用户名: 密码: 验证码:
螺旋锥齿轮计算机辅助制造理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在螺旋锥齿轮加工制造业广泛采用计算机辅助制造系统,为设计计算,加工理论分析,加工方法检验等方面服务,有助于优化加工过程,检验加工精度,预测加工制造结果。将虚拟制造技术与螺旋锥齿轮的加工制造理论相结合,构建螺旋锥齿轮辅助制造三维平台,研究开发螺旋锥齿轮计算机辅助制造系统的关键技术。
     将传统的HFT加工方法转换为数控加工方法,对五轴联动数控螺旋锥齿轮机床的加工运动过程进行仿真,提出一种基于解析计算的切削仿真算法,将刀具切削工件形成齿面的过程离散成一系列刀具圆锥体切削工件层圆的瞬时运动,通过解析计算求解圆锥体和层圆的交点来获得分布均匀的齿面数据点,实现螺旋锥齿轮多次切削可视化仿真。为提高仿真过程中的切削速度采用三角面片缝合齿面来显示切削过程,生成的齿轮采用NURBS曲面显示。
     根据齿面数据点、齿坯参数建立齿轮的层圆模型和NURBS体两种模型,在此基础上提出一种可应用于运动NURBS体齿轮的干涉检查算法。该算法将NURBS体齿轮对中齿面干涉、齿面求交问题转化成一个NURBS齿面与另一个齿面上各点的运动轨迹圆的求交问题,进而给出圆与NURBS曲面求交的算法及齿面存在多个干涉区时的曲面求交算法。
     在NURBS体模型基础上,建立数控加工齿轮的装配坐标系,进行齿轮的装配,结合干涉检查算法给出啮齿过程的接触点仿真算法,并生成齿面接触轨迹和几何接触区,为齿轮参数优化提供参考。
     为了控制齿面的加工质量,基于滚切法加工原理,提出一种采用数值法精确计算齿面残留高度的算法,建立滚切齿面数学模型。该模型确立了刀倾法加工螺旋锥齿轮时齿面残留高度与刀片数量、刀盘转速、摇台转速与摇台转角范围的参数关系,计算齿面不同取样处残留高度的理论值,预估齿面粗糙度。
     本论文以国家高技术研究发展计划(863计划)项目“汽车螺旋锥齿轮高效精密加工成套设备”(项目号:2007AA042005)为主要支持。
Processing and manufacturing of spiral bevel gears widely adopted computer-aided manufacturing systems for processing design, theoretical analysis, inspection, etc. The virtual manufacturing technology was combined with the manufacturing theory of spiral bevel gear combination to construct three-dimensional spiral bevel gear aided manufacturing platform and provide the support for CNC machine.
     A cutting simulation algorithm of spiral bevel gears was put forward to verify the movement in the CNC machine cutting process. The algorithm separated the cutting process into a series of discrete cutting movements. The cutting movement number was quantified by computing the amount of cutting blades. For any discrete movement, the algorithm interpreted the cutter blades and the spiral bevel gear as cones and layer circles respectively. So the data points on the gear tooth surface were generated by calculating the intersection points of the cones and circles. The algorithm adopted analytic calculation and was applied on the multiple cutting movements simulation of the spiral bevel gear. To improve the cutting simulation speed, the triangular patches stitched technology was put forward to display the cutting tooth surface, while the NURBS fitted surface are adopted to show the solid of spiral bevel gear.
     To achieve spiral bevel gear pairs’interference points or areas during the meshing movement, an interference check algorithm was put forward. Based on the gear parameters and points on the tooth surface, the algorithm established two kinds of gear models including a series of circles model and NUBRS one to describe the spiral bevel gear. In view of the complexity of NUBRS surface intersection and the characters of meshing movement, this problem was transferred into the intersection between the NUBRS tooth surface of pinion and a series of circles of gear. Meanwhile the intersection algorithm between the circle and NUBRS surface was proposed in the case of single or multi intersection areas.
     The simulation method was applied to analyze the meshing process of spiral bevel gear pairs. The gear and pinion were assembled with the assembly constraints. Based on the geometrical bodies’interference check, a contact point simulation algorithm of tooth contact was proposed to estimate the contact condition of tooth surface. The corresponding computer simulation program was developed to generate the instantaneous contact points, compute the transmission errors and describe the contact area.
     Based on the tilt generated cutting principle, a numerical algorithm of scallop height was put forward to control the cutting surface quality of spiral bevel gears. The cutting process was described as a series of non-continuous cutting movements of blades. The designed parameters of cutter blades and cutting process parameters were combined to build the mathematical tooth surface model. The mathematical model established the relationship among the scallop height, the blades number, the cutter rotational speed, the roll rate and the roll rotation angle. According to the mathematical model, scallop heights were computed by numerical algorithm and the influence of cutting process parameters was analyzed.
     The thesis is supported by national“863”project of china: precise and effective complete set manufacturing equipment for auto mobile spiral bevel gear and hypoid gear (No.2007AA042005).
引文
[1] E. Wildhaber, Gear tooth curvature treated simply.American Machinist, 1945, 89(18): 122~125
    [2] Wildhaber E., Tooth contact, American Machinist, 1946, 90(12): 110~114
    [3] Wildhaber E., Basic relationship of hypoid gear, American Machinist, 1946, 90(3): 108~111
    [4] Wildhaber E., Conjugate pitch surface, American Machinist, 1946, 90
    [5] Wildhaber E., Surface curvature, Prod Engry, 1956, 27(5): 184~191
    [6]爱.威尔德哈尔泊,锥齿轮及准双曲面齿轮啮合原理,张志喜译,北京:机械工业出版社,1958
    [7] Baxter M.L., Basic geometry and tooth contact of hypoid gear, industrial mathematics, 1961, 11(2): 19~28
    [8] Baxter M.L., Second-order surface generation, J Ind Math, 1973, 23(2): 85~106
    [9]冯忆艰,克林贝格螺旋锥齿轮磨(11):23~24
    [10]冯忆艰,失配理论在克林贝格螺旋报,2000,20(2): 148~150
    [11]刘志峰,陈良玉,王延忠等,Klingelnberg摆线锥齿轮轮齿几何分析,东北大学学报(自然科学版),1999,20(4):388~391
    [12] Stadtfeld H.J., Olerlikon bevel and hypoid gears, Olerlikon Buhrle AG., 1991
    [13]郑昌启,弧齿锥齿轮和准双曲面齿轮,北京:机械工业出版社,1988
    [14]曾韬,螺旋锥齿轮的设计和加工,哈尔滨:哈尔滨工业大学出版社,1989
    [15]吴序堂,齿轮啮合原理北京:机械工业出版社,1982
    [16]董学朱,齿轮啮合理论基础,北京:机械工业出版社,1989
    [17]郑昌启,汽车驱动桥齿轮加工技术的发展,MC现代零部件,2009,(9):30~34
    [18]樊奇,让德福,格里森专家制造系统GEMS开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元,产品与技术,2005,4:87~93
    [19]唐定国,迈向21世纪的我国齿轮工业和齿轮传动技术,机械传动,1996,(1): 84~87
    [20]李兆文,王勇,陈正洪,螺旋锥齿轮技术的研究现状,工具技术,2007,41(10):3~6
    [21]遇立基,CIMT’99展出的数控齿轮加工机床,制造技术与机床,1999,(12):6~7
    [22] YK2045、YK2050数控螺旋锥齿轮磨齿机,世界制造技术与装备市场,2005,5:88~89
    [23]我国大型数控弧齿锥齿轮铣齿机研制成功,机械工程师,2005:9
    [24]肖春芳,曾韬,数控螺旋锥齿轮研齿机气动系统研究与设计,新技术新工艺,2006,(11):74~75
    [25]王小椿,吴联银,李彬等,基于空间运动学的传统机床与Free-form型机床运动转换方法的研究,机械工程学报,2001,37(4):93~98
    [26]张华,邓效忠,四轴数控螺旋锥齿轮铣齿机变性法铣齿研究,中国机械工程,2007,18(14):1652~1655
    [27]张华,曹雪梅,邓效忠等,四轴联动数控螺旋锥齿轮铣齿机的齿长曲率修正,农业机械学报,2010,41(7):205~209
    [28]吴训成,毛世民,吴序堂,点啮合齿面主动设计研究,机械工程学报,2000,36(4):70~73
    [29]吴训成,毛世民,吴序堂,点啮合齿面主动设计理论和方法,机械科学与技术,2000,19(3):347~349
    [30]苏智剑,吴序堂,毛世民等,基于计算机数字控制弧齿锥齿轮机床的准双曲面齿轮的制造,机械工程学报, 2007,43(5):17~20
    [31]周凯红,唐进元,曾韬,基于预定啮合特性的点啮合齿轮的CNC制造技术研究,机械工程学报,2009,45(9):173~182
    [32]龚道香,张建军,郑昌启,KLINGLNBERG制延伸外摆线齿锥齿轮性能分析与探讨,重庆大学学报,1993,16(1):84~89
    [33] Krezer T J,Tooth Contact Analysis of Spiral Bevel and Hypoid Gears under Load. New York: Gleason Works Publication, 1981
    [34] Yi Zhang, F. L. Litvin, R. F. Handschuh, Computerized design of low-noise face-milled spiral bevel gears, Mechanism and Machine Theory, 1995, 30(8): 1171~1178
    [35] F. L. Litvin, A. G. Wang, R. F. Handschuh, Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry, Computer Methods in Applied Mechanics and Engineering, 1998, 158(1~2): 35~64.
    [36] F.L Litvin, M.De Donno, A Peng, A Vorontsov, R.F Handschuh, Integrated computer program for simulation of meshing and contact of gear drives, Computer Methods in Applied Mechanics and Engineering, 2000, 181(1~3): 71~85
    [37] John Argyris, Alfonso Fuentes, Faydor L. Litvin, Computerized integrated approach for design and stress analysis of spiral bevel gears, Computer Methods in Applied Mechanics and Engineering, 2002, 191(11~12):1057~1095
    [38] Faydor L. Litvin Alfonso Fuentes, Qi Fan,et al, Handschuh, Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears, Mechanism and Machine Theory, 2002,37(5): 441~459
    [39] Faydor L. Litvin, Alfonso Fuentes, Kenichi Hayasaka, Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears, Mechanism and Machine Theory, 2006, 41(1): 83~118
    [40] Faydor L. Litvin, Daniele Vecchiato, Kenji Yukishima, et al, Reduction of noise of loaded and unloaded misaligned gear drives, Computer Methods in Applied Mechanics and Engineering, 2006, 195(41~43):5523~5536
    [41] Simon Vilmos, The influence of misalignments on mesh performances of hypoid gears, Mechanism and Machine Theory,1998, 33(8):1277~1291
    [42] Vilmos Simon, FEM stress analysis in hypoid gears, Mechanism and Machine Theory, 2000, 35(9): 1197~1220
    [43] Simon V, Optimal Machine Tool Setting for Hypoid Gears Improving Load Distribution, Trans,ASME Journal of Mechanical Design, 2001, 123(12): 577~582
    [44] Vilmos Simon, Influence of tooth errors and shaft misalignments on loaded tooth contact in cylindrical worm gears, Mechanism and Machine Theory, 2006,41(6): 707~724
    [45] Vilmos Simon, Computer simulation of tooth contact analysis of mismatched spiral bevel gears, Mechanism and Machine Theory, 2007, 42(3):365~381
    [46] Vilmos Simon, Influence of tooth errors and misalignments on tooth contact in spiral bevel gears, Mechanism and Machine Theory, 2008, 43(10):1253~1267
    [47] Vilmos Simon, Influence of machine tool setting parameters on EHD lubrication in hypoid gears Original Research Article.Mechanism and Machine Theory, 2009, 44(5):923~937
    [48] Vilmos Simon, Head-cutter for optimal tooth modifications in spiral bevel gears, Mechanism and Machine Theory, 2009, 44(7):420~1435
    [49]汪中厚,周晓玲,螺旋锥齿轮动力学研究方法及进展,中国机械工程,2006,17(11):1203~1208
    [50]王小椿,点啮合曲面的三阶接触分析,西安交通大学学报,1983,17(3):1~13
    [51]王小椿,线接触曲面的三阶接触分析,西安交通大学学报,1983,17(5):1~12
    [52]王小椿,吴序堂,点接触齿面三阶接触分析的进一步探讨—V/H检验法的理论,西安交通大学学报,1987,21(2):l~13
    [53]吴序堂,王小椿,李峰,曲线齿锥齿轮三阶接触分析法的原理及传动质量评价,机械工程学报,1994,30(3):47~57
    [54]王小椿,吴序堂,弧齿锥齿轮和双曲线齿轮的三阶接触分析和优化切齿计算,齿轮,1989,13(2):1~10.
    [55]王小椿,吴序堂,空间点啮合齿面的接触特性对安装误差的敏感性分析,西安交通大学学报,1990,24(6):45~ 57
    [56]王军,王小椿,姜虹,螺旋锥齿轮齿面的三坐标测量,机械工程学报,2003,39(6):151~154
    [57]王小椿,王军,姜虹,螺旋锥齿轮的齿面测量及机床加工参数修正,机械工程学报,2003,39(8):125~128
    [58]王志永,曾韬,弧齿锥齿轮基于比例修正参数的齿形误差修正,机械工程学报,2010,46(1):43~47
    [59]王志永,于水琴,曾韬,数控螺旋锥齿轮磨齿机机床加工误差补偿,农业机械学报,2009,40(1):222~226
    [60]方宗德,齿轮轮齿承载接触分析(LTCA)的模型和方法,机械传动,1998,22 (2):1~3
    [61]方宗德,邓效忠,任东锋等,考虑边缘接触的弧齿锥齿轮承载接触分析,机械工程学报,2002,38(9):69~72
    [62]邓效忠,高重合度弧齿锥齿轮的设计理论及实验研究,西安:西北工业大学,2002:99
    [63]唐进元,卢延峰,周超等,有误差的螺旋锥齿轮传动接触分析,机械工程学报,2008,44(7):16~23
    [64]明兴祖,严宏志,陈书涵,多轴数控磨削螺旋锥齿轮的表面粗糙度研究,中国机械工程,2009,20(20):2470~2476
    [65]施法中,计算机辅助几何设计与非均匀有理P样条,北京航空航天大学出版社,2001
    [66]中国质量技术监督局,中华人民共和国国家标准:初始图形交换规范(Initial Graphics Exchange Specification,IGES5.3(GB/T 14213-2001),北京:中国标准出版社,2001
    [67] National Institute of Standards and Technology(NIST), Programmer’s Hierarchical Interactive Graphics System(PHIGS),ISO/IEC9592-4. MD: Gaithersburg, 1992
    [68] MC Lin, S Gottschalk,Collision detection between geometric models: a survey The mathematics of surfaces VIII, 1998
    [69] R.E. Barnhill, S.N. Kersey, A marching method for parametric surface/surface intersection Computer Aided Geometric Design, 1990, 7(1~4): 257~280
    [70]高新瑞,张树生,侯增选.NURBS体造型与布尔运算.计算机工程与应用, 2004,40( 36):22~24
    [71]侯增选,KrauseFL,张定华等,一种新的压缩体素模型及其应用,西北工业大学学报,2004,22(6):684~688
    [72]侯增选,Frank-Lothar Krause,常钢等,基于压缩体素模型的鼓形刀空间扫描体构造方法及其应用,计算机辅助设计与图形学学报,2006,18(8):1192~1196
    [73] B. V. Herzen, A. H. Barr, and H. R. Zatz, Geometric collisions for time-dependent parametric surfaces,Computer Graphics, 1990,24(4):39~48
    [74] J. Snyder, Interval methods for multi-point collisions between time dependent curved surfaces,In Proceedings of ACM Siggraph, 1993: 321~334
    [75]张军辉,方宗德,王成,基于NURBS的弧齿锥齿轮真实齿面的数字化仿真.航空动力学报,航空动力学报,2009,24(7):1672~1676
    [76]李学艺,陈松,王小椿,曲面间最小距离及其在曲面求交中的应用,机械科学与技术,2004,23(4):382~384
    [77] Xueyi Li, Hong Jiang, Song Chen, et al. An efficient surface–surface intersection algorithm based on geometry characteristics, Computers & Graphics, 2004, 28(4): 527~537
    [78] Kaihuai Qin, Minglun Gong, Youjiang Guan, et al, A new method for speeding up ray tracing NURBS surfaces, Computers & Graphics, 1997,21(5): 577~586
    [79]官火梁,吴强,席平,RCS计算中NURBS曲面和射线求交的快速计算,工程图学学报,2006 (1):87~91
    [80] Xiao-Diao Chen, Jun-Hai Yong, Guozhao Wang, et al, Computing the minimum distance between a point and a NURBS curve , Computer-Aided Design, 2008, 40(10~11): 1051~1054
    [81]张长富,王琨琦,NURBS曲线和圆弧的求交方法研究,西安工业学院学报,2003,23(1):16~21
    [82] Claude Gosselin, Louis Cloutier, Q. D. Nguyen, A general formulation for the calculation of the load sharing and transmission error under load of spiral bevel and hypoid gears, Mechanism and Machine Theory, 1995, 30(3):433~450
    [83] Gosselin C.,Gagnon P.,Cloutier L., Accurate tooth stiffness of spiral bevel gear teeth by the finite strip method, ASME Journal of Mech. Des., 1998, 120(12): 599~604
    [84] Gosselin C, Guertin T, Remond D,et al, Simulation and Experimental Measurement of the Transmission Error of Real Hypoid Gears under Load, Trans, ASME Journal of Mechanical Design, 2000, 122(3):109~122
    [85] Galina I. Sheveleva, Andrey E. Volkov, Vladimir I. Medvedev, Algorithms for analysis of meshing and contact of spiral bevel gears, Mechanism and Maehinetheory,2006,42 (2007): 198~215
    [86]熊越东,王太勇,张威等,螺旋锥齿轮数控铣齿加工过程几何仿真研究,机床与液压,2005(6):1~3,88
    [87]熊越东,基于虚拟现实技术的螺旋锥齿轮CNC加工仿真理论与方法研究,天津大学,2005
    [88]张威,王太勇,罗珺等,面向刀倾展成法的运动学转换简化算法及仿真,机械工程学报,2008,44(3):123~129
    [89]张威,准双曲面齿轮数控加工理论与仿真研究,天津大学,2006
    [90]于水琴,曾韬,数控螺旋锥齿轮磨齿机加工仿真系统的研究.机械制造,2008,46(523):5~76
    [91]李敬财,王太勇,何改云等,基于加工方法和啮合理论的螺旋锥齿轮精确实体造型,吉林工大学报,2008,38(6):1315~1319
    [92]李敬财,螺旋锥齿轮数字化制造基础应用技术研究,天津大学,2008
    [93] Zhaowen Li, Yong Wang, Spiral Bevel Gears Based on Actual Cutting Process, Jinan:International Conference on Automation and Logistics, 2007, 1694~1698
    [94]王延忠,阮德林,赵兴福等,螺旋锥齿轮离散齿面数字仿真加工方法研究,机床与液压,2007,35(2):24~26
    [95]王沉培,周云飞,李左章,计算机辅助设计在准双曲面齿轮数控化加工中的应用,计算机辅助设计与图形学学报,2002,14(4):320~323
    [96]孙殿柱,董学朱.真实齿面啮合分析,机械工程学报,2000,36(8):98~101
    [99]张金良,方宗德,曹雪梅,弧齿锥齿轮齿面接触应力分析,机械科学与技术,2007,26(10):1268~1272
    [100]Jinliang Zhang, Zongde Fang, Xuemei Cao, Xiaozhong Deng, The modified pitch cone design of the hypoid gear: Manufacture, stress analysis and experimental tests, Mechanism and Machine Theory, 2007, 42(2):147~158
    [101]Les PiegI,Wayne Tiller,The NURBS BOOK, Springer,1996
    [102]E. Dimas, D. Briassoulis,3D geometric modelling based on NURBS: a review, Advances in Engineering Software, 1999, 30(9~11):741~751
    [103]王延忠,周云飞,李左章等,螺旋锥齿轮空间曲面NC加工插补偏差分析,华中科技大学学报,2002,30(2):9~12
    [104]刘源,王永章,富宏亚等,用于五轴联动数控机床的曲线插补控制策略,计算机集成制造系统,2009,15(4):758~761
    [105]吕彦明,陈五一,陈鼎昌,球头刀铣削残留高度精确计算,中国机械工程,2003,14(18):1550~1551
    [106]李世杰,孙立新,郭兰申.数控铣削中曲面加工的粗糙度预测.机械设计与制造工程,2000,29(4):35~37
    [107]B.H. Kim, C.N. Chu. Effect of cutter mark on surface roughness and scallop height in sculptured surface machining.Computer-Aided Design, 1994, 26(3):179~188
    [108]黄树涛、贾春德、姜增辉等。高速车铣已加工表面粗糙度的理论与实验研究哈尔滨工业大学学报,2005,37(5):717~720
    [109]赵云霞,翟春来.高速铣削残留高度对加工表面粗糙度的影响..天津职业院校联合学报,2009,11(5):3~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700