用户名: 密码: 验证码:
基于联合仿真的机电液一体化系统优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机电液一体化系统是一个多学科交叉、技术密度高的复杂系统,主要包括机械、液压、控制等子系统,其子系统间存在着相互作用、相互影响的耦合关系。机电液一体化系统涵盖多个学科内容,不仅包括传统的结构力学、流体力学、控制理论、人工智能等,也包括现代的人机工程学等。对于机电液一体化系统,如采用传统设计方法,运用各子系统或学科顺序设计方法进行设计,忽略了各子系统或学科之间的相互影响和耦合作用,使设计结果常常不是最优解,而且设计效率低、周期长,设计成本高。机电液一体化系统的设计具有明显的“多学科”特点,属于典型的多学科设计问题。随着现代结构力学、流体力学和控制学等理论的不断完善和计算机科学技术的迅速发展,人们能够采用更高精度的模型进行子系统或学科分析与设计,各子系统或学科设计均取得了长足的进步。因此,如何综合协调各个子系统进行多学科设计已成为机电液一体化系统设计的关键问题。
     多学科设计优化(Multidisciplinary Design Optimization, MDO)是在复杂系统的设计过程中集成了不同学科的知识、分析与建模理论以及计算方法,采用有效的优化策略,充分体现了学科间的相互作用而产生的协同效应,获得整个系统的最优解。多学科设计优化是一种充分利用和考虑系统所涉及的多学科间的相互影响和耦合作用、使整个系统的综合性能达到最优的设计优化方法。多学科设计优化技术是利用合适的优化策略去组织和管理优化设计过程的基本思想,通过分解、协调等方法将整个系统分解为若干与当前工程设计组织形式相一致的子系统,以达到可以充分利用现有的各学科分析设计工具手段,在分布式计算机网络上利用各学科或子系统现有的知识与经验,对系统进行整体设计的目的,从而缩短系统设计周期,降低产品开发成本,有效提高产品竞争力。
     由于多学科设计优化问题常常具有设计变量和约束条件的类型复杂,数量巨大,各部分、各子系统之间存在着互相耦合等特点,导致很难建立优化模型并且难以找到有效的优化算法。多学科设计优化存在两类耦合因素:一是多个领域都需要对其进行优化设计的变量,即系统变量或交叉变量;二是某个领域计算的结果作为另一个领域的输入,即相关变量或耦合变量。机电液一体化系统的设计涉及到机械、液压和控制等学科,包括了整体方案与结构参数的优化、系统性能的综合优化,难以解决设计全局和全过程的问题。机电液一体化系统的优化能否得到圆满解决,主要取决于能否建立合理的优化模型和选择适合于优化模型的有效优化算法。
     因此,本文引入在航空领域迅速发展起来的解决复杂系统设计与优化的多学科设计优化方法,对机电液一体系统的优化设计方法进行了较全面的研究,探讨多学科优化方法在机电液一体化系统设计中应用的可行性和适用性。论文以机电液一体化系统设计优化模型与优化算法为核心,包括机电液一体化系统设计优化方法的分析、优化模型的建立与简化、寻优策略、联合仿真技术应用研究、集成优化平台的搭建、并联机器人系统优化等。论文的主要工作包括以下几个方面:
     1、机电液一体化系统设计优化模型构建与简化
     针对机电液一体化系统总体设计的特点,将机电液一体化系统划分为机械、液压和控制等3个相对独立的子系统。在子系统分析的基础上,建立了各子系统的数学分析模型,提取了设计参数,明确了各子系统的输入和输出参数以及它们之间的相互耦合关系,构建了机电液一体化系统的优化模型。对近似模型技术进行了研究,将二次响应面和kriging近似模型应用于机电液一体化系统的优化设计中。研究表明,在机电液一体化系统优化设计中,采用近似模型替代原有复杂的、高精度分析模型进行优化迭代计算,大大减少了优化计算量,有效提高了计算效率,解决了机电液一体化系统优化中的计算瓶颈问题,具有较强的工程实用性。
     2、机电液一体化系统设计优化模型寻优策略与算法研究
     对现有的优化方法和优化算法进行了分析研究,并应用不同优化方法、单—优化算法以及不同优化算法组合对建立的机电液一体化系统优化模型进行优化分析。研究表明,传统优化算法优化时间短,对于单峰问题优化效果较好;对于多峰问题,智能优化算法优化效果较好,但优化时间较长。因此,选择全局探索+局部寻优的混合优化策略对机电液一体化系统优化模型进行优化,首先采用全局智能优化算法搜索确定最优值范围,再用局部传统优化算法获得最优解。通过实例验证,采用混合优化算法,快速高效,精度高,而且获得的是全局最优解。
     3、基于联合仿真的机电液一体化系统集成优化平台的构建
     提出了机电液一体化系统仿真优化一体化思想与实现方法,研究了CATIA、 ADAMS、ANSYS、MATLAB软件之间的接口,基于优化软件ISIGHT软件平台,集成了CATIA、ADAMS、ANSYS、MATLAB软件,搭建了机电液一体系统的仿真优化平台,有效地利用了CATIA软件的虚拟样机建模、AMESim软件的液压系统建模、ADAMS软件动力学仿真、ANSYS软件静力学分析和MATLAB软件控制仿真的功能以及ISIGHT软件的集成优化功能,实现了基于联合仿真的机电液一体化系统集成优化。通过实例验证,表明采用搭建的基于联合仿真的机电液一体化系统设计优化平台进行优化是可行的,结果是可靠的。
     4、并联机器人系统的仿真优化
     在搭建的仿真优化平台上对并联机器人进行联合仿真和集成优化研究。通过仿真优化验证了机电液一体化系统近似模型和优化算法的有效性,显著降低了整个系统设计优化模型优化的计算时间,大大提高了系统设计效率。
Mechanical-electrical-hydraulic integrated system is a high technology density and complex interdisciplinary system. Usually it is composed of several subsystems, such as mechanical subsystem, hydraulic subsystem, control subsystem. There is a coupling relationship among subsystems that they have mutual influence and interaction. Mechanical-electrical-hydraulic integrated system covers multidisciplinary content, not only including the traditional structural mechanics, fluid mechanics, control theory and so on, but also including modern ergonomics, etc. For designing the mechanical-electrical-hydraulic integrated system by using the traditional design method and sequence design method, mutual influence and coupling effect among the subsystems or subjects are ignored, which often makes the results of the design not the most optimal solution, and the efficiency of the design is low, the cycle is long, the cost of design is high. The design of mechanical-electrical-hydraulic integrated system has the obvious multidisciplinary characteristics, which belongs to the typical multidisciplinary design problem. With the constant improvement of structure mechanics, fluid mechanics, and control discipline theory, and the rapid development of computer technology, people can use a higher precise model to analyze and design subsystem or subject, and design of subsystem or subject has made great progress. Therefore, how to comprehensively coordinate each subsystem to make multidisciplinary design becomes the bottleneck problem of the mechanical-electrical-hydraulic integrated system design.
     Multidisciplinary design optimization method integrates different subject knowledge, analysis and modeling theory and calculation method in the design process of whole complex system, to get the optimal solution of the whole system by applying effective design optimization strategy and making full use of the synergistic effect which the interaction between subjects produces. Multidisciplinary design optimization is a design method that fully utilizes and considers interaction and coupling effect between disciplines, and use multidisciplinary method to achieve optimal comprehensive performance. The basic ideology of multidisciplinary design optimization technique is to organize and manage optimization design process by using appropriate optimization strategy, and through the decomposition and coordination, to decompose complex system into several subsystems that are consistent with engineering design organization form. Thus by using the existing industry disciplinary analysis and design tools to comprehensively design complex system by integrating rich knowledge and experience of interdisciplinary or subsystem in the distributed computer network, so as to achieve the purpose of shorting the design cycle, reduce development cost and enhance the competitiveness of their products.
     Because the multidisciplinary optimization problem often has the following characteristics:big amount and complex type of design variables and the constraint condition, and mutual coupling relation among parts and sub-blocks, consequently it is difficult to establish the optimization model and to find effective optimization algorithm. Two kinds of coupling factors:one is the variable to be optimized in the many field design, namely system variables or cross variable; the other is the variable which is a calculation parameter of a field as an input of another field, namely relevant variables or coupled variables. The design of mechanical-electrical-hydraulic integrated system involves mechanics, hydraulics and control disciplines, including optimization of parameters of overall plan and structure, the comprehensive optimization of mechanical properties. When it comes to the problem of designing the overall situation and the whole process, there are still many difficult problems to solve. Whether the optimization of the mechanical-electrical-hydraulic integrated system can be well solved, mainly depends on two factors. One is to establish the reasonable optimization model, and another is to choose effective optimization algorithm which is suitable for this model.
     Therefore, in this dissertation, the multidisciplinary design optimization method which develops rapidly in the aviation field and can solve complex system design and optimization problem, is introduced to comprehensively study the optimization design method of mechanical-electrical-hydraulic integrated system. To explore multidisciplinary optimization method feasibility and applicability in the application of mechanical-electrical-hydraulic integrated system design. The dissertation covers the design optimization model and optimization algorithm of mechanical-electrical-hydraulic integrated system, optimization modeling and simplification, optimization strategy, combinative simulation research, development of integrated optimization platform, parallel robot system optimization, etc. The main work of the paper includes the following several aspects:
     1. Mechanical-electrical-hydraulic integrated system design optimization modeling and simplification
     According to the characteristics of mechanical-electrical-hydraulic integrated system overall design, mechanical-electrical-hydraulic integrated system will be divided into three independent subsystem, namely mechanical, hydraulic and control subsystem. On the basis of system analysis, the subsystem mathematical analysis model is established, the design parameters are extracted, and the input and output parameters of subsystem and the coupling relationships among them are established. The optimization model of mechanical-electrical-hydraulic integrated system is established. The approximation model techniques of multidisciplinary design optimization are studied, the quadratic response surface and kriging approximate model are applied to the optimization of the mechanical-electrical-hydraulic integrated system. The research indicates that in the optimization design of mechanical-electrical-hydraulic integrated system, the complex, high-precision module is replaced by the approximation model to optimize and iteratively calculate, which greatly reduce the computing amount and improve the efficiency of optimization computation, so the computing bottleneck problems of the mechanical-electrical-hydraulic integrated system optimization are solved, and it has strong engineering practicability.
     2. Optimization strategies and algorithms research of optimization model for mechanical-electrical-hydraulic integrated system
     By analyzing the existing optimization method and algorithm, mechanical-electrical-hydraulic integrated system model is optimized and analyzed by using different optimization methods, optimization algorithms and united algorithms. The research shows that by using traditional numerical optimization algorithms, optimization time is short and it is suitable for the unimodal problem; intelligent optimization algorithm has better optimal performance and long optimal time, and it is fit for multimodal problem. So the combinational algorithms strategy, including global exploration and local optimization, is chosen to optimize the mechanical-electrical-hydraulic integrated system problem. The multi-island genetic algorithm is used to search and determine the optimal value range, and traditional local algorithm is used to achieve optimal value. The result shows that combinational algorithm strategy has the advantage of fast and efficience, high accuracy, and global optimal values.
     3. Development of integrated optimization platform for mechanical-electrical-hydraulic integrated system based on the co-simulation
     Integrated theory and implement method of simulation and optimization for mechanical-electrical-hydraulic integrated system are put forward. The interface among software ADAMS、ANSYS、MATLAB and CATIA is study to integrate the CATIA, ADAMS and MATLAB software into software ISIGHT software platform. The CATIA software of virtual modeling function, ADAMS and MATLAB software dynamics simulation and control simulation function and ISIGHT software integrated optimization function are effectively used to set up the simulation optimization platform for mechanical-electrical-hydraulic integrated system and realize integrated optimization of mechanical-electrical-hydraulic integrated system based on co-simulation. By verifying example, the results show that by using the integrated optimization platform, the platform is feasible and the optimal results are reliable.
     4. Simulation and optimization of6-DOF Parallel robot system
     Combinative simulation and integrated optimization of the parallel robot system are studied by using the established simulation platform. Through simulation and optimization, the validity of the approximation model and the algorithm for mechanical-electrical-hydraulic integrated system is verified, the computing time of optimization model for the system is greatly reduced and the design efficiency is improved.
引文
J P C Kleijnen.2009. Kriging metamodeling in simulation:a review[J]. European Journal of Operational Research,192:707-716.
    A A Giunta.1997. Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods[D]. Virginia:Virginia Polytechnic Institute.
    T W Simpson, T M Mauery, J J Korte et al.2001. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal,39(12):2233-2241
    K H Lee, G J Park.2006. A global robust optimization using the Kriging based approximation model[J]. ASME International Journal,49(3):779-788.
    Sobieski J.1989. Sensitivity of complex internally coupled systems[J]. AIAA Journal,28(1): 1142-1154.
    T Kobayashi, I Kroo.2005. The new effective MDO method based on collaborative optimization[C]. AIAA-2005-4799,35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario,1051-1059.
    Kalogirou S A.2004. Optimization of solar systems using artificial neural-networks and genetic algorithms[J]. Applied Energy,77(4):383-405.
    Kaveh A, Shahrouzi M.2008. Optimal structural design family by genetic search and ant colony approach[J]. Engineering Computations,25(3):268-288.
    WANG X.2004. Hybrid Partiele swarm optimization with simulated annealing[C]. Proceedings of 2004 International Conference on Machine Learning and Cybemeties,2402-2405.
    Javadi A A, Farmani R, Tan T P.2005. A hybrid intelligent genetic algorithm[J]. Advanced Engineering Informaties,19(4):255-262.
    Kevin F. Hulme.2000. The design of a simulation-based framework for the development of solution approached in multidisciplinary design optimization [D]. New York:State University of New York at Buffalo.
    Sobiesczanski-Sobieski J.1990. The sensitivity of complex, internally coupled systems[J]. AIAA Journal,28(1):153-160.
    AIAA Technical Committee for MDO.1991. Current state of the art:multidisciplinary design optimization[R]. AIAA White Paper, Washington D C.
    Sobieszczanski-Sobieski J.1989. Optimization by decomposition:a step from hierarchic to non-hierarchic systems[R]. NASA CP-3031.
    Sobieszczanski-Sobieski J, Agte J S, Sandusky R R.1998. Bi-level integrated system synthesis(BLISS) [R]. AIAA 98-4916.
    Sobieszczanski-Sobieski J,Haftka R T.1996. Multidisciplinary aerospace design optimization: survey of recent developments[R]. AIAA Paper 96-0711.
    Kroo I, Altus S, Braun R, et al.1994. Multidisciplinary optimization methods for aircraft preliminary design[R]. AIAA 94-4325.
    Kroo I, R P Weston, T A Zang.1997. Multidisciplinary optimization methods for preliminary design[C]. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit,38th, and AIAA/ASME/AHS Adaptive Structures Forum Kissimmee, FL.
    Kroo I.1997. MDO applications in preliminary design:status and directions [R]. AIAA Paper 97-1408.
    Martin Stettner.1995. Tilt rotor multidisciplinary optimization [D]. Georgia:Georgia Institute of Technology.
    Jinwei Shen, Jeffrey D Singleton, David J Piatak.2005. Multibody dynamics simulation and experimental investigation of a model-Scale tiltrotor [C]. American Helicopter Society 61st Annual Forum, Gaylord Texan Resort-Grapevine, TX.
    Mathieu Balesdent, Nicolas Berend, Philippe Depince, et al.2012. A survey of multidisciplinary design optimization methods in launch vehicle design[J]. Structural and Multidisciplinary Optimization,45(5):619-642.
    Hefazi H, Mizine I, Schmitz A, et al.2010. Multidisciplinary synthesis optimization process in multihull ship design[J]. Naval Engneers Journal,122 (3):29-47.
    Kim S, Park J, Lee JO, Lee JW.2010. A systematic approach for quantitative analysis of multidisciplinary design optimization framework[J]. Transactions of the japan society for aeronautical and space sciences,52(178):246-254.
    Cramer E J, Frank P D, Shubin G R, et al.1992. On alternative problem formulations for multidisciplinary design optimization[C].4th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference. Cleveland:AIAA Paper 92-4752.
    Cramer E J, Dennis J E, Frank P D, et al.1994. Problem formulation for multidisciplinary optimization[J]. SIAM Journal of Optimization,4(4):754-776.
    Kodiyalam S.1998. Evaluation of methods for multidisciplinary design optimization (MDO): Phase 1 [R]. NASA CR-1998-208716.
    Alexandrov N M, Lewis R M.2000. Algorithmic perspectives on problem formulations in MDO[C].8th AIA A/USAF/NASA/ISSMO Symposium On Multidisciplinary Analysis and Optimization, Long Beach, CA:AIAA Paper 2000-4719.
    Perez R E, iu H T.2004. Evaluation of multidisciplinary optimization approaches for aircraft conceptual design[C].10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York:AIAA Paper 2004-4537.
    K F Hulme.2002. Development of a "Monty Hall" analog for heuristic all-at-once optimization[R]. American Institute of Aeronautics and Astronautics:1719-1728.
    R J Balling, J Sobieszczanski-Sobieski.1995. Optimization of coupled systems:a critical overview of approaches[J]. AIAA Journal,34(1):6-17.
    Renaud J E, Gabriele G A.1997. Second order based multidisciplinary design optimization algorithm development[C]. ASME 19th Design Automation Conference, New Mexico.
    Huang C H, Bloebaum C L.2004. Multi-objective pareto concurrent subspace optimization for multidisciplinary design[C].42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada:AIAA Paper 2004-278.
    Sellar R S, Batill S M, Renaud J E.1996. Response surface based, concurrent subspace optimization for multidisciplinary system design[C].34th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada:AIAA-96-0714.
    Braun R D, Ilan Kroo.1995. Development and Application of the collaborative optimization architecture in a multidisciplinary design environment[R]. SIAM.
    Kroo I M, Manning V.2000. Collaborative optimization:status and directions[R].8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA:AIAA Paper 2000-4721.
    Sobieski I P, Kroo I M.2000. Collaborative optimization using response surface estimation[J]. AIAA Journal,38(10):1931-1938.
    Jiguan G L.2004. Analysis and enhancement of collaborative optimization for multidisciplinary design[J]. AIAA Journal,42(2):348-360.
    Kodiyalam S, Sobieszczanski-Sobieski J.2000. Bilevel integrated system synthesis with response surfaces[R]. AJAA Journal,38(8):1479-1485.
    Sobieszczanski-Sobieski J, Jeremy S A, Robert R S.2001. Bilevel integrated system synthesis[J]. AIAA Journal,38(1):164-172.
    Dequan Zhu, Tao Mei, Sunlei.2011. Fuzzy support vector machines control for 6-DOF parallel robot[J]. Journal of Computers,6(9):1926-1934.
    Bonev I A, Ryu J A.2000. New method for solving the direct kinematics of general 6-6 Stewart platforms using three linear extra sensors[J]. Mechanism and Machine Theory,35:425-436.
    E F Fichter.1986. A stewart platform-based manipulator:general theory and practical construction[J]. International Journal of Robotics Reserch,5(2):157-182.
    Stewart D.1965. A platform with six degrees of freedom[C]. Proceeding of International Mechanical Engineerings, London:371-386.
    J P Merlet.2006. Parallel robots (Second Edition)[M]. Netherland:Springer.
    Yiu Y. K.2002. Geometry, dynamics and control of parallel manipulators[D]. Hong Kong:The Hong Kong University of Science and Technology.
    Kumar Vijay.1990. Characterization of workspaces of parallel manipulators[J]. Mechanism Synthesis and Analysis,25:321-329.
    J P Merlet.2001. An improved design algorithm based on interval analysis for spatial parallel manipulator with specified workspace[J]. Robotics and Automation,5:1289-1294
    Kodiyalam S.1998. Evaluation of methods for multidisciplinary design optimization (MDO), Phase I[R]. NASA CR-1998-208716.
    Salisbury J K, Craig J J.1982. Articulated hands:force control and kinematics issues[J]. The International Journal of Robotics Research,2(1):4-17.
    Zhou J J.1995. Experimental evaluations of a kinematic compensation control method for hydraulic robot manipulators[J]. Control Engineering Practice,3(5):675-684.
    Ting Y, Chen Y S, Jar, H C.2004. Modelling and control for a gough-stewart platform CNC machine[J]. Journal of Robotic Systems,21(11):609-623.
    Nguyen C C, Antrazi S S, Zhou, Z. L, et al.1993. Adaptive control of a stewart platform-based manipulators[J]. Journal of Robotic Systems,10(5):657-687.
    Barthelemy J F M, Haftka R T.1993. Approximation concepts for optimum structural design-A review[J]. Structural Optimization,5(3):129-144.
    Otto J C, Landman D, Patera A T A.1996. Surrogate approach to the experimental optimization of multielement airfoils[C]. The 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA:A1AA-96-4138.
    Yesilyurt S, Patera A T.1995. Surrogates for numerical simulations:optimization of eddy-promoter heat exchangers [J]. Computer Methods in Applied Mechanics and Engineering, 121(1-4):231-257.
    Simpson T W, Mauery T M, Korte J J, et al.2001. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. Journal of Aircraft,39(12): 2233-2241.
    Toropov V, Zadeh P.2004. Use of global approximations in the collaborative optimization framework[C]. The 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York:AIAA-2004-4654.
    Simpson T W, Booker A J, Ghosh D, et al.2002. Approximation methods in multidisciplinary analysis and optimization:a panel discussion[C]. The 9th AlAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA.
    Mckay M D, Beckman R, Conover W J.1979. A comparison of three methods for selecting values of input variable in analysis output from a computer codes[J]. Technometrics,21:239-234.
    Giunta A A, Wojtkiewicz Jr SF, Eldred M S.2003. Overview of modern design of experiments methods for computational simulations[R]. AIAA 2003-0649.
    Simpson T W, Peplinski J, Koch P N, et al.2001. Metamodels for computer-based engineering design:survey and recommendations[J]. Engineering with Computers,17(2):129-150.
    Giunta A.A.2002. Use of data sampling, surrogate models, and numerical optimization in engineering design[C]. Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV:AIAA-2002-0538
    Simpson T W, Lin D K J, Chen W.2001. Sampling strategies for computer experiments:Design and analysis[J]. International Journal of Reliability and Applications,2(3):209-240.
    I P Sobieski, V M Manning, I M Kroo.1998. Response surface estimation and refinement in collaborative optimization[R]. AIAA:359-370.
    Simpson T W, Mauery T M, Korte J J, et al.1998, Comparison of response surface and kriging models for multidisciplinary design optimization[C].7th Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO:AIAA-98-4755.
    Simpson T W, Mauery T M, Korte J J, et al.2001. Kriging methods for global approximation in simulation-Based multidisciplinary design optimization [J]. AIAA Journal,39(12):2233-2241.
    Meckesheimer M, Barton R R, Simpson T W, et al.2001. Metamodeling of combined discrete/continuous responses[J]. AIAA Journal,39:1950-1959.
    Varadarajan S, Chen W, Pelka C.2000. Robust concept exploration method of propulsion systems with enhanced model approximation capabilities[J]. Engineering Optimization,32(3): 309-334.
    Adelman H M, Mantay W R.1988. An initiative in multidisciplinary optimization of rotorcraft[R]. NASA TM101523, Qct.
    Unal R, Lepsch R.A, McMillin M.1998. Response surface model building and multidisciplinary optimization using D-optimal designs[R]. Collection of Technical Papers for 7th Annual AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA-98-4759:405-411.
    Kodiyalam S, Lin Jian S, Wujek Brett A.1998. Design of experiments based response surface models for design optimization[J].39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference&Exhibit and AIAA/ASME/AHS Adaptive Structures Forum, AIAA-1998-2030.
    Jin R, Chen W, Simpson T W.2001. Comparative studies of metamodeling techniques under multiple modeling criteria[J]. Journal of Structural and Multidisciplinary Optimization, 23(1):1-13.
    Giunta A A, Watson L T.1998. A comparison of approximation modeling techniques:polynomial versus interpolating models[C].7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, AIAA,1:392-404.
    Martin J D, Simpson T W.2004. On the use of kriging models to approximate deterministic computer models[C]. ASME Design Engineering Technical Conferences-Design Automation Conference, Salt Lake City.
    Simpson T W, Mauery T M, Korte J J, et al.2001. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal,39(12): 2233-2241.
    J C Carr, R K. Beatson, J B Cherrie, et al.2001. Reconstruction and representation of 3d object swith radial basis functions[C]. Proceedings of the Annual Computer Graphics Conference, New York, ACM Press:67-76.
    Kurkova, K. Kolmogorov's Theorem.1995. The handbook of brain theory and neural networks[M]. M.A.Arbib:MIT Press:501-502.
    JIN R, CHEN W, SIMPSON T W.2001. Comparative studies o f metamodeling techniques under multiple modeling criteria [J]. Journal of Structural and Multidisciplinary Optimization,23(1): 1-13.
    Giunta A A, Dudley J M, Narducci R, et al.1994. Noisy aerodynamic response and smoot approximations in HSCT design[C].5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, FL, AIAA, (2):1117-1128.
    Kaufman M, Balabanov V, Burgee SL, et al.1996. Variable-complexity response surface approximations for wing structural weight in HSCT design[R].34th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA-96-0089.
    Simpson T W, Lin D K J, Chen W.2001. Sampling strategies for computer experiments:Design and analysis[J]. International Journal of Reliability and Applications,2(3):209-240.
    Wu Xianyu, Xu Lin, Jin Liang, et al.2006. The MDO environment for hypersonic vehicle system design and optimization[R]. AIAA 2006-5191.
    Kim H, Malone B, Sobieszczanski-Sobieki J.2004. A distributed, parallel, and collaborative environment for design of complex systems[R]. AIAA 2004-1848.
    Rohrschneider R R, Olds J R, Braun R D, et al.2004. Flight system options for a long-duration mars airplane[R]. AIAA 2004-6568.
    Beam J, Heidenreich J, Miller R.2005. Development of a distributed integrated modeling environment to study the impact of subsystem performance on an air vehicle design[R]. AIAA 2005-5573.
    孙靖民,梁迎春.2011.机械优化设计(第4版)[M].北京:机械工业出版社.
    王英杰.2001.大型机械系统复杂构建结构优化设计方法研究[D].秦皇岛:燕山大学.
    李响,李为吉.2006.复杂工程系统优化设计面临的问题及解决方法[J].机械工程学报,42(6):156-160.
    钟掘.2007.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社.
    高钦和,龙勇,马长林等.2012.机电液一体化系统建模与仿真技术[M].北京:电子工业出版社.
    马长林,李峰,郝琳等.2008.基于Simulink的机电液一体化系统集成优化仿真平台研究[J].系统仿真学报,20(17):4578-4581.
    何芝仙,桂长林.2006.复杂机械系统优化设计研究[M].机械科学与技术,25(2):158-162.
    苏子健.2008.多学科设计优化的分解、协同及不确定性研究[D].武汉:华中科技大学.
    龚春林.2004.多学科设计优化技术研究[D].西安:西北工业大学.
    吴宝贵.2007.基于仿真分析的复杂机械产品多学科设计优化方法研究[D].大连:大连理工大学.
    赵敏.2009.两级集成系统协同优化方法及其在深海空间站总体概念设计中的应用[D].上海:上海交通大学.
    张立勋.2010.机电系统建模与仿真[M].哈尔滨:哈尔滨工业大学出版社.
    陈柏鸿.2001.机械产品多学科综合优化设计中的建模、规划及求解策略[D].武汉:华中科技大学.
    钟毅芳,陈柏鸿,王周宏.2006.多学科综合优化设计原理与方法[M].武汉:华中科技大学出版社.
    梅小宁,杨树兴.2010.复杂系统的多学科设计优化综述[J].工程设计学报,17(3):173-180,185.
    赫显姆.2011.多学科设计优化中智能算法与近似模型研究[D].武汉:华中科技大学.
    王凌,吉利军,郑大钟.2004.基于代理模型和遗传算法的仿真优化研究[J].控制与决策,19(6):17-22.
    穆雪峰,姚卫星,余雄庆等.2005.多学科设计优化中常用代理模型研究[J].计算力学学报,22(5):608-612.
    张静,李柏林,刘永均.2007.基于灵敏度分析的多学科设计优化解耦方法[J].西南交通大 学学报,42(5):563-567.
    纪国华,李彦,李文强等.2011.一种面向复杂系统的多学科设计优化方法[J].机械设计与研究,27(4):6-11.
    肖蜜.2012.多学科设计优化中近似模型与求解策略研究[D].武汉:华中科技大学.
    李响,李为吉.2005.飞行器多学科设计优化的三种基本类型及协同设计方法[J].宇航学报,26(6):693-697.
    王琦.2008.MDO优化算法研究[D].南京:南京航空航天大学.
    李世海.2009.多学科优化设计算法研究[D].北京:中国地质大学.
    操安喜.2008.载人潜水器多学科设计优化方法及其应用研究[D].上海:上海交通大学.
    解红雨.2006.固体火箭发动机分布式集成设计平台及其关键技术研究[D].长沙:国防科学技术大学.
    李庆国.2007.液压支架多学科设计优化平台研究与实现[D].济南:山东科技大学.
    任利.2006.基于iSIGHT的多学科设计优化平台的研究与实现[D].济南:山东科技大学.
    余雄庆,姚卫星,薛飞等.2004.关于多学科设计优化计算框架的探讨[J].机械科学与技术,23(3):286-289.
    谷良贤,龚春林.2004.多学科设计集成环境的模式和应用[J].宇航学报,7(4):459-461.
    曾声宇.2004.基于响应面近似的反舰导弹并行子空间优化设计方法[D].西安:西北工业大学.
    李钰.2008.多学科设计优化方法及其应用研究[D].五邑:五邑大学.
    李响.2003.多学科设计优化方法及其在飞行器设计中的应用[D].西安:西北工业大学.
    张科施.2006.飞机设计的多学科优化方法研究[D].西安:西北工业大学.
    胡峪.2001.飞机多学科设计优化及其应用研究[D].西安:西北工业大学.
    余雄庆.2008.飞机总体多学科设计优化的现状与发展方向[J].南京航空航天大学学报,40(4):417-426.
    彭名华.2009.直升机总体多学科设计优化研究[D].南京:南京航空航天大学.
    胡添元.2010.飞翼布局飞机总体多学科设计优化研究[D].南京:南京航空航天大学.
    薛立鹏.2011.倾转旋翼机气动/动力学多学科设计优化研究[D].南京:南京航空航天大学.
    湛岚.2009.大型客机外形参数化与机翼气动结构多学科优化[D].南京:南京航空航天大学.
    陈小前.2001.飞行器总体设计理论与应用研究[D].长沙:国防科学技术大学.
    俞必强,翁海珊,李疆等.2006.微机电系统多学科设计优化[J].机械工程学报,42(5):65-68.
    刘蔚.2007.多学科设计优化方法在7000米载人潜水器总体设计中的应用[D].上海:上海交通大学.
    黄桥高,潘光,吴琳丽.2012.鱼雷总体多学科设计优化集成平台及其关键技术[J].鱼雷技术,20(2):81-85.
    焦生杰.2000.工程机械机电液一体化[M].北京:人民交通出版社.
    刘祖源,冯佰威,詹成胜.2010.船体型线多学科设计优化[M].北京:国防工业出版社.
    冯佰威.2011.基于多学科设计优化方法的船舶水动力性能综合优化研究[D].武汉:武汉理工大学.
    刘克锋.2010.船舶多学科设计优化建模研究[D].武汉:武汉理工大学.
    吴宝贵.2007.基于仿真分析的复杂机械产品多学科设计优化方法研究[D].大连:大连理工大学.
    王伟.2006.多体动力学仿真优化集成及其文档生成技术的研究[D].济南:山东科技大学.
    陈义保,钟毅芳,张磊.2004.基于特征变量的复杂机械系统优化方法的最优性条件[J].机械设计,21(9):7-10.
    胡伟,钟毅芳,周济.2002.复杂机械产品优化设计实现方法研究[J].机械工程学报,38(1):35-38.
    张静,刘永均,李柏林.2008.机器人系统多学科协同优化设计[J].机械设计与研究,24(5):47-50.
    张静.2008.多学科设计优化关健技术研究及其机构学领域中的应用[D].重庆:西南交通大学.
    焦利明.2012.多学科设计优化理论在并联机构中的应用[D].郑州:郑州大学.
    刘永均.2008.基于MDO理论的3-RRS并联机器人设计优化[D].重庆:西南交通大学.
    王晓青,王小军.2007.多学科优化技术及其算法[J].导弹与航天运载技术,1:23-26.
    王凌.2001.智能优化算法及其应用[M].北京:清华大学出版社.
    李晓斌,陈小前,张为华.2004.多学科设计优化中搜索策略研究[J].战术导弹技术,2:1-6.
    聂勇军,魏世民.2011.多学科优化设计技术及其应用研究[J].机电产品开发与创新,24(1):4-6.
    李成功,和彦淼.2008.液压系统建模与仿真分析[M].北京:航空工业出版社.
    宋俊.1996.液压系统优化[M].北京:机械工业出版社.
    杨志宇.2008Steward平台的PIDNN控制[D].秦皇岛:燕山大学.
    黄真,孔令富,方跃法.1997.并联机器人机构学理论及控制[M].北京:机械工业出版社.
    段学超.2008.柔性支撑Stewart平台的分析、优化与控制研究[D].西安:西安电子科技大学.
    肖华.2011.六自由度Stewart并联机构结构的优化设计[D].哈尔滨:哈尔滨工业大学.
    邬昌峰.2003.6-SPS并联机器人工作空间研究及其优化设计[D].合肥:合肥工业大学.
    苏玉鑫,段宝岩.2000.基于遗传算法的Stewart型平台结构参数优化设计[J].机械设计,17(9):10-12
    王军,吴罕奇,王巍等.2012.基于遗传算法的六自由度平台参数优化设计[J].机床与液压,40(10):1-3.
    李浩,张玉茹,王党校.2010.6-RSS并联机构工作空间优化算法对比分析[M].机械工程学报,46(13):61-67.
    黄真,赵永生,赵铁石.2006.高等空间机构学[M].高等教育出版社.
    段学超,仇原鹰,段宝岩.2006.基于Metropolis遗传算法的并联机器人结构优化设计[J].机器人,28(4):433-438.
    谷海涛,林扬,胡志强等.2009,基于代理模型的水下滑翔机机翼设计优化方法[M].机械工程学报,45(12):7-14.
    方开泰,马长兴.2001.正交与均匀试验设计[M].北京:科学出版社.
    林维宣.1995.试验设计方法[M].大连:大连海事大学出版社.
    项可风,吴启光.1989.试验设计与数据分析[M].上海:上海科学技术出版社.
    张铁茂,丁建国.1990.试验设计与数据处理[M].北京:兵器工业出版社.
    冯佰威,刘祖源,聂剑宁等.2009.基于iSIGHT的船舶多学科综合优化集成平台的建立[J].武汉理工大学学报(交通科学与工程版),33(5):898-899.
    谢岳峰.2008.飞机概念设计与优化的计算环境研究[D].南京:南京航空航天大学.
    张晓萍.2006.联结翼飞机气动/结构一体化设计研究[D].南京:南京航空航天大学.
    Engineous Software Inc.2008. iSIGHT-FD Use's Manual (Version 3.0) [M]. Engineous Software Inc.
    蔡骊君.2010.复杂机械系统刚-柔混合虚拟样机一体化分析技术初探[D].天津:天津大学.
    张乐乐.2008CATIA V5应用教程[M].北京:清华大学出版社.
    李剑峰,汪建兵,林建军等.2010.机电系统联合仿真与集成优化案例解析[M].北京:电子工业出版社.
    郑建荣.2001ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社.
    李增刚.2008ADAMS入门详解与实例[M].北京:国防工业出版社.
    王国庆.2009.工程机械机电液一体化系统动态仿真[M].北京:人们交通出版社.
    商跃进.2005.有限元原理与ANSYS应用指南[M].北京:清华大学出版社.
    张德丰.2009MATLAB/Simulink建模与仿真[M].北京:电子工业出版社.
    朱殿华.2009.复杂产品多学科优化方案设计理论及方法研究[D].天津:天津大学.
    王浩.2009.浮空器飞控系统的多学科设计优化[M].上海:上海交通大学.
    杨秀清.2008.机电液耦合的搬运机械手虚拟样机研究[D].合肥:中国科学技术大学.
    吴秀林.2008.基于Stewart平台机构的智能弯管机的优化设计与运动控制[J].重庆:西南交通大学.
    何立波.2006.六自由度摇摆台动力学仿真及优化[M].哈尔滨:哈尔滨工业大学.
    曹旭阳,司爱国.2006.装载机工作装置机-液耦合仿真分析[J].中国机械工程,17(23):2461-2464.
    薛定宇,陈阳泉.2002.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社.
    余雄庆.1999.多学科设计优化及其在飞机设计中的应用研究[D].南京:南京航空航天大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700