用户名: 密码: 验证码:
摇摆对矩形通道内流动阻力特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小通道换热技术是实现船舶动力系统换热设备小型化的有效方法之一。不同于陆基核反应堆,船舶核反应堆始终处于运动条件下,其中船身摇摆过程对冷却剂热工水力特性的影响最为复杂。摇摆使冷却剂受惯性力作用,同时引起重力沿流动方向分量改变,从而影响动力装置的运行特性。
     本文对摇摆条件下矩形小通道内流动阻力特性进行了实验研究和理论分析。实验在常温常压下进行,以空气和去离子水为工质。5个实验段当量直径的范围为2.73~5.99mm,高宽比为0.033~0.075。分液相雷诺数和分气相雷诺数的范围分别为200~21000和221~8310,摇摆周期和摇摆振幅的范围分别为8s~20s和10°~30°。采用调节离心泵转速的方式获得不同驱动压头,以比较摇摆运动对单相强迫循环的不同影响。
     单相可视化实验及流量波动理论模型表明,开放回路和闭合回路流量波动特性主要影响因素分别为总重位压降和附加压降。单相流量波动幅值随有效驱动压头增加而减小,随波动压降幅值增加而增大,当有效驱动压头大于波动压降幅值的10~11倍时,流动趋于稳定。单相流阻力特性实验表明,摇摆对单相流摩擦阻力的影响随驱动压头增加而减弱,驱动压头较高时,摇摆的影响可忽略。驱动压头较低时流量周期性波动,摩擦压降波动幅值随摇摆振幅增加而增大,随平均流速增加而减小,随摇摆周期的变化因回路不同而存在差异。
     建立了单相层流二维动量守恒方程,其预测的摩阻系数与实验值有较好的一致性。摇摆运动对单相流摩擦阻力的影响机理为:驱动压头较低时,摇摆引起入口流量周期性波动,从而导致壁面切应力周期性变化,进而引起宏观摩擦阻力周期性波动;驱动压头较高时,摇摆仅引起沿流动方向的附加压降,不影响壁面切应力及宏观摩擦阻力。得到了高驱动压头下单相层流摩阻系数和转捩雷诺数理论关系式;并基于能量梯度法研究摇摆运动引起的流量波动对流态转捩的影响。
     对于两相流动,摇摆对摩擦阻力的影响随液流速增加而减弱。液流速较低时,相对摩擦压降梯度波动幅值随气流速增加而降低,随摇摆参数的改变没有明显变化;液流速较高时,摩擦压降梯度不波动。摇摆运动对两相流时间平均摩擦阻力没有明显影响。Chisholm C、Lee&Lee及Mishima&Hibiki关系式能很好地预测摇摆条件下平均摩擦阻力,但不能用于周期性瞬变摩擦压降的计算。基于分相流模型提出了能预测周期性瞬变摩擦压降的关系式。
     摇摆运动通过改变气液界面摩擦特性来影响两相流宏观摩擦阻力。稳态倾斜条件下相界面分布不变,摩擦阻力不波动。摇摆条件下瞬变力引起气泡加速度沿流动方向周期性改变,同时引起气泡周期性横向运动,从而导致宏观摩擦阻力周期性波动,后者为主要影响因素。摇摆周期较大时,重力横向分量为主要影响因素;摇摆周期较小时,科氏惯性力的影响不可忽略。
Small channel heat transfer technology is one of the effective methods which miniaturizethe heat transfer equipment of ship power systems. Different from the land-based nuclearreactor, the barge-mounted nuclear reactor always works under motion conditions, amongwhich the influence of rolling process of a ship on the thermal-hydraulic behavior is the mostcomplex. The rolling motion induces inertia force acting on the coolant and changes thegravity along flow direction, both of which may influence the operational characteristic ofpower plants.
     This dissertation investigates flow resistance in mini rectangular duct under rollingcondition experimentally and theoretically. The experiments were conducted under ambienttemperature and pressure, and water and air were used as the test fluids. The5test sectionshad the diameters of2.73~5.99mm, with aspect ratios ranging from0.033to0.075. Theliquid Reynolds number and gas Reynolds number ranges were200~21000and221~8310,respectively, and the rolling period and rolling amplitude were8s~20s and10°~30°,respectively. Different pressure head were acquired by regulating the rotation speed of thecentrifugal pump, in order to compare different influences of rolling motion on single-phaseforced circulation.
     The flow visualization experiment combining with single-phase flow fluctuation modelindicate that the flow fluctuation of the open loop and closed loop are mainly produced by thegravitational and additional pressure drop, respectively. The flow fluctuation amplitudedecreases as the effective pressure head increases, while increases as the oscillatory pressuredrop increases. Finally, the flow tends to be steady, if the effective pressure head is larger than10~11times of the oscillatory pressure drop. The flow resistance experiments indicate thateffects of rolling motion on single-phase flow resistance wears off as the pressure headincreases, which could be neglected if the pressure head was high enough. For relative lowpressure head, larger rolling amplitude and smaller averaged velocity give rise to largeramplitude of frictional pressure drop, whereas, rolling period have different effects on thefluctuation amplitude because of the inequable flow loops.
     The momentum conservation equation for single-phase laminar flow was set up, by which the predicted frictional coefficient agrees well with the experiments. The mechanism ofrolling motion on frictional resistance is discussed theoritically. For low pressure head, rollinginduced periodically pulsing flow leads to the periodical variation of the wall shear stress,which results in the fluctuation of frictional resistance. While the pressure head is high,rolling motion just induces the additional pressure drop, nearly having no influnce on the wallshear stress and frictional resistance. Theoretical correlations for frictional coefficient oflaminar flow and transition Reynolds number were obtained for the condition of high pressurehead, and effects of rolling induced flow fluctuation on flow regime transition wereinvestigated by energy gradient method.
     For two-phase flow, the effect of rolling motion on frictional resistance weakens as theliquid velocity increases. When the liquid velocity is low, the amplitude of relative frictionalpressure gradient decreases as the gas velocity increases, whereas it is nearly independent ofthe rolling parameters. While for relative high liquid velocity, the frictional pressure gradientis nearly invariable. Rolling motion nearly has no influence on time-averaged frictionalresistance. The Chisholm C、Lee&Lee and Mishima&Hibiki correlations work well fortime-averaged frictional resistance, even under rolling condition, but not for the transientfrictional resistance which varies periodically. A correlation for periodical frictional pressuredrop was also achieved by modifying the separate flow model.
     The rolling motion influences frictional resistance by changing interfacial friction of thetwo phases. The interface distribution is nearly invariable, and the frictional resistance doesnot fluctuate under inclined condition. Different from steady state, the transient force inducesperiodical acceleration of bubbles along flow direction, and leads periodical lateral bubblemotion in transverse direction under rolling condition, which results in periodically frictionalpressure drop. For larger rolling periods, the fluctuation is mainly due to the transversecomponent of the gravity, while for a smaller rolling period, the effect of Coriolis forcecouldn’t be neglected.
引文
[1]孙中宁.核动力设备.第1版.哈尔滨市:哈尔滨工程大学出版社,2003:1页
    [2]张金红.摇摆状态下气水两相流流型及阻力特性研究.哈尔滨工程大学博士学位论文.2010
    [3]方红宇.摇摆对水平管内气液两相流流型影响的研究.哈尔滨工程大学硕士学位论文.2009
    [4]曹夏昕.摇摆对竖直管内气液两相流型的影响.哈尔滨工程大学博士学位论文.2007
    [5]庞凤阁,高璞珍.海洋条件对自然循环影响的理论研究.核动力工程,1995,16(4):330-335页
    [6]谭思超.摇摆对自然循环热工水力特性的影响.哈尔滨工程大学博士学位论文.2006
    [7] Tan S, Su G H, Gao P. Experimental and theoretical study on single-phase naturalcirculation flow and heat transfer under rolling motion condition. Applied ThermalEngineering,2009,29(14-15):3160-3168P
    [8] Shah R K, London L A. Laminar flow forced convective in ducts: A source book forcompact heat exchanger analytical data. New York: Academic Press,1978
    [9] Spiga M, Morini G L. A symmetric solution for velocity profile in laminar flow throughrectangular ducts. Int. Commun. Heat Mass Transfer,1994,21:469-475P
    [10] John E F, Joseph B. Fluid Mechanics with Engineering Application.10th Edition.北京:清华大学出版社,2003
    [11]孔珑.工程流体力学.第二版.北京:中国电力出版社,1992
    [12] Sadatomi M, Sato Y, Saruwatari S. Two-phase flow in vertical noncircular channels.International Journal of Multiphase Flow,1982,8(6):641-655P
    [13] Barlay Ergu O, Sara O N, Yap c S, et al. Pressure drop and point mass transfer in arectangular microchannel. International Communications in Heat and Mass Transfer,2009,36(6):618-623P
    [14] Peng X F, Peterson G P. Convective heat transfer and flow friction for water flow inmicrochannel structures. Int. J. Heat Mass Transfer,1996,39(12):2599-2608P
    [15] Papautsky I, Gale B K, Mohanty S, et al. Effects of rectangular microchannel aspectratio on laminar friction constant. Santa Clara, CA, USA: Society of Photo-OpticalInstrumentation Engineers,1999.
    [16] Guo Z Y, Li Z X. Size effect on single-phase channel flow and heat transfer atmicroscale. International Journal of Heat and Fluid Flow,2003,24:284-298P
    [17] Mo H L. Characteristics of friction factor of gas flowing through small rectangular ducts.Cryogenics,1998,38(9):869-873P
    [18]唐大伟,张春平,曲伟.矩形微细通道内流场的可视化实验研究.华中科技大学学报(自然科学版),2007,35(11):24-27页
    [19]王樱,刁彦华,赵耀华.矩形微管内摩擦阻力特性的实验研究.工程热物理学报,2009,30(5):841-843页
    [20]秦文波,程惠尔,牛禄,等.大高宽比微小宽度矩形通道内的水力特性实验研究.热科学与技术,2002,1(1):38-41页
    [21]蒋洁,郝英立,施明恒.矩形微通道中流体流动阻力和换热特性实验研究.热科学与技术,2006,5(3):189-194页
    [22]侯亚丽,王秀春,张承武,等.矩形微通道中流动阻力特性的实验研究.河北工业大学学报,2007,36(6):13-17页
    [23] Agostini B, Watel B, Bontemps A, et al. Friction factor and heat transfer coefficient ofR134a liquid flow in mini-channels. Applied Thermal Engineering,2002,22(16):1821-1834P
    [24] Mishima K, Hibiki T, Nishihara H. Some characteristics of gas-liquid flow in narrowrectangular ducts. International Journal of Multiphase Flow,1993,19(1):115-124P
    [25] Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in smalldiameter vertical tubes. Int. J. Multiphase Flow,1996,22(4):703-712P
    [26] Lee H J, Lee S Y. Heat transfer correlation for boiling flows in small rectangularhorizontal channels with low aspect ratios. International Journal of Multiphase Flow,2001,27(12):2043-2062P
    [27] Steinke M E, Kandlikar S G. Single-phase liquid friction factors in microchannels.International Journal of Thermal Sciences,2006,45(11):1073-1083P
    [28] Caney N, Marty P, Bigot J. Friction losses and heat transfer of single-phase flow in amini-channel. Applied Thermal Engineering,2007,27(10):1715-1721P
    [29] Chen I Y, Chen Y, Liaw J, et al. Two-phase frictional pressure drop in small rectangularchannels. Experimental Thermal and Fluid Science,2007,32(1):60-66P
    [30] Hrnjak P, Tu X. Single phase pressure drop in microchannels. International Journal ofHeat and Fluid Flow,2007,28(1):2-14P
    [31] Lee H J, Lee S Y. Pressure drop correlations for two-phase flow within horizontalrectangular channels with small heights. Int. J. Multiphase Flow,2001,27(5):783-796P
    [32] Ma Y, Ji X, Wang D, et al. Measurement and correlation of pressure drop for gas-liquidtwo-phase flow in rectangular microchannels. Chinese Journal of Chemical Engineering,2010,18(6):940-947P
    [33] Ma J, Li L, Huang Y, et al. Experimental studies on single-phase flow and heat transferin a narrow rectangular channel. Nucl. Eng. Des.,2011,241(8):2865-2873P
    [34] Soupremanien U, Person S L, Favre-Marinet M, et al. Influence of the aspect ratio onboiling flows in rectangular mini-channels. Experimental Thermal and Fluid Science,2011,35(5):797-809P
    [35] Wang C, Gao P, Tan S, et al. Experimental study of friction and heat transfercharacteristics in narrow rectangular channel. Nuclear Engineering and Design,2012,250:646-655P
    [36]幸奠川,阎昌琪,曹夏昕,等.矩形窄缝通道内单相水流动特性研究.原子能科学技术,2011,45(11):1312-1316页
    [37]徐建军,陈炳德,王小军.矩形窄缝通道内湍流充分发展区流动边界层探析.核动力工程,2011,32(1):95-98页
    [38] Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase,two component flow in pipes. Chemical Engineering Progress,1949,45:39-48P
    [39] Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phaseflow. International Journal of Heat and Mass Transfer,1967,10(12):1767-1778P
    [40]徐济鋆.沸腾传热和汽液两相流.第二版.北京:原子能出版社,2000
    [41] Wambsganss M W, Jendrzejczyk J A, France D M, et al. Frictional pressure gradients intwo-phase flow in a small horizontal rectangular channel. Experimental Heat Transfer,1992,5(1):40-56P
    [42] Friedel L. Improved friction pressure drop correlations for horizontal and vertical twophase pipe flow: European Two-Phase Flow Group Meeting, Ispra, Italy,1979.
    [43] Hwang Y W, Kim M S. The pressure drop in microtubes and the correlationdevelopment. Int. J. Heat Mass Transfer,2006,49(11-12):1804-1812P
    [44] Chen I Y, Chen Y M, Yang B, et al. Two-phase flow pattern and frictional performanceacross small rectangular channels. Applied Thermal Engineering,2009,29(7):1309-1318P
    [45] Zhang W, Hibiki T, Mishima K. Correlations of two-phase frictional pressure drop andvoid fraction in mini-channel. Int. J. Heat Mass Transfer,2010,53(1-3):453-465P
    [46]贾晓鸿,秋穗正,杨晓强,等.水平矩形窄缝通道内水沸腾流动特性实验研究.工程热物理学报,2007,28(6):974-976页
    [47]张炳雷,徐进良,肖泽军.低高宽比矩形微通道中流动沸腾的压降特性.中国工程科学,2007,9(12):86-93页
    [48] Qu W, Mudawar I. Measurement and prediction of pressure drop in two-phasemicro-channel heat sinks. Int. J. Heat Mass Transfer,2003,46(15):2737-2753P
    [49]颜晓虹,唐大伟,王际辉.矩形微槽内水的流动沸腾压降特性实验研究.华中科技大学学报(自然科学版),2007,35(5):88-90页
    [50] Saisorn S, Wongwises S. The effects of channel diameter on flow pattern, void fractionand pressure drop of two-phase air-water flow in circular micro-channels. ExperimentalThermal and Fluid Science,2010,34(4):454-462P
    [51] Kawahara A, Sadatomi M, Nei K, et al. Experimental study on bubble velocity, voidfraction and pressure drop for gas-liquid two-phase flow in a circular microchannel.International Journal of Heat and Fluid Flow,2009,30(5):831-841P
    [52] Sun L, Mishima K. Evaluation analysis of prediction methods for two-phase flowpressure drop in mini-channels. Int. J. Multiphase Flow,2009,35(1):47-54P
    [53]周云龙,王红波.矩形小通道内气液两相流垂直向上流动特性.化工学报,2011,62(5):1226-1232页
    [54]王广飞,阎昌琪,孙立成,等.窄矩形通道内两相流动压降特性研究.原子能科学技术,2011,45(6):677-681页
    [55] Ide H, Fukano T. Experimental research on the correlations of holdup and frictionalpressure drop in air-water two-phase flow in a capillary rectangular channel.Experimental Thermal and Fluid Science,2005,29:833-841P
    [56] Ide H, Matsumura H. Frictional pressure drops of two-phase gas-liquid flow inrectangular channels. Experimental Thermal and Fluid Science,1990,3(4):362-372P
    [57]潘良明,陈德奇,袁德文.竖直矩形窄缝内流动沸腾压降实验与模型研究.工程热物理学报,2007,28(2):255-258页
    [58] Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phasemixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer,1973,16:347-358P
    [59] Tran T N, Chyu M C, Wambsganss M W, et al. Two-phase pressure drop of refrigerantsduring flow boiling in small channels: An experimental investigation and correlationdevelopment. International Journal of Multiphase Flow,2000,26(11):1739-1754P
    [60] Zhang M, Webb R L. Correlation of two-phase friction for refrigerants insmall-diameter tubes. Exp. Thermal Fluid Sci.,2001,25(3-4):131-139P
    [61] Chen I Y, Yang K, Wang C. An empirical correlation for two-phase frictionalperformance in small diameter tubes. International Journal of Heat and Mass Transfer,2002,45(17):3667-3671P
    [62] Awad M M, Muzychka Y S. Effective property models for homogeneous two-phaseflows. Experimental Thermal and Fluid Science,2008,33(1):106-113P
    [63] Choi C, Kim M. Flow pattern based correlations of two-phase pressure drop inrectangular microchannels. Int. J. Heat Fluid Flow,2011,32(6):1199-1207P
    [64] Beattie D R H, Whalley P B. A simple two-phase frictional pressure drop calculationmethod. International Journal of Multiphase Flow,1982,8(1):83-87P
    [65] Lee J, Mudawar I. Two-phase flow in high-heat-flux micro-channel heat sink forrefrigeration cooling applications: Part I––pressure drop characteristics. InternationalJournal of Heat and Mass Transfer,2005,48(5):928-940P
    [66] Dalkilic A S, Laohalertdecha S, Wongwises S. Effect of void fraction models on thetwo-phase friction factor of R134a during condensation in vertical downward flow in asmooth tube. Int. Commun. Heat Mass Transfer,2008,35(8):921-927P
    [67] Woldesemayat M A. Comparison of void fraction correlations for two-phase flow inhorizontal and upward inclined flows:[dissertation]. Master Degree: Oklahoma StateUniversity,2006:
    [68] Ishii M. One-dimensional drift-flux model and constitutive equations for relative motionbetween phases in various two-phase flow regimes.ANL, USA,1977.
    [69] Jones O C, Zuber N. Slug-annular transition with particular reference to narrowrectangular ducts. Washington DC:1979.
    [70] Shen X, Hibiki T, Ono T, et al. One-dimensional interfacial area transport of verticalupward bubbly flow in narrow rectangular channel. International Journal of Heat andFluid Flow,2012,36:72-82P
    [71] Wang Y, Yan C, Sun L, et al. Characteristics of slug flow in narrow rectangularchannels under vertical condition:7th International Symposium on Multiphase Flow,Heat Mass Transfer and Energy Conversion, Xi'an, China,2012.
    [72] Cioncolini A, Thome J R. Void fraction prediction in annular two-phase flow.International Journal of Multiphase Flow,2012,43:72-84P
    [73] Isshiki N. Effects of heaving and listing upon thermo-hydraulic performance and criticalheat flux of water-cooled marine reactors. Nucl. Eng. Des.,1966,4(2):138-162P
    [74] Ishida T, Yao T, Teshima N. Experiments of two-phase flow dynamics of marinereactor behavior under heaving motion.1997,34(8):771-782P
    [75] Ishida T, Yoritsune T. Effects of ship motions on natural circulation of deep searesearch reactor DRX. Nuclear Engineering and Design,2002,215(1-2):51-67P
    [76] Murata H, Sawada K, Kobayashi M. Experimental investigation of natural convection ina core of a marine reactor in rolling motion. Journal of Nuclear Science AndTechnology,2000,37(6):509-517P
    [77] Murata H, Sawada K, Kobayashi M. Natural circulation characteristics of a marinereactor in rolling motion and heat transfer in the core. Nuclear Engineering and Design,2002,215(1-2):69-85P
    [78] Pendyala R, Jayanti S, Balakrishnan A R. Convective heat transfer in single-phase flowin a vertical tube subjected to axial low frequency oscillations. Heat and Mass Transfer,2008,44(7):857-864P
    [79] Pendyala R, Jayanti S, Balakrishnan A R. Flow and pressure drop fluctuations in avertical tube subject to low frequency oscillations. Nuclear Engineering and Design,2008,238(1):178-187P
    [80] Hwang J, Lee Y, Park G. Characteristics of critical heat flux under rolling condition forflow boiling in vertical tube. Nuclear Engineering and Design,2012,252:153-162P
    [81]庞凤阁,高璞珍,王兆祥,等.海洋条件对自然循环影响的理论研究.核动力工程,1995,16(4):330-335页
    [82]高璞珍,庞凤阁,王兆祥.核动力装置一回路冷却剂受海洋条件影响的数学模型.哈尔滨工程大学学报,1997,18(1):26-29页
    [83]高璞珍,王兆祥.起伏对强制循环和自然循环的影响.核科学与工程,1999,19(2):116-120页
    [84]高璞珍,庞凤阁.倾斜对强迫循环和自然循环影响的比较.核科学与工程,1997,17(2):179-183页
    [85]庞凤阁,高璞珍,王兆祥,等.摇摆对常压水临界热流密度(CHF)影响实验研究.核科学与工程,1997,17(9):367-371页
    [86]高璞珍,王兆祥,庞凤阁,等.摇摆情况下水的自然循环临界热流密度实验研究.哈尔滨工程大学学报,1997,18(6):40-44页
    [87]高璞珍,刘顺隆,王兆祥.纵摇和横摇对自然循环的影响.核动力工程,1999,20(3):36-39页
    [88] Xing D, Yan C, Sun L, et al. Effects of rolling on characteristics of single-phase waterflow in narrow rectangular ducts. Nucl. Eng. Des.,2012,247:221-229P
    [89] Hong G, Yan X, Yang Y, et al. Experimental research of bubble characteristics innarrow rectangular channel under heaving motion. International Journal of ThermalSciences,2012,51:42-50P
    [90]高璞珍,庞凤阁,刘殊一,等.倾斜对强迫循环和自然循环影响的比较.核科学与工程,1997,17(2):88-92页
    [91]苏光辉,张金玲,郭玉君,等.海洋条件对船用核动力堆余热排出系统特性的影响.原子能科学技术,1996,30(6):487-491页
    [92]王杰.摇摆对单通道临界热流密度影响的试验研究.哈尔滨工程大学硕士学位论文.2001
    [93]姜春林,贾宝山.海洋条件对船用核动力装置冷却系统影响的计算.实验技术与管理,2003,20(3):51-55页
    [94]杨珏,贾宝山,俞冀阳.简谐海洋条件下堆芯冷却剂系统自然循环能力分析.核科学与工程,2002,22(3):199-203页
    [95]杨珏,贾宝山,俞冀阳.海洋条件下冷却剂系统自然循环仿真模型.核科学与工程,2002,22(2):125-129页
    [96]曹夏昕,阎昌琪,孙立成,等.摇摆状态下竖直管内单相水摩擦压降特性分析.哈尔滨工程大学学报,2006,27(6):834-838页
    [97]曹夏昕,阎昌琪,孙立成,等.摇摆状态下竖直管内单相水阻力特性实验研究.核动力工程,2007,28(3):51-55页
    [98]谭思超.摇摆对自然循环流动不稳定性的影响.哈尔滨工程大学硕士学位论文.2003
    [99]张金红,阎昌琪,曹夏昕,等.摇摆状态下水平管中单相水的摩擦阻力实验研究.核动力工程,2008,29(4):44-49页
    [100]刘培邦.摇摆状态下阻力特性分析.哈尔滨工程大学硕士学位论文.2008
    [101]黄振.摇摆对竖直单管内自然循环传热特性的影响.哈尔滨工程大学硕士学位论文.2009
    [102]栾锋.摇摆对水平管内气水两相流影响的研究.哈尔滨工程大学博士学位论文.2010
    [103]阎昌琪,于凯秋,栾锋,等.摇摆对气-液两相流流型及空泡份额的影响.核动力工程,2008,29(4):35-39页
    [104]郭赟,秋穗正,苏光辉,等.摇摆状态下入口段和上升段对两相流动不稳定性的影响.核动力工程,2007,28(6):58-62页
    [105]张友佳,苏光辉,秋穗正,等.横摇条件下九通道系统两相流动不稳定性研究.原子能科学技术,2009,43(10):886-892页
    [106]张文超.摇摆条件下的自然循环流动不稳定性非线性时序分析.哈尔滨工程大学硕士学位论文.2011
    [107] Yan B, Yu L, Li Y. Research on operational characteristics of passive residual heatremoval system under rolling motion. Nucl. Eng. Des.,2009,239(11):2302-2310P
    [108] Yan B, Yu L. Theoretical research for natural circulation operational characteristic ofship nuclear machinery under ocean conditions. Annals of Nuclear Energy,2009,36(6):733-741P
    [109]于雷,谢海燕,桂学文,等.采用非能动余热排出系统实验数据对RELAP5程序的评价.原子能科学技术,2008,42(8):678-684页
    [110]秦胜杰.摇摆对自然循环汽泡脱离点影响的实验研究.哈尔滨工程大学硕士学位论文.2008
    [111]王成章.摇摆对竖直管过冷沸腾气泡脱离点影响的研究.哈尔滨工程大学硕士学位论文.2009
    [112]潘良明,张文志,陈德奇,等.附加惯性力对气泡破裂的影响.核动力工程,2011,32(4):37-41页
    [113]魏敬华,潘良明,徐建军,等.附加惯性力作用下竖直矩形流道内过冷流动沸腾的数值模拟.化工学报,2011,62(5):1239-1245页
    [114]刘晓钟,黄彦平,马建,等.升沉条件下矩形窄缝通道单相等温流动摩擦阻力特性研究.核动力工程,2011,32(6):71-75页
    [115]刘晓钟,黄彦平,马建,等.摇摆条件下矩形窄缝通道单相等温流动摩擦阻力特性研究.核动力工程,2012,33(S1):54-58页
    [116]马建,黄彦平,李隆键.海洋条件下任意管道内附加压降的势函数分析和矢量代数积分方法.核动力工程,2012,33(S1):14-18页
    [117]杜思佳,张虹.海洋条件对单相强迫流动影响的理论研究.核动力工程,2009,30(S1):60-64页
    [118]杜思佳,张虹.倾斜条件下强迫流动的传热特性研究.核动力工程,2012,33(3):46-50页
    [119]杜思佳,张虹,贾宝山.海洋条件下竖直圆管内单相传热特性实验研究.核动力工程,2011,32(3):92-96页
    [120] Yan B H, Gu H Y, Yang Y H, et al. Effect of rolling on the flowing and heat transfercharacteristic of turbulent flow in sub-channels. Progress in Nuclear Energy,2011,53(1):59-65P
    [121] Yan B H, Yu L, Gu H Y, et al. LES and URANS simulations of turbulent flow in4rodbundles in ocean environment. Progress in Nuclear Energy,2011,53(4):330-335P
    [122] Yan B H, Yu L, Yang Y H. Heat transfer of laminar flow in a channel in rolling motion.Progress in Nuclear Energy,2010,52(6):596-600P
    [123] Yan B H, Yu L, Yang Y H. Heat transfer with laminar pulsating flow in a channel ortube in rolling motion. Int. J. Thermal Sci.,2010,49(6):1003-1009P
    [124] Yan B H, Yu L, Yang Y H. The model of laminar pulsatile flow in tubes in rollingmotion. Nuclear Engineering and Design,2010,240:2805-2811P
    [125] Yan B, Gu H, Yang Y, et al. Theoretical models of turbulent flow in rolling motion.Progress in Nuclear Energy,2010,52(6):563-568P
    [126]王广飞,阎昌琪,曹夏昕,等.摇摆状态下窄矩形通道内两相流流型特性研究.原子能科学技术,2011,45(11):1329-1333页
    [127] Xing D, Yan C, Sun L, et al. Frictional resistance of adiabatic two-phase flow in narrowrectangular duct under rolling conditions. Annals of Nuclear Energy,2013,53:109-119P
    [128]刘传成.摇摆运动下矩形通道内流动沸腾阻力特性研究.哈尔滨工程大学硕士学位论文.2012
    [129]王畅,高璞珍,谭思超,等.摇摆条件下强迫循环流量脉动特性分析.核动力工程,2012,33(3):56-60页
    [130] Xing D, Yan C, Sun L, et al. Effect of rolling motion on single-phase laminar flowresistance of forced circulation with different pump head. Annals of Nuclear Energy,2013,54:141-148P
    [131] Yan B H, Gu H Y, Yu L. CFD analysis of the loss coefficient for a90°bend in rollingmotion. Progress in Nuclear Energy,2012,56:1-6P
    [132] Yan B H, Yu L, Yang Y H. Effects of rolling on laminar frictional resistance in tubes.Annals of Nuclear Energy,2010,37(3):295-301P
    [133]马建,李隆键,黄彦平,等.海洋条件下舰船反应堆热工水力特性研究现状.核动力工程,2011,(2):91-96页
    [134] Zhang J, Yan C, Gao P. Characteristics of pressure drop and correlation of frictionfactors for single-phase flow in rolling horizontal pipe. Journal of Hydrodynamics,2009,21(5):614-621P
    [135]幸奠川,阎昌琪,曹夏昕,等.摇摆条件下单相水强制循环阻力特性实验研究.原子能科学技术,2011,45(6):672-676页
    [136]幸奠川,阎昌琪,曹夏昕,等.摇摆条件下单相水强制循环阻力特性实验研究.原子能科学技术,2011,45(6):672-676页
    [137]谢清清.倾斜和摇摆状态下单相流动特性研究.哈尔滨工程大学硕士学位论文.2011
    [138]王广飞.摇摆状态下窄通道内两相流动阻力特性研究.哈尔滨工程大学硕士学位论文.2011
    [139]金光远,阎昌琪,孙立成,等.摇摆条件对矩形通道内泡状流摩阻特性影响.原子能科学技术,2012,增刊1(3):255-258页
    [140]王令军.液压摇摆台控制系统研究.哈尔滨工程大学硕士学位论文.2008
    [141]陆廷济,忽的敬,陈铭南.物理实验教程.上海:同济大学出版社,2000:14-15页
    [142] Wang C, Gao P, Tan S, et al. Effect of aspect ratio on the laminar-to-turbulent transitionin rectangular channel. Annals of Nuclear Energy,2012,46:90-96P
    [143]刘宇生.矩形通道内脉动流流动特性研究.哈尔滨工程大学硕士学位论文.2012:22-37页
    [144] Uchida S. The pulsating viscous flow superposed on the steady laminar motion ofincompressible fluid in a circular pipe. ZAMP,1956,7(5):403-422P
    [145]秦胜杰,高璞珍.摇摆运动对过冷沸腾流体中汽泡受力的影响.核动力工程,2008,29(2):20-23页
    [146]李庆扬,王能超,易大义.数值分析.北京:清华大学出版社,2008:286-291页
    [147]鄢炳火,于雷,杨燕华.摇摆条件下矩形管内流体流动模型.原子能科学技术,2010,44(6):671-675页
    [148] Dou H, Khoo B C, Tsai H M. Determining the critical condition for turbulent transitionin a full-developed annulus flow. J. Petrol. Sci. Eng.,2010,73:41-47P
    [149] Dou H, Khoo B C. Energy gradient method for turbulent transition with considerationof effect of disturbance frequency. Journal of Hydrodynamics, Ser. B,2010,22(5,Supplement1):23-28P
    [150] Dou H. Mechanism of flow instability and transition to turbulence. Non-linearMechanics,2006,41:512-517P
    [151] Nishioka M, Iida S, Ichikawa Y. An experimental investigation of the stability of planePoiseuille flow. J. Fluid Mech,1975,75:731-751P
    [152] Yan B H. Analysis of laminar to turbulent transition of pulsating flow in oceanenvironment with energy gradient method. Annals of Nuclear Energy,2011,38:2779-2786P
    [153] Kandlikar S G. Fundamental issues related to flow boiling in minichannels andmicrochannels. Experimental Thermal and Fluid Science,2002,26(2-4):389-407P
    [154]徐建军,陈炳德,王小军.窄缝流道内的流动与换热机理及关键问题.核动力工程,2008,29(3):9-13页
    [155] Huang J, Huang Y, Wang Q, et al. Numerical study on effect of gap width of narrowrectangular channel on critical heat flux enhancement. Nuclear Engineering And Design,2009,239(2):320-326P
    [156]甘云华,徐进良,周继军.微尺度相变传热的关键问题.力学进展,2004,34(3):399-407页
    [157] Mehendale S S, Jacobi A M, Shah R K. Fluid flow and heat transfer at micro-andmeso-scales with application to heat exchanger design.2000,53:175-193P
    [158] Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phaseflow. International Journal of Heat and Mass Transfer,1967,10(12):1767-1778P
    [159] Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems.Journal of Heat Transfer-Transactions of The ASME,1965,87:435-468P
    [160] McAdams W H, Woods W K, Heroman L C. Vaporization inside horizontal tubes-Ⅱ-Benzene-oil mixtures. Trans. ASME,1942,64(3):193-200P
    [161] Duckler A E, Wicks M, Cleveland R G. Pressure drop and hold-up in two-phase flow.AIChE J,1964,10:38-51P
    [162] Lin S, Kwok C C K, Li R Y. Local frictional pressure drop during vaporization of R-22through capillary tubes. International Journal of Multiphase Flow,1991,17(1):95-102P
    [163] Cicchitti A, Lombardi C, Silvestri M. Two-phase cooling experiments: pressure drop,heat transfer and burnout measurement. Centro Informazioni Studi Esperienze, Milan:1959.
    [164] Owens W L. Two-Phase Pressure Gradient. Int. Dev. Heat Transfer. Pt Ⅱ, ASME.New York:1961.
    [165] Xing D, Yan C, Sun L, et al. Experimental study of interfacial parameter distributions inupward bubbly flow under vertical and inclined conditions. Experimental Thermal andFluid Science,2013,47:117-125P
    [166] Spindler K, Hahne E. An experimental study of the void fraction distribution inadiabatic water-air two-phase flows in an inclined tube. International Journal ofThermal Sciences,1999,38:305-314P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700