用户名: 密码: 验证码:
基于液压式能量回收的挖掘机动臂节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内工业技术的迅速发展,能源短缺和环境污染问题日趋严重。液压挖掘机由于其用量大、耗油高、排放差,已逐渐成为人们普遍关注的主要对象之一。日本神钢公司研究结果表明传统挖掘机的液压系统效率仅为30%左右,表明对液压系统进行改进具有较大的潜力,是液压挖掘机节能研究的一个重要方向。
     液压挖掘机前端工作装置质量重、惯性大,在下放过程中,重力势能和动能绝大部分在主阀的节流口转化为热能;上车的回转质量大,工作频繁,用于回转的能量最后几乎全部变成热能。上述两种情况不仅造成了能量的浪费,而且使液压系统温度升高,为了降低油温进行散热,又将引起附加能量消耗。为了解决这一问题,应考虑开展能量回收。
     主要研究内容如下:
     以某公司7吨和20吨级液压挖掘机为研究对象,围绕其液压系统的可回收能量分布,分别建立执行机构、液压系统模型以及系统能量损耗模型,进行仿真研究,开展7吨级液压挖掘机动臂和斗杆快速下放以及20吨级挖掘机典型挖掘循环工况的可回收能量实验研究,得出液压挖掘机在工作过程中系统各部分的能量消耗情况,在此基础上挖掘液压系统的节能潜力,找出当前条件下切实可行的节能方法。
     基于传统动臂液压系统能量损耗分析以及液压式能量回收与及电力式能量回收系统的比较,根据进出口独立节流调节、流量再生和能量回收三种提高液压系统效率的方法,提出了变压利用和直接利用两种新型动臂节能系统,阐述了其运行机理和技术优势;通过静态分析,阐明了新系统的节能方法和所节约能量的源头,对所提出的两种动臂节能方案进行了综合比较,选取直接利用方案作为主要研究对象。
     系统地提出了新型动臂能量回收系统的设计步骤和方法。以7吨级液压挖掘机为设计对象,通过动臂快速升降实验进行对象分析,制定系统控制策略,进行主要元件参数匹配,建立系统数学模型,开展动态特性分析,得出影响其动态性能的主要因素。以7000kg的质量块作为负载,对系统的运行过程进行分析,结果表明系统在恒定负载下运行良好。
     根据动臂系统负载变化频繁且幅度大的特点,建立了执行机构模型,对液压系统进行比例化改造,采用PID控制器对各执行元件的运行进行精确控制。将能量回收系统应用于比例控制的挖掘机上,通过动臂快速升降,典型挖掘循环(包括空载和带载)工况下的仿真研究,来分析系统的节能性和控制性,结果表明,新型动臂节能系统运行良好,节能效果显著。
     通过能量回收系统试验,测试系统能量回收效果和控制性能,验证其运行机理。根据实验结果和仿真分析,对动臂节能系统提出了分阶段控制,在动臂下放加速阶段采用节流控制,而后采用调节能量回收系统中的变量泵排量进行控制,提高马达—变量泵运行的平稳性。
Currently, energy saving has become one of the most important world problems because of the energy crisis and the resulting increase of fuel cost. Only 30% of the hydraulic system input power is utilized in a conventional type excavator. Many proposals for energy saving in oil hydraulic systems had been discussed. One of the most important research directions of improving hydraulic system efficiency is to reutilize the gravity potential energy and kinetic energy.
     The hydraulic excavator's massive work device, when lowered, generates a great deal of force on the rod end of the boom cylinder. In turn, this exerts huge forces on the fluid and blind end of the cylinders. Fluid forced from the boom cylinder at several ten bars, in most instances, throttles through valves and returns to the reservoir. The result:potential of energy is lost as heat when the boom lowers. Also, a large amount of energy is wasted during lowering of stick and bucket and braking of upper structure. To resolve this problem, it is necessary to reutilize the potential energy and kinetic energy.
     The main contents are briefly introduced as following:
     Base on the distribution of recoverable energy in 7-ton and 20-ton excavator hydraulic system, multi-body dynamics, hydraulic system and system energy loss model is developed; the potential recoverable energy during the typical working cycle is calculated. Then the boom fast down and up experiment of 7-ton excavator and typical working cycle experiment of 20-ton excavator are carried out. After analysis, the results present the amount of the recoverable energy distributions and find the way to improve the efficiency of the hydraulic system.
     The inefficiency of the traditional boom system is analyzed. And hydraulic energy recovery is compared with electrical energy recovery system. According to the separate meter-in meter-out, flow regeneration and hydraulic energy recovery technology, two innovative boom energy saving systems are brought forward. Firstly the principle of the system and the advantage compared with traditional hydraulic boom system are presented. Then through theoretical analysis, the method of energy saving and the sourse of the saved energy are described. Finally, comprehensive comparison between the two energy saving systems is maked and direct use system is selected as the main research object.
     The design procedures and method for the innovative energy saving system are presented systematically based on the above study. According to the analyses of the design object, the corresponding control strategy is developed, and the components are parameter matched. Then a hydraulic energy saving system for 7-ton excavator is designed using these rules. And the designed system is simulated in the built model under a constant mass load. The simulation results show this system works well.
     Due to the load of the boom system varies frequently and at large amplitude, mechanical model of work set is constructed, then the hydraulic system of excavator is proportionally reconstructed and adopted PID controller to accurately control the motion of each work component. Then the energy saving system is applied to the proportional excavator. After the simulation research of three operating mode (boom fast down, typical work cycle without and with load), the result shows the innovate energy saving system runs well and has good energy saving effect.
     Energy saving system experiment is carried out to test and investigate the energy saving effect and controllability, vertify the working principle. On the basis of the experitment result, the energy saving system is revised. During the accelerating period of boom down, restriction control is adopted. And then system is controlled by adjusting the variable disaplacement pump of the energy saving system.
引文
[1]G. Sugiyama. Reduction of fuel consumption in construction machinery[J]. Construction Machinery, 2003,41(1):18-22.
    [2]International Energy Outlook 2009[EB/OL]. (2009-02-28)[2009-11-26]. http://www.eia.doe.gov/.
    [3]孔德文,赵克利,徐宁生.液压挖掘机[M].北京:化学工业出版社.2007.
    [4]刘崇.观拉斯韦加斯博览会谈液压挖掘机发展[J].建筑机械化,2002(04):19-20.
    [5]正利.我国挖掘机行业的形成与发展、现状及前景[J].建设机械技术与管理.2004(11):25-29.
    [6]挖掘机:市场高增长国产品牌显锐气[EB/OL].[2011-03-17].http://info.cm.hc360.com/2010/12/311754258134.shtml.
    [7]吕超.2009年挖掘机行业市场分析[J].建筑机械化,2010(03):19-21.
    [8]Masayuki KAGOSHIMA, Masayuki KOMIYAMA, Takao NANJO, et al. Development of New Hybrid Excavator[J]. KOBELCO TECHNOLOGY REVIEW,2007,21(11):39-49.
    [9]朱靖,孙新学,苏曙,et al.工程机械液压技术发展综述[J].河北建筑工程学院学报,2001(01):56-60.
    [10]Inoue Hiroaki. Introduction of PC200-8 Hybrid Hydraulic Excavators[M/OL]. http://www.komatsu.com/CompanyInfo/profile/report/pdf/161-E-05.pdf.
    [11]滕裕昌.我国工程机械的质量形势与任务[J].建筑机械,1999(01):24-28.
    [12]高宇,高峰,冯培恩.et al.液压挖掘机节能控制综述[J].工程机械与维修,2001(12):40-43.
    [13]Uehara Kazuo, Tominaga Hiroyoshi. Energy saving on hydraulic systems of excavators[J]. SAE Paper 821057,1982,91(3):3332-3346.
    [14]Stephens W. T., Underwood H. N. New Concepts in Hydraulic Controls for Mobile Equipment[J]. SAE Paper 650669,1965.
    [15]Myers Allen. Controlling Variable Displacement Hydraulic Pumps for Energy Conservation[J]. SAE Paper 750807,1975.
    [16]Ivatysynova Monnika. Pump Controlled Actuator-a Realistic Alternative for Heavy Duty Manipulators and Robots:International Scientific Forum in Fluid Power Control of Machinery and Manipulators, Cracow,Poland,2000[C].
    [17]Murrenhoff H., Wallentowitz H. Fluidtechnik Fur Mobile Anwendungen [M].1. Germany:Umdruck zur Vorlesung an der RWTH Aachen,1998.
    [18]高峰.液压挖掘机节能控制技术的研究[D].浙江大学,2002.
    [19]Markowski Miroslaw. Advantages In Using Ls And Ludv Systems To Control The Crawler Dozer Blade:International Scientific Forum in Fluid Power Control of Machinery and Manipulators. Cracow, Poland,2000[C].
    [20]Chetail G. Chima M. Iwai, Rill E. Mini and Compact Excavators-Faster Time to Market with Solutions from a Single Source:Mobile 2006 International Mobile Hydraulics Congress. Germany, 2006[C].
    [21]Ken Ichiryu Masami Ochiai Tsukasa Toyooka. Simulation study on load sensing dynamics on hydraulic excavator:Proceedings of the 2nd JHPS International Symposium on Fluid Power. Tokyo, 1993[C].
    [22]Aoki Yasuo, Uehara Kazuo, Hirose Kazuyuki, et al. Load Sensing Fluid Power Systems[J]. SAE Paper 941714,1994.
    [23]黄宗益,李兴华,陈明.挖掘机力士乐液压系统分析[.J].建筑机械化,2004(12):49-54.
    [24]王庆丰,魏建华,吴根茂.et al.工程机械液压控制技术的研究进展与展望[J].机械工程学报,2003(12):51-56.
    [25]Latour C. Elektrohydraulisches Flow Matching (EFM)-Die nachste Genera-tion von Load-Sensing Steuerungen:Fachbeitrag Mobile 2006, Internationaler Fachkongress fur Mobilhydraulik, Germany, 2006[C].
    [26]冯培恩,高峰,高宇.液压挖掘机节能控制方案的组合优化[J].农业机械学报,2002(04):5-7.
    [27]黄宗益,李兴华,陈明.液压挖掘机节能措施[J].建筑机械化,2004(08):51-54.
    [28]高峰.潘双夏.液压挖掘机负流量负荷传感控制策略[.J].农业机械学报,2005(07):111-113.
    [29]王爽,李志远,余新旸.液压挖掘机负流量控制系统的节能分析与实现[J].合肥工业大学学报(自然科学版),2006(02):213-216.
    [30]Bin Yao, Song Liu. Energy-saving control of hydraulic systems with novel programmable valves:4th World Congress on Intelligent Control and Automation (WCICA 2002). vol.4. Shanghai, China, June 10-14,2002, Shanghai, China,2002[C].2002.
    [31]Jansson Arne, Palmberg J. O. Separate Controls of Meter-In and Meter-Out Orifices in Mobile Hydraulic Systems[J]. SAE Paper 901583,1990.
    [32]王庆丰.大惯性负载电液进出口节流独立调节系统研究[J].中国机械工程,1999(08):21-23.
    [33]王庆丰,顾临怡,路甬祥.基于压差传感的电液进、出口节流独立调节原理及控制特性研究[J].机械工程学报,2001(04):21-24.
    [34]权龙,廉自生.应用进出油口独立控制原理改善泵控差动缸系统效率[J].机械工程学报,2005(03):123-127.
    [35]Bin Yao. Song Liu. Coordinate Control of Energy Saving Programmable Valves [J]. IEEE Transactions on Control Systems Technology,2008,16(1):34-45.
    [36]刘英杰,徐兵,杨华勇.et al.电液比例负载敏感负载口独立控制系统仿真研究:第五届全国流 体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集,北京,2008[C].
    [37]Backe W. Design systematics and performance of cartridge valve controls:International Conference on Fluid Power, Tampere, Finnland,1987[C].
    [38]Warren G. K. Efficicent and Flexible hydraulic systems for mobile equipment:7th Aachener Fluidtechnisches Kolloquium, Aachen, West Germany,1986[C].
    [39]Nikolaus H. W. Antriebssystem mit Hydraulischer Kraftubertragung:P2739968.4[P].
    [40]Wolfgang Backe. What are the Prospects Facing New Ideas in Fluid Power?:6th International Conference on Fluid Power Transmission and Control (ICFP'2005),2005[C].2005.
    [41]Peter Wusthof. Secondary control technology and applications:The 1998 ASME International Mechanical Engineering Congress and Exposition (IMECE'98):Fluid Power Systems and Technology, Anaheim, California, USA, November 15-20,1998, Anaheim, California, USA,1998[C].
    [42]姜继海.二次调节静液传动系统及其控制技术的研究[D].哈尔滨工业大学,1998.
    [43]姜继海,刘晓春,刘海昌,et al.二次调节静液传动节能技术在位能回收和重新利用中的应用:第四届全国流体传动与控制学术会议论文集,大连,2006[C].
    [44]刘宇辉,蒲红,张艳萍,et al.二次调节静液传动技术的发展及应用[J].佳木斯大学学报(自然科学版),2001(01):52-56.
    [45]肖沁.二次调节静液传动技术在工程机械中的应用[J].工程机械,2004,35(6):39-40.
    [46]姜继海,赵春涛,孟兆生.二次调节静液传动在城市公交车辆驱动中的节能技术研究[J].中国机械工程,2001,12(3):270-272.
    [47]董宏林.基于二次调节原理的液压提升装置节能及控制技术研究[D].哈尔滨工业大学,2002.
    [48]顾临怡,曹建伟,邱敏秀.定流网络二次调节液压系统[J].机械工程学报,2003,39(3):76-80.
    [49]林述温,花海燕.1种挖掘机恒压网络二次调节液压系统及其能耗分析[J].中国工程机械学报,2009(01):52-57.
    [50]Jihai Jiang, Honglin Dong, Shenglin Wu. A NEW STRUCTURE OF ENERGY RECUPERATION IN SECONDARY CONTROLLED SYSTEM:The Fourth International Symposium on Fluid Power Transmission and Control. Wuhan, China,2003[C]. Proceedings of the Fourth International Symposium on Fluid Power Transmission and Control (ISFP'2003).
    [51]Okoye Celestine N., Jiang Jihai, Hui Liu Yu. Design and development of secondary controlled industrial palm kernel nut vegetable oil expeller plant for energy saving and recuperation[J]. Journal of Food Engineering,2008.87(4):578-590.
    [52]赵春涛,姜继海,等.二次调节静液传动技术在城市公交车辆中的应用[J].汽车工程,2001,23(6):423-426.
    [53]Kordak Dipl Ing Rolf. Hydrostatic drives with secondary control, second edition, edited by Rudi A. Liang, from "The hydraulic Trainer" Series[M]. Germany:Mannesmann Rexroth GmbH,1996.
    [54]Robert Rahmfeld, Monika Ivantysynova. DISPLACEMENT CONTROLLED LINEAR ACTUATOR WITH DIFFERENTIAL CYLINDER-A WAY TO SAVE PRIMARY ENERGY IN MOBILE MACHINES:Fifth International Conference on Fluid Power Transmission and Control Apr 3-5,2001 Hangzhou, Hangzhou,2001[C].2001.
    [55]Ivantysynova Monika. Displacement Controlled Linear and Rotary Drives for Mobile Machines With Automatic Motion Control[J]. SAE Paper 2000-01-2562,2000.
    [56]Stecklein Gary. Regenerative Hydraulics-The use of multiple hydraulic pumps can satisfy the needs of circuits in off-highway equipment[J]. SAE 2006 OHE off-highway engineer,2006.vol.14(no.6):65-66.
    [57]张玉川.液压挖掘机的控制系统[J].建筑机械,1999(05):11-15.
    [58]王红彬,薛丽.国外液压挖掘机新技术发展动向[J].国外工程机械,1993,19(2):20-21.
    [59]Achten Perter A. J., Palmberg Jan-Ove. What a difference a hole makes:The commercial value of the innas hydraulic transformer:The sixth Scandinavian international conference on fluid power, Tampere, Finland,1999[C].
    [60]Vael Georges E. M., Achten Peter A. J., Fu Zhao. The Innas Hydraulic Transformer:The Key to the Hydrostatic Common Pressure Rail [J]. SAE Transactions,2000,109(2):109-124.
    [61]Ma Weidong, Yayoi SENTO. Shigeru IKEO, et al. A HYDRAULIC CYLINDER DRIVE USING CONSTANT PRESSURE SYSTEM:Fifth International Conference on Fluid Power Transmission and Control Apr 3-5,2001 Hangzhou. Hangzhou,2001 [C].2001.
    [62]P A J Achten, Fu Z., Vael G. E. M. Transforming Future Hydraulics:a new design of a hydraulic transformer:The Fifth Scandinavian International Conference on Fluid Power, Linkoping, Sweden, 1997[C].
    [63]欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用[J].农业机械学报,2003,34(4):100-104.
    [64]R WERNDIN, P ACHTEN, M SANNELIUS, et al. Efficiency performance and control aspects of a Hydraulic Transformer:The sixth Scandinavian international conference on fluid power, Tampere. Finland,1999[C].
    [65]杨华勇,欧阳小平,徐兵.液压变压器的发展现状[J].机械工程学报,2003.39(5):1-5.
    [66]Margolis Donald. Energy regenerative actuator for motion control with application to fluid power systems [J]. Journal of Dynamic Systems, Measurement, and Control,2005,127(1):33-40.
    [67]Glenn R. Wendel. Regenerative Hydraulic Systems for Increased Efficiency:the International Exposition for Power Transmission and Technical Conference,Proceedings of the 48th National Conference on Fluid Power. Milwaukee. USA,2000[C].
    [68]广濑久士,丹下昭二,金东瀛.电动车及混合动力车的现状与展望[J].汽车工程,2003(02):204-209.
    [69]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报(信息与管理工程版),2005(01):116-120.
    [70]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海交通大学,2007.
    [71]李蓬,金达锋,罗禹贡,et al.轻度混合动力汽车制动能量回收控制策略研究明.汽车工程,2005(05):570-574.
    [72]林潇,管成,裴磊,et al.混合动力液压挖掘机动臂势能回收系统[J].农业机械学报,2009(04):96-101.
    [73]刘冬红.液压技术在能量回收中的应用[J].南京理工大学学报,1997(02).
    [74]Latchezar Tchobansky Martin Kozek. A Purely mechanical energy storing concept for hybrid vehicles[J]. SAE Paper 2003-01-3278,2003.
    [75]欧阳小平,徐兵,杨华勇,et a1.液压变压器在液压电梯系统中的节能应用[J].中国机械工程,2003(19).
    [76]张银彩,苑士华,胡纪滨.城市公交车辆液压节能装置的研究[J].农业机械学报,2007(06):34-37.
    [77]Shenouda Amir, Book Wayne. Energy Saving Analysis Using a Four-Valve Independent Metering Configuration Controlling a Hydraulic Cylinder[J]. SAE Paper 2005-01-3632,2005.
    [78]黄宗益,李兴华,叶伟.挖掘机工作装置液压操纵回路(一)[J].建筑机械化,2003(11):29-31.
    [79]黄宗益,李兴华,叶伟.挖掘机工作装置液压操纵回路(二)[J].建筑机械化,2003(12):19-21.
    [80]Hitachi ZX330-3样本[EB/OL].[2009-12-08].http://www.hitachi-c-m.com/cn/pdf/brochure/current/middle/KS-ZH003.pdf.
    [81]王银辉,刘兴华,仇滔.混合动力电动汽车的研究[J].内燃机,2003(3):27-31.
    [82]Evans Harry. Komatsu releases hybrid excavator to the world [J]. SAE Off-Highway Engineering, 2009,17(4):24-25.
    [83]Lin Tianliang, Wang Qingfeng, Hu Baozan, et al. Development of hybrid powered hydraulic construction machinery [J]. Automation in Construction,2009,In Press, Corrected Proof.
    [84]沈黎.混合动力挖掘机[J].交通世界(建养.机械),2009(08):34-37.
    [85]浙江大学.混合动力工程机械蓄能器-液压马达能量回收系统:CN101408213[P].
    [86]浙江大学.混合动力单泵多执行元件工程机械的能量回收系统:CN101403405[P].
    [87]浙江大学.混合动力工程机械执行元件的能量回收系统:CN101408212[P].
    [88]张彦廷.基于混合动力与能量回收的液压挖掘机节能研究[D].浙江大学,2006.
    [89]张彦廷.王庆丰.肖清.混合动力液压挖掘机液压马达能量回收的仿真及试验[J].机械工程学报,2007(08):218-223.
    [90]王冬云,潘双夏,林潇.et a1.基于混合动力技术的液压挖掘机节能方案研究[J].计算机集成制造系统,2009(01):188-196.
    [91]肖清,土庆丰,张彦廷,et a1.液压挖掘机混合动力系统建模及控制策略研究[J].浙江大学学报 (工学版),2007(03):481-483.
    [92]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005(12).
    [93]郭占正,杜玖玉,苑士华.车辆液压混合动力传动技术发展及应用前景[J].机床与液压,2009(02):181-184.
    [94]Jackey Robyn, Smith Paul. Bloxham Steven. Physical System Model of a Hydraulic Energy Storage Device for Hybrid Powertrain Applications [J]. SAE Paper 2005-01-0810,2005.
    [95]张伟,王益群.流体传动及控制技术的评述[J].机械工程学报,2003(10):95-99.
    [96]路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001(10):1-9.
    [97]Backe W. The present and future of fluid power[J]. Proceedings of the Institution of Mechanical Engineers. Pt.I. Journal of Systems and Control Engineering,1993,207(14):193-212.
    [98]Ed Godin, Mike Schubert. Hydraulic "batteries" save fuel[J]. Machine Design,2008.80(5):Sl-S2.
    [99]Simon Baseley, Christine Ehret. Edward Greif, et al. Hydraulic Hybrid Systems for Commercial Vehicles:Commercial Vehicle Engineering Congress and Exhibition, Chicago, Illinois, USA, 2007[C].2007.
    [100]Walt Flippo. Accumulators deliver new payoffs[J]. Machine Design,2008,80(3):46-49.
    [101]Lars Bruun. Swedish developed energy saving system in Caterpillars excavators[J]. Fluid Scandinavia, 2002(2):6-9.
    [102]Keller George R. Hydraulic system analysis[M]. Cleveland, Ohio:Hydraulics and Pneumatics Magazine,1985.
    [103]World's First Full Hydraulic Hybrid SUV Presented at 2004 SAE World Congress[EB/OL]. (2004-12-30)[2009-12-08]. http://www.epa.gov/OMS/technology/420f04019.pdf.
    [104]Pourmovahed A., Baum S. A., Fronczak F. J., et al. Experimental evaluation of hydraulic accumulator efficiency with and without elastomeric foam[J]. Journal of Propulsion and Power,1988.4(2):185-192.
    [105]Alson Jeff, Barba Dan, Bryson Jim, et al. Progress Report on Clean and Efficient Automotive Technologies Under Development at EPA[EB/OL]. (2004-12-30)[2009-12-08]. http://epa.gov/oms/reports/adv-tech/420r04002.pdf.
    [106]S. WILLIAMSON Sheldon, Ali EMADI, Kaushik RAJASHEKARA. Conprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion[J]. IEEE transactions on vehicular technology,2007,56(1):1561-1572.
    [107]John M. Miller. Propulsion systems for hybrid vehicles[M]. Stevenage. UK:The Institution of Engineering and Technology,2004.
    [108]Hybrid Comparisons Competitive Advantages of the RDS Technology [EB/OL].(2008-12-30)[2009-12-09]. http://www.permo-drive.com/compare/index.htm.
    [109]R P. Kepner. Hydraulic power assist—A demonstration of hydraulic hybrid vehicle regenerative braking in a road vehicle application:SAE International Truck and Bus Meeting and Exposition, Detroit, Michigan. USA,2002[C].2003.
    [110]Hydraulic Hybrid Technology-A Provend Approach[EB/OL]. (2004-12-30)[2009-12-08]. http://www.epa.gov/OMS/technology/420f04024.pdf.
    [111]EPA Announces Partnership to Demonstrate World's First Full Hydraulic Hybrid Urban Delivery Vehicle[EB/OL]. (2005-12-30)[2009-12-08]. http://www.epa.gov/OMS/technology/420f05006.pdf.
    [112]Fritz Darlene. Hybrid innovations for hydraulic braking [J]. SAE Off-Highway Engineering, 2008,16(4):41-43.
    [113]S R. Anderson, D M. Lamberson, T J. Blohm, et al. Hybrid Route Vehicle Fuel Economy:2005 SAE World Congress, Detroit, Michigan, USA,2005 [C].2005.
    [114]WU BIN, LIN CHAN-CHIAO, FILIPI ZORAN. et al. Optimal Power Management for a Hydraulic Hybrid Delivery Truck [J]. Vehicle System Dynamics.2004.42(1):23-40.
    [115]郝贤涛,雷洪钧.液压混合动力系统在WG6120NHAE扬子江客车上的应用[J].城市车辆.2009(06):38-39.
    [116]产品介绍[EB/OL]. (2008-12-30)[2009-12-10]. http://www.chargebroad.com/Products.html.
    [117]张庆永,常思勤.液驱混合动力车辆液压系统建模及仿真[J].南京理工大学学报(自然科学版),2008(06):701-706.
    [118]魏英俊.液驱混合动力SUV制动能量回收研究[J].农业机械学报.2007(08):26-29.
    [119]魏英俊.新型液压驱动混合动力运动型多用途车的研究[J].中国机械工程,2006,17(15):1645-1648.
    [120]于宏超.液压混合动力汽车能量回收制动系统的研究[D].吉林大学,2008.
    [121]Liang X., Virvalo T. An energy recovery system for a hydraulic crane [J]. Proceedings of the Institution of Mechanical Engineers. Part C,2001,215(C6):737-744.
    [122]江国耀.探访液压挖掘机的技术前沿[J].建筑机械.2004(06).
    [123]Rydberg Karl-Erik. Energy Efficient Hydraulic Systems and Regenerative Capabilities:The Ninth Scandinavian International Conference on Fluid Power, SICFP'05, Linkoping,2005[C].
    [124]Rydberg Karl-Erik. Hydraulic Accumulators as Key Components in Energy Efficient Mobile Systems: International Conference on Fluid Power Transmission and Control(ICFP'2005); 20050405-08; Hangzhou(CN), Hangzhou(CN).2005[C].
    [125]Wei Sun. On Study of Energy Regeneration System for Hydraulic Manipulators[D]. Institute of Hydraulics and Automation. University of Technology, Tampere, Finland,2004.
    [126]Xingui Liang, Tapio Virvalo. WHAT'S WRONG WITH ENERGY UTILIZATION IN HYDRAULIC CRANES:Fifth International Conference on Fluid Power Transmission and Control Apr 3-5,2001 Hangzhou, Hangzhou,2001[C].2001.
    [127]Xingui Liang, Tapio Virvalo. ACCUMULATOR-CHARGED DRIVE FOR A HYDRAULIC BOOM TO SAVE ENERGY:FLUID POWER SYSTEMS AND TECHNOLOGY 2002 (FPST-Vol.9), Nwe Orleans, Louisiana, USA,2002[C].2002.
    [128]Xingui Liang, Tapio Virvalo. Energy reutilization and balance analysis in a hydraulic crane:Fifth International Conference on Fluid Power Transmission and Control, Hangzhou,2001[C].2001.
    [129]Wei Sun, Tapio Virvalo. Simulation study on a hydraulic-accumulator-balancing energy-saving system in hydraulic boom:International Expostion for Power Transmission and Technical Conference, USA,2005[C].2005.
    [130]Tapio Virvalo, Wei Sun. Improving Energy Utilization in Hydraulic Booms-What It Is All about: International Conference on Fluid Power Transmission and Control(ICFP'2005); 20050405-08; Hangzhou(CN),Hangzhou(CN),2005 [C].2005.
    [131]Liang Xingui. On improving energy utilization in hydraulic booms [D]. Tampere University of Technology,2002.
    [132]Glenn R. Wendel. Hydraulic System Configurations for Improved Efficiency:49th National Conference on Fluid Power, Las Vegas, Nevada USA,2002[C].2002.
    [133]Zimmerman Joshua D., Pelosi Matteo, Williamson Christopher A. Energy consumption of an Is excavator hydraulic system:ASME International Mechanical Engineering Congress & Exposition, USA,2007[C].
    [134]Rexroth. LUDV control block of sandwich plate design[Z].2011. http://www.boschrexroth.com.
    [135]Vael G. E. M., Orlando E., Stukenbrock R. Toward Maximum Flexibility in Working Machinery.IHT Control in a Mecalac Excavator:4th international Fluid Power Conference, Dresden,2004[C].
    [136]徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统[J].浙江大学学报(工学版),2002(05).
    [137]Ochiai Masami, Ryu Shohei. HYBRID IN CONSTRUCTION MACHINERY:Proceedings of the 7th JFPS International Symposium on FluidPower, Toyama, Japan.2008[C].
    [138]落合正己.混合驱动型工程机械[J].工程机械与维修,2008(11):99-101.
    [139]马雅丽,黄志坚.蓄能器实用技术[M].北京:化学工业出版社.2007.
    [140]Rexroth. Bladder-type accumulator[Z].2008. http://www.boschrexroth.com.
    [141]林建杰,徐兵,杨华勇.蓄能器作为压力油源的液压电梯节能系统研究[J].中国机械工程,2003(24).
    [142]Rexroth. Fixed Displacement Motor A10FM[Z].2006. http://www.boschrexroth.com.
    [143]Rexroth. Variable Axial Piston Pump (A)A10VSO[Z].2007. http://www.boschrexroth.com.
    [144]T Knapp R. Cavitation[M]. New York:MC Graw Hill Book Co..1970.
    [145]G Hammitt F. Cavitation and Multiphase flow Phenomena[M]. New York:MC Graw Hill Book Co., 1980.
    [146]Lindau Olgert, Lauterborn Werner. Investigation of The Counterjet Developed in a Cavitation Bubble that Collapses near a Rigid Boundary[J]. CAV2001,2001(SessionA5.001):1-8.
    [147]何清华,张大庆,郝鹏,et al.液压挖掘机工作装置仿真研究[J].系统仿真学报,2006,18(3):735-738.
    [148]马建伟,李银伢.满意度PID控制设计理论与方法[M].北京:科学出版社,2007.
    [149]曹善华,余涵,冯培恩,et al.单斗液压挖掘机[M].北京:中国建筑工业出版社,1986.
    [150]镇江液压件厂.摆线液压马达+制动器+减速器+阀[Z].2010http://www.zjyyj.com.cn/baixian.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700