用户名: 密码: 验证码:
2K-V型减速机的动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2K-V型行星传动是由2K-H型行星传动和K-H-V型行星传动复合而成的一种新型行星传动机构,它兼顾了2K-H负号机构的高效率和少齿差传动的大速比的特点,属于一种少齿差行星传动。该传动被广泛应用于机器人传动中,是一种刚度高、动态性能良好的传动形式。但国内对于2K-V型减速机的动力学性能的研究尚不充分,本文主要对其动力学特性进行研究。
    用集中参数法建立了2K-V减速机的动力学模型。每个构件具有三个自由度,即两个径向平移自由度和一个转动自由度。除考虑齿轮啮合刚度、轴的扭转刚度外,还考虑了轴承刚度这一因素对于系统动力学特性的影响。推导出了系统的动力学方程,对该方程可适当改造,可以得到包含结构误差和啮合误差等因素的动力学方程,为进一步分析2K-V型减速机的动力学特性打下基础。
    确定了2K-V减速机动力学模型系统中的参数计算方法。用变截面悬臂梁法计算了渐开线直齿轮的啮合刚度;圆弧齿针轮的啮合刚度值非常大,可对其值进行估取,并在实例计算中验证了这一做法的可行性。计算了圆弧齿2K-V6型减速机的固有频率。通过模态分析,得到振动的两种模式:中心构件扭转振动和中心构件横向振动模式。其中一阶固有频率值为134.2Hz,远小于其它高阶频率,其振动模式为中心构件扭转振动模式,由此从理论上证明了2K-V型减速机的输出振动主要是扭转振动这一观点,与实际的工程应用中反映出的现象一致。分析出影响一阶固有频率的主要因素为行星架上的轴承刚度;而两级齿轮的啮合刚度,输入轴的扭转刚度以及曲柄轴的扭转刚度对减速机系统的一阶固有频率的影响都很小。通过试验测出圆弧齿2K-V6型减速机一阶固有频率为126.8Hz,验证了动力学模型的有效性和理论计算的正确性。
    为便于快速求解2K-V型减速机的一阶固有频率,用集中参数法建立了2K-V减速机的5自由度纯扭转动力学模型。分别基于两个模型对一阶固有频率的计算和分析结果接近。
    用机构转化法推导了圆弧齿2K-V型减速机的传动效率计算公式。通过计算得知圆弧齿2K-V型减速机具有较高的传动效率。分析了圆弧齿2K-V型减速机的传动效率的影响因素,其中第二级齿轮的啮合效率对整机传动效率影响显著。
The structure of 2K-V planetary gear drive, force analysis on the winch bearings and force analysis on the cycloid gears are briefly introduced at the beginning of the thesis.
    Furthermore, a dynamic model of 2K-V planetary gear drive with N planets is formulated by lump-parameter method. The model admits three planar degrees of freedom for each of the sun, planets, winches, cycloid gears and carrier. And stiffness, such as component bearings, gear meshing interactions and torsional stiffness of the shafts and winches, are considered.
    Applied the parameters of 2K-V6 planetary gear drive to the model, the natural frequencies and vibration modes are investigated, and the results reveal that the vibration modes can be classified into two cases: torsional vibration modes of central components and transversal ones. The first frequency is 134.2 Hz, much smaller than the others, and it mainly affects the carrier’s torsional vibration. On the other hand, this conclusion is verified by an experiment that shows the first frequency is 126.8Hz. Further analysis indicates the stiffness of the bearings in the carrier give the greatest influence upon the frequency.
    Considering the torsional vibration only, another dynamic model with 5 degrees of freedom is established by lumped-parameter method. Based on the model, the nature frequency of first order is evaluated and analyzed. And the result agrees with the former.
    At the end, the transmission efficiency is evaluated and analyzed, and the result shows that the efficiency is fairly good.
引文
[1] 成大先.机械设计手册(第三版).北京:化学工业出版社,1993:(1987).87
    [2] 日本帝人公司产品手册
    [3] 刘继岩等.曲柄式摆线减速机传动效率分析.机械设计,1991.1:27~29
    [4] 何卫东,李力行.高精度RV传动的受力分析及传动效率,中国机械工程,1996.4:104~110
    [5] Tupin.Gear load capacity. 1962
    [6] D.C.H.Yang and J.G.Blanche,Design and Application Guidance for Cycloid Drivers with Machining Tolerances,mech.Mach.Theory,vol.25,No.5,1990:487~501.
    [7] 冯澄宙.二齿差摆线针轮行星传动的强度计算.齿轮,1986.4:6~8
    [8] 汪元辉,朱梦周,摆线针轮减速机噪声评价参量的探讨.齿轮,1986.6:18~20
    [9] 王刚.RV减速机运动学分析及动力学建模方法研究与试验分析.天津大学硕士论文,1998
    [10] 刘继岩,孙涛,戚厚军.RV减速器的动力学模型与固有频率研究.中国机械工程,1999.4:381~386
    [11] 李力行等.机器人用高精度RV减速器中摆线轮的优化新齿形. 机械工程学报, 2000 Vol.36 No.03:51~55.
    [12] 吴俊飞等.机器人用变厚齿轮RV减速器回差分析与计算.机械设计,2000 Vol.17 No.3 :24~26,28
    [13] 李充宁等.2K-V型行星传动中摆线针轮啮合的传动精度研究.机械工程学报, 2001 Vol.37 No.4 :61-65
    [14] 李瑰贤,吴俊飞.变厚齿轮RV减速器系统扭振动力学分析.机械传动,1999.4:20~22
    [15] 张大卫,王刚,黄田.RV减速机动力学建模与结构参数分析.机械工程学报,2001,1:69~74
    [16] 戚厚军.RV减速机动态特性分析.天津大学硕士论文,2001
    [17] 黄文虎,陈 滨,王照林.一般力学(动力学、振动学与控制)的最新进展.北京: 科学出版社 1994
    [18] 李润方,王建军.齿轮系统动力学-振动、冲击、噪声.北京:科学出版社,1997
    [19] Bahgat, B. M., Osman, M. O. M., Dukkipati, R. V., On the dynamic gear tooth loading of planetary gearing as affected by bearing clearances in high-speed machinery, Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107(3): 430~436
    [20] Choy, Fred K., Townsend, Dennis P., Oswald, Fred B. Experimental and
    
    
    analytical evaluation of dynamic load vibration of a 2240-kW (3000-hp) rotorcraft transmission, Journal of the Franklin Institute, 1989, 326(5): 721~735
    [21] parker. R. G., V.agashe,and s.m.vijayakar, Dynamic response of a planetary gear system using a finite element/contact mechanics model, Journal of mechanical design, 2000, 122: 305~311
    [22] Lin. J., R. G. parker, Analytical characterization of the unique properties of planetary gear free vibration, Journal of vibration and acoustics, 1999, 121: 316~321
    [23] Botman.M., Epicyclic gear vibrations, Journal of engineering for industry, 1976: 811~815
    [24] Lin. J., R. G. Parder, Structured vibration characteristics of planetary gears with unequally spaced planets, Journal of sound and vibration, 2000, 233: 921~928
    [25] A. Kahraman, Natural modes of planetary gear trains, Journal of sound and vibration, 1994, 173(1), 125~130
    [26] A. Kahraman, Free torsional vibration characteristics of compound planetary gear sets, Mechanism and machine theory, 2001, 36: 953~971
    [27] 孙景惠,张久成,李渤仲.行星齿轮装置轴系的扭转振动模型分析. 大连理工大学学报,1991,31(5): 555~572
    [28] 杨建明. 行星齿轮机构弹性动力学建模. 桂林电子工业学院学报,2000, 20(2): 48~52
    [29] August,R., Kasuba R., Torsional vibrations and dynamic loads in basic planetary gear systems, Journal of vibration, acoustics, stress, and reliability in design, 1986, 108: 348~353
    [30] A. Kahraman, Planetary gear train dynamics, Journal of mechanical design, 1994, 116: 713~720
    [31] Hidaka. T., terauchi y., fujii m., Analysis of dynamic tooth load on planetary gear, Bulletin of the jsme, 23: 315~323.
    [32] J.Lin, R. G. Parker, Sensitivity of planetary gear natural frequencies and vibration modes to model parameters, Journal of sound and vibration, 1999, 228(1): 109~128
    [33] A. Kahraman, Load sharing characteristics of planetary transmissions, Mechanisms and machine theory, 1994, 29: 1151~1165
    [34] Lin liu, Darryll, J. Pines, The effect of ring gear flexibility on planetary gear train dynamics, In: Proceedings of the international conference on mechanical transmissions, 2001
    [35] Parker R. G., A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration, Journal of sound and vibration, 2000, 236(4): 561~573
    
    [36] Parker R. G., Mesh phasing for epicyclic gear vibration reduction, In: Proceedings of the international conference on mechanical transmissions, Chongqing, 2001
    [37] 沈允文,邵长健. 利用行星架附加阻尼的行星齿轮系统减振研究. 机械传动,1999, 23(4): 29~31
    [38] 杨铁男,崔洪斌. 立车行星齿轮变速器的激振力研究. 机械传动,1994, 18(2): 47~51
    [39] 袁 茹,纪名刚. 航空行星减速器的振动特性分析. 航空动力学报,1995, 10(4): 395~398
    [40] 胡来瑢.行星传动设计与计算. 北京:煤炭工业出版社.1997,12
    [41] 李充宁.圆弧齿2K-V型传动轮齿的接触特性分析.天津技术师范学院学报.1999.3p10~12
    [42] 张少名. 行星传动. 西安:陕西科学技术出版社,1988,4
    [43] 李充宁. 圆弧齿2K-V型传动的结构和力的分析.机械传动,2000.8:
    7~9
    [44] 萧龙翔,贾启芬,邓惠.理论理学.天津:天津大学出版社,1995,9
    [45] 张策.机械动力学.北京:高等教育出版社,2000,4
    [46] 孙桓,傅则绍.机械原理. 北京:高等教育出版社,1990,3
    [47] 苏翼林.材料力学. 北京:高等教育出版社,1993,5
    [48] 徐灏.机械设计手册(第一卷).北京:机械工业出版,1991,2
    [49] 崔建昆.平行轴式少齿差行星齿轮传动研究.[博士学位论文],重庆:重庆大学,1993
    [50] 崔建昆,白国振.三环减速器环板惯性力平衡和实验研究.机械,1998,25(1):21~34
    [51] 崔建昆,张光辉.三环减速器的受力分析.机械传动,1996,20(4):21~25
    [52] 崔亚辉,阮忠唐,曹惟庆.三环式少齿差行星传动的力的分析研究.机械传动,1998,22(1):4~8
    [53] 范垂本.齿轮的强度和试验.北京:机械工业出版社,1979
    [54] H. H. Lin, R. L. Huston, J. J. Coy. On Dynamic Loads in Parallel Shaft Transmissions: Part I—Modeling and Analysis. Journal of Mechanisms. Transmissions, and Automation in Design, 1988, 110 (6)
    [55] 李充宁,周有强. 圆弧行星减速器效率计算.机械设计,1993. (4) 55
    [56] 张展,朱景梓,秦立高.渐开线内啮合圆柱齿轮传动.北京:国防工业出版社,1991
    [57] 李充宁等.圆弧针齿2K-V型传动轮齿的接触特性分析.天津职业技术师范学院学报,1999.3
    [58] 李充宁,刘继岩,孙涛. 2K-V型传动中摆线针轮啮合传动精度的研究.机械工程学报,2001 Vol.37 No.4 :61-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700