,石力安.蒸汽爆破过程麦秆木质纤维素的转化[J],农业工程学报,2008,24(10):195-199.
    [81]周兴平,解孝林.剑麻纤维表面改性及其复合材料的研究进展[J].工程塑料应用,2000,28(8):44-47.
    [82]邵自强,廖双泉,马凤国.软木纤维蒸汽爆破改性及其形态结构表征[J].高分子材料科学与工程,2002,18(2):120-122.
    [83]陈洪章,刘丽英.利用秸秆预处理和酶解工艺使纤维素完全酶解的方法.中国发明专利申请号200510011217.3.
    [84]何翠芳.棉秆蒸爆处理制备无胶纤维板工艺及胶合机理的研究[D].南京林业大学,2008.
    [85]牛永亮,韦春,钟锦标,吕建.蒸汽爆破处理对酚醛/SF/GF复合材料静态及动态力学性能的影响[J].桂林工学院学报,2007,27(4):055-255.
    [86]何翠芳,周晓燕,朱静,王思敏.汽爆压力对无胶棉秆纤维板性能的影响[J].木材工业,2009,23(2):4-6.
    [87]瞿金平,胡松喜,冯彦洪,王松若.蒸汽爆破预处理对LDPE/棉皮纤维复合材料力学性能的影响[J].塑料工业,2009,37(2):32-35.
    [88]钟锦标,牛永亮.蒸汽爆破处理对剑麻纤维/酚醛树脂复合材料力学性能的影响[J].塑料工业,2006,34(7):53-55.
    [89] San MR,Perez C,Briones R.Simulaneous production of ethaol and kraft pulp frompine(Pinusradiata)using steam explosion.Bioresour Technol,1995,53(3):217-223.
    [90]张德强,黄镇亚,张志毅.木质纤维生物量一步法(SSF)转化成乙醇的研究(I)——木质纤维原料蒸汽爆破预处理的研究[J].北京林业大学学报,2000,22(6):43—46
    [91]Kemppainen Katariina, Inkinen Jenni, Uusitalo, Jaana.Hot water extraction and steamexplosion as pretreatments for ethanol production from spruce bark[J]. BioresourceTechnology2012,117:131-139.
    [92]王许涛,李刚,李玲,蒸汽爆破玉米秸秆制取沼气与燃料乙醇的研究河南农业大学学报2013,47:425-429.
    [93]刘东波,王秀然,陈珊,史晓昆.蒸汽爆破处理的玉米秸秆饲料饲用安全性的研究[J].吉林农业大学学报,2003,25(6):657一660.
    [94] Wang Le, Fan Xiaoguang, Tang Pingwah, Yuan Qipeng.Xylitol fermentation usinghemicellulose hydrolysate prepared by acid pre-impregnated steam explosion ofcorncob[J]. Journal of Chemical Technology and Biotechnology,2013,88:2067-2074.
    [95] Darnell W. H., and Mol E. A. J., Soc. Plastics Eng. J.,1956,12:20.
    [96] Tadmor Z, Duvdevani I and Klein I. Polym Eng Sci,1967,7:198.
    [97] K. Shneider, Dissortation, Technical institute of Aachen,1968.
    [98] CHAN I. CHUNG, New Idea About Solids Conveying in Screw Extruders, SPE-J.,1970,26(5):32.
    [99] CHAN I. CHUNG, Plasticating Single-Screw Extrusion Theory, Poly. Eng. Sci.,1971,11(2):93.
    [100] CHAN I. CHUNG, Maximum Pressure Developed by the Solid Conveying Force inScrew Extruders, Poly. Eng. Sci.,1975,15(1):29.
    [101] CHAN I. CHUNG, Guide to Better Extruder Screw Design, Plastics Eng.,1977,33(2):34.
    [102] CHAN I. CHUNG, Energy Conservation in Textile and Polymer Processing, Edited byT.L. Vigo and L.J. Nowacki, ACS,1979:21-36.
    [103] CHAN I. CHUNG, E.M. Mount, III and J. Watson. A New Plasticating Model andExperimental Verification for Solid Polymers at Processing Conditions, SPE-ANTECTechnical Papers.1979,25:176.
    [104] CHAN I. CHUNG, Energy Efficiency in Single Screw E.xtrusion, SPE-ANTECTechnical Papers,1983,29:919
    [105] CHAN I. CHUNG, Plasticating Screw Extrusion of Polymer in Advances in TransportProcesses-Transport Phenomena in Polymer and non-Newtonian Fluid Systems, WileyEastern, New Delhi1988.
    [106] Woldemar Tedder, Soc. Plastics Eng. J., oct,1971:27.
    [107] E. Broyer and Z. Tadmor. Polym. Eng. Sci.,1972,12:12-24
    [108] Hwang C, James M Mc Kelvey. Adv Polymer Tech,1989,9:227-251
    [109] CHAN I., W. Hennessey and M. Tusim. CHUNG, Frictional Behavior of SolidPolymers on Metal Surfaces at Processing Conditions, Poly. Eng. Sci.,1977,17(1):9.
    [110] Gamach E, Lafleur G, Peiti C. Polymer Eng Sci,1999,139:1604.
    [111] Ainbinder S B,Alksne K I,Rastrigina E F.PolymMech,1968,(4):392.
    [112] Hyun K S,Spalding M A.Polym Eng Sci,1990,30:571~586.
    [113] Spalding M A,Hyun K S, Donald E Kirkpatrick.Polym Eng Sci,1995,35:1907.
    [114] Zhu F, Chen L. Studies on the Theory of Single Screw Plasticating Extrusion. Part I: ANew Experimental Method for Extrusion. Polym Eng Sci,1991,31:1113.
    [115]朱复华.单螺杆塑化挤出理论的研究—1.挤出物理模型[J].高分子材料科学与工程,1986(3):1-8.
    [116]朱复华,房士增.单螺杆塑化挤出理论的研究—2.非塞流固体输送理论(1)[J].高分子材料科学与工程,1987(4):22-34.
    [117]房士增.非塞流固体输送理论探讨,北京化工大学硕士论文,1984.
    [118]袁明君,朱复华.单螺杆基础过程中固体粒子的变形、取向与熔融-1.固体粒子的变形分析[J].中国塑料,1999(13-11):88-94.
    [119]袁明君,朱复华.单螺杆基础过程中固体粒子的变形、取向与熔融-2.固体粒子的取向分析[J].中国塑料,1999(13-12):80-84.
    [120]袁明君,朱复华.单螺杆挤出过程中固体粒子的变形、取向与熔融III[J].中国塑料,2000,14(1):93~100.
    [121]江顺亮、朱复华,非塞流固体输送理论的简化[J].中国塑料,1995.9(6):60-64.
    [122]江顺亮、朱复华,单螺杆挤出固体输送段非塞流的三层模型法[J].塑料工业,1997(2):83-88.
    [123] Wong A C.Y, Zhu F, and Liu W. Breakup of Solid Bed in Melting Zone of SingleScrew Extruder. Plast Rubber and Comp.Proc,1997,26:78.
    [124] Fridman M L,.Peshkovsiky S L. Adv. in Polym. Sci.,1993,93:43.
    [125] Fridman M L,.Peshkovsiky S L, Vinogradov G V. Polym. Eng. Sic.,1981,21:755.
    [126]瞿金平.塑化挤出新概念[J].华南理工大学学报(自然科学版),1992,20(4):1-8.
    [127]瞿金平.电磁动态塑化挤出方法及设备.中国专利. CN90101034.0,1992.
    [128]田雨.动态挤出机固体输送理论的研究,华南理工大学硕士学位论文,1996.
    [129]石宝山.振动力场作用下的单螺杆挤出机固体输送理论研究,华南理工大学博士学位论文,2006.
    [130]王冬梅.基于ANSYS的生物质成型机的研制,吉林大学硕士学位论文,2008.
    [131]段宇.生物质料物理压缩成型参数优化研究,华北电力大学硕士学位论文,2009.
    [132]曹冬辉.生物质致密成型压力及数学模型的研究,河南农业大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700