用户名: 密码: 验证码:
LIDAR数据滤波和影像辅助提取建筑物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载激光雷达数据滤波和建筑物激光脚点提取是LIDAR数据应用的一项关键数据预处理技术,对其进行系统而深入的研究具有比较明显的实用价值和应用背景,因此已成为当前摄影测量与遥感领域的前沿性研究课题。本文在对机载激光雷达数据获取原理和特点深入分析的基础上,进一步深入的研究了点云数据滤波理论与方法,引入支持向量机作为激光点分类的方法,系统开展了基于虚拟格网体元的多尺度数学形态学滤波方法和基于不平衡支持向量机的建筑物激光脚点提取算法,并通过实验验证了相关算法的有效性和可靠性。本文的主要研究工作体现在以下几个方面:
     1.系统梳理和阐述了机载激光雷达数据的定位原理及其系统参数的定义和相关性,为实际工程应用和后续数据处理提供理论依据。
     2.提出了基于虚拟格网体元的数据组织方式。通过对不同格网数据的特点采用不同的重采样方式,提高了重采样效率的同时,避免了在数据空白区域人为的生成虚假数据,并且为后续的滤波算法提供数据组织方式。
     3.在虚拟格网体元的数据组织基础上,改进了多尺度数学形态学滤波方法的自适应性。利用坡度值较小的地形坡度参数和固定的滤波参数阈值,通过误分类地面点搜索的质量控制方法,降低滤波结果中的第Ⅰ类误差,解决了多尺度数学形态学滤波方法的参数自适应性问题。
     4.提出了直接利用支持向量机以单个激光点作为分类对象的建筑激光脚点提取策略。这种方法的基本思路是不以激光点的分割结果为分类对象,避免分割结果的误差传递以及分割块的误分类代价大等问题,并且融合影像的光谱信息以及DSM和nDSM的高程特征作为支持向量机分类的特征向量。理论分析和实验表明,这种算法提取的建筑物激光脚点精度比较高,并且比单纯基于点云数据的支持向量机分类算法具有一定的优势,算法的设计能够满足融合不同数据源的分类要求。
     5.引入基于不平衡支持向量机的建筑物激光脚点提取算法。考虑到城区或建筑物密集地区的建筑物激光脚点数量显著大于植被点的数量,标准的支持向量机在面对这种不平衡数据集分类算法上存在一定问题,因此通过设置不同的惩罚因子,达到调节数据平衡性的问题。实验表明该算法正确可靠、精度高。相对于标准的支持向量机分类算法,本算法在平衡数据集和不平衡数据集中的分类精度都比较高,从而降低了支持向量机对数据集平衡性的要求,提高了算法的实用性。
The filtering and building detection of airborne lase scanning data is one of the critical data pre-process technologies, so systemic and deep research of the technique has practical value and application background, and it has been a hot topic in current photogrammetry and remote sensing domain. On the base of analyzing the acquiring theory of airborne lase scanning data and characteristics of airborne lase scanning system, the filtering theory for point cloud data is researched and the support vector machine theory is introduced as the classification method of laser points. Then the approach of mathematic morphological filtering based on virtual grid volumetric pixel and detection of building laser footprints based on unbalanced support vector machine are researched, and the experiments have proved these algorithms to be effective and reliable. The mian work of this dissertation are as follows:
     1. The location theory of LIDAR data and definition and correlation of system parameters are expatiated, which provide theory evidence for practical project application and data post-processing.
     2. LIDAR data structure method based on virtual grid volumetric pixel is preposed. Different resampling methods for each grid are used according to the characteristics of grid data. So it improves resampling efficiency, avoids to manually creating false data in data blank area, and provides data structure method for back filtering algorithm.
     3. On the base of virtual grid volumetric pixel for data structure method, an improved multi-scale mathematic morphological filtering method is put forward for adaptive of the method. A small value of terrain grade parameter and fixed filtering parameters are used, and then the quality control method of searching for misclassified ground points can reduce the type I error in filtering results, which resolves the adaptive problem of parameters for multi-scale mathematic morphological filtering method.
     4.An extraction strategy for building laser footprint is bringed out based on classifying single laser point with support vector machine method. The main idea of the approach is that treate single laser point as classification objects rather than the segementation of laser points, so it can avoid the problems of error transmit of segementation and higher cost of misclassification for segementation of laser points. It also takes the spectrum information and height features of DSM and nDSM as the feature vector. Theory analysis and experiments show that the algorithm has high classification accuracy of building detection, and higher priority than the support vector machine classification method based on only point cloud data. The design of the approach also can satisfy the classification requirements for fusion of different data sources.
     5. Detection method for building laser footprints based on unbalanced support vector machine is put forward. Considering that in city area or thick building area, the number of building laser footprints is much larger than tree points, so the standard support vector machine classification method has some problems in such environments. The solution is setting different penalty factors for adjusting unbalanced data. Experiments show the approach to be accurate, credible and precise. Compared with standard support vector machine classification method, it has higher classification precision on both balanced data and unbalanced data, so it can reduce the requirement of support vector machine for data balance and improves the practicability of the approach.
引文
[1]李德仁.地球空间信息学及在陆地科学中的应用[J].自然杂志, 2005,27(6):316-322.
    [2]宁津生,王正涛.测绘学科发展综述[J].测绘科学, 2006,31(1):9-16.
    [3]张祖勋.由数字摄影测量的发展谈信息化测绘[J].武汉大学学报(信息科学版), 2008,33(2):111-125.
    [4]程亮.集成影像与LiDAR数据重建三维建筑物模型研究[D].武汉:武汉大学,2008.
    [5]张祖勋.数字摄影测量与计算机视觉[J].武汉大学学报(信息科学版), 2004, 29(12):1035-1039.
    [6]刘军. GPS/IMU辅助机载线阵CCD影像定位技术研究[D].郑州:信息工程大学博士学位论文. 2007.
    [7] Flood M. LIDAR activities and research priorities in the commercial sector[C]. International Archives of Photogrammetry and Remote Sensing. WG IV/3. Vol XXXIV. Annapolis, MD, 22-24 Oct 2001. pp.678-684.
    [8] Vosselman G. Slope based filtering of laser altimetry data[C]. International Archives of Photogrammetry and Remote Sensing, 2000, Amsterdam, The Netherlands. 33(B3/2): 935-942.
    [9] Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[C]. International Archives of Photogrammetry and Remote Sensing, 2000, Vol. 33. part B4/1, pp. 110-117.
    [10] Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53:193-203.
    [11]黄先锋,李卉,王潇,张帆.机载LiDAR数据滤波方法评述[J].测绘学报, 2009, 38(5): 465-469.
    [12] Weidner U, Forstner W. Towards automatic building extraction form high resolution digital elevation models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1995, 50:38-49.
    [13] Kilian J, Haala N. Capturing and evaluation of airborne laser scanner data[C]. International Archives of Photogrammetry and Remote Sensing, Vienna, Vol.32, Part B3, pp:383-388, 1996.
    [14] Zhang K, Chen S C, Whitman D, et al. A Progressive Morphological Filter for Removing Nonground Measurement from LIDAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882.
    [15] Zhang K, Dean Whitman. Comparison of Three Algorithms for Filtering Airborne Lidar Data[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(3): 313–324.
    [16] Chen Q. Filtering Airborne Laser Scanning Data with Morphological Methods[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(2):175-185.
    [17]陶金花,苏林,李树楷.一种保护细节的从机载激光点云中提取城DTM的方法[J].遥感学报. 2008, 12(2):233-238.
    [18] Hug C, Wehr, A. Detecting and identifying topographic objects in imaging laser altimeter data[C]. International Archives of Photogrammetry and Remote Sensing, Vol.32, pp;203-212,1997.
    [19]梁欣廉,张继贤,李海涛.一种应用于城市区域的自适应形态学滤波方法[J].遥感学报. 2007, 11(2):276-281.
    [20] Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 1998, 53:193-203.
    [21] Pfeifer N, Stadler P. Derivation of digital terrain models in the SCOP environment[C]. Editor KennertTorlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesy and Photogrammetry, 2001.
    [22] Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[C]. International Archives of Photogrammetry and Remote Sensing. 2000, Vol. 33. part B4/1, pp. 110-117.
    [23] Axelsson P. Ground estimation of laser data using adaptive TIN-models[C]. Editor Kennert Torlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesy and Photogrammetry, 2001. Official Publication No. 40. CD-ROM. pp 185-208. Royal Institute of Technology Department of Geodesy and Photogrammetry 100 Stockholm, Sweden.
    [24] Petzold B, Reiss P, Stossel W. Laser Scanning-surveying and mapping agencies are using a new technique for the derivation of digital terrain models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:95-104.
    [25] Brovelli M A, Cannata M, Longoni U M. Managing and processing LIDAR data within GRASS[C]. Proceedings of the Open Source GIS-GRASS Users Conference, Trento, Italy, 2002.
    [26] Brovelli M A, Cannata M, Longoni U M. LIDAR Data Filtering and DTM Interpolation Within GRASS[J]. Transactions in GIS, 2004, 8(2): 155-174
    [27] Kobler A, Pfeifer N, Ogrinc P, et al. Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain[J]. Remote Sensing of Environment, 2007, 108: 9-23.
    [28]王刃.机载LIDAR数据滤波与建筑物提取技术研究[D].郑州:信息工程大学博士学位论文. 2008.
    [29] Silvan-Cardenas J L, Wang L. A multi-resolution approach for filtering LiDAR altimetry data[J] . ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61: 11-22.
    [30] Wang Y, Mercer B, Tao V. Automatic generation of bald earth digital elevation models from digital surface models created using airborne IfSAR[C]. ASPRS Annual Conference, St.Louis, 2001.
    [31] Tao C V, Hu Y. A review of post-processing algorithms for airborne LIDAR data [C]. ASPRS Annual Conference, St. Louis, 2001.
    [32] Vosselman, G. Slope based filtering of laser altimetry data[C]. International Archives of Photogrammetry and Remote Sensing, 2000, Vol. 33, B3/2(pp. 935–942). The Netherlands: Amsterdam.
    [33] Vosselman G, Maas H G. Adjustment and filtering of raw laser altimetry data[C]. Editor Kennert Torlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesy and Photogrammetry, 2001. Official Publication OEEPE no. 40, 2001, pp. 62-72.
    [34] Sithole G. Filtering of laser altimetry data using a slope adaptive filter[C]. International Archives of Photogrammetry and Remote Sensing, 2001, 34(3/W4): 203-210 (Annapolis, ML).
    [35] Jie Shan, Aparajithan Sampath. Urban DEM Generation from Raw Lidar Data: A Labeling Algorithm and its Performance[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(2): 217-226.
    [36] Axelsson P. Processing of laser scanner data-algorithms and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:138-147.
    [37] Sohn G, Dowman I J. Terrain surface reconstruction by the use of tetrahedron model with the MDLcriterion[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, 34 (Part 3):336-344.
    [38] Sohn G, Dowman I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007 (62) : 43-63.
    [39]王涛,杨建思,廖明生.一种从LIDAR数据提取城区DTM的方法[J].遥感学报, 2007, 11(2): 209-213.
    [40]张小红.机载激光扫描测高数据滤波及地物提取[D].武汉:武汉大学博士学位论文, 2002.
    [41]苏伟,孙中平,赵冬玲.多级移动曲面拟合LIDAR数据滤波算法[J].遥感学报. 2009, 13(5):833-838.
    [42] Elmqvist M. Ground Estimation of Lasar Radar Data using Active Shape Models[C]. Editor Kennert Torlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesy and Photogrammetry, 2001.
    [43] Elmqvist M, Jungert E, Lantz F, et al. Terrain modelling and analysis using laser scanner data[C]. International Archives of Photogrammetry and Remote Sensing, Vol. XXXIV–3/W4 Annapolis, MD, 22-24 October 2001. pp. 219-227.
    [44] Cohen L D, Cohen I. Finite Element Methods for Active Contour Models and balloons for 2D and 3D Images[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131-1147.
    [45] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1998, 1:321-331.
    [46] Besl P J, Jain RC. Segmentation through variable-order surface fitting[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 10(2):167-192.
    [47] Haala N, Brenner C. Extraction of Buildings and Trees in Urban Environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54: 130-137.
    [48] Filin S. Surface Clustering from Airborne Laser Scanning Data[C]. ISPRS Commission III Symposium“Photogrammetric Computer Vision”, Graz, Austria, September 9-13, 2002. pp. 119-124.
    [49] Filin S, Pfeifer N. Neighborhood systems for airborne laser data[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71 (6):743–755.
    [50] Filin S, Pfeifer N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60: 71-80
    [51] Lee I, Schenk T. 3D perceptual organization of laser altimetry data[C]. International archives of photogrammetry and remote sensing, Vol.34, No.3/W4, pp:57-65, 2001.
    [52] Roggero M. Object segmentation with region growing and principal component analysis[C]. ISPRS Commission III Symposium“Photogrammetric Computer Vision”, Graz, Austria, September 9-13, 2002. pp. 289-294.
    [53] Schiewe J. Ein regionen-basiertes Verfahren zur Extraktion der Gel?ndeoberfl?che aus Digitalen Oberfl?chen-Modellen[J]. Photogrammetrie, Fernerkundung, Geoinformation, 2001, 2:81-90.
    [54] Schiewe J. Integration of multi-sensor data for landscape modeling using a region-based approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57:371-379.
    [55] Nardinocchi C, Forlani G, Zingaretti P. Classification and filtering of laser data[C]. International Archivesof Photogrammetry and Remote Sensing, Dresden, Germany, 2003, 34(3W13) .
    [56] Sithole G. Segmentation and Classification of Airborne Laser Scanner Data[D]. Netherlands: TU Delft. 2005.
    [57] Jacobsen K, Lohmann P. Segmented filtering of laser scanner DSMs[C]. International Archives of Photogrammetry and Remote Sensing, 2003, 34(3/W13) (Dresden, Germany).
    [58] Rottensteiner F, Trinder J, Clode S, et al. Using the Dempster Shafer method for the fusion of LiDar data and multi-spectral images for building detection[J]. Information Fusion, 2005, 6(4):283–300.
    [59]管海燕,邓非,张剑清,等.面向对象的航空影像与LiDAR数据融合分类[J].武汉大学学报信息科学版, 2009, 34(7): 830-833.
    [60] Kraus, K, Rieger W. Processing of laser scanning data for wooded areas[C]. Photogrammetric Week, Stuttgart, German, pp:221-231, 2000.
    [61] Rabor G T, Jensen J R, Schill S R, et al. Creation of digital terrain models using an adaptive lidar vegetation point removal process[J]. Photogrammetry Engineering & Remote Sensing, 2002, 68(12):1307-1315.
    [62] Hu Y, Tao C V. Hierarchical Recovery of Digital Terrain Models from Single and Multiple Return LiDAR Data[J]. Photogrammetry Engineering & Remote Sensing. 2005, 71: 425-433.
    [63]赖旭东,万幼川.一种针对激光雷达强度图像的滤波算法研究[J].武汉大学学报信息科学版, 2005, 30(2):158-160.
    [64]邓非. LIDAR数据与数字影像的配准和地物提取研究[D].武汉:武汉大学博士学位论文,2006.
    [65] Sithole G, Vosselman G. A comparison of existing automatic filters[R]. Technical Report, ISPRS test on extracting DEMs from point clouds, 2003.
    [66] Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59:85-101.
    [67] On Web: http://www.isprs.org[EB/OL]. 2007-12-01
    [68] Brunn A, Weidner U. Extracting Buildings from Digital Surface Models[C]. International Archives of Photogrammetry and Remote Sensing, Stuttgart, 1997.
    [69] Brunn A, Weidner U. Hierarchical bayesian nets for building extraction using dense digital surface models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53: 296-307.
    [70] Elberink S O, Mass H G. The use of anisotropic height texture measures for the segmentation of airborne laser scanner data[C]. International Archives of Photogrammetry and Remote Sensing. Amsterdam, Netherlands. 2000. Vol XXXIII, Part B3: pp. 678-684.
    [71] Mass H G. The Potential of Height Texture Measurement for the Segmentation of Airborne Laser Scanner Data[C]. The 4th International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing, Ottawa, Ontario, Canda, 1999
    [72] Matikainen L, Hyypp ? J, Hyypp ? H. Automatic detection of buildings from laser scanner data for map updating[C]. International Archives of Photogrammetry and RS, 34/3-W13, 2001.
    [73] Forlani G, Nardinocchi C. Building detection and roof extraction in laser scanning data[C]. International Archives of Photogrammetry and Remote Sensing, 2001.
    [74] Rottensteiner F, Briese C. A New Method for Building Extraction in Urban Areas from High-resolution Lidar Data[C]. International Archives of Photogrammetry and Remote Sensing, 2002.
    [75] Alharthy A, Bethel J. Heuristic filtering and 3D feature extraction from LIDAR data[C]. International Archives of Photogrammetry and Remote Sensing, Vol. 33, pp. 29-35, Graz, Austria, 2002.
    [76] Hofmann A D, Mass H, Strsilein A. Knowledge-based Building Detection Based on Laser Scanner Data and Topographic Map Information[C]. International Archives of Photogrammetry and Remote Sensing, 2002, 34: 163-169.
    [77] Morgan M, Habib A. Interpolation of Lidar data and automatic building extraction[C]. APSRS Annual Conference Proceedings, 2002.
    [78] Arefi H, Hahn M, Lindenberer J. LiDar data classification with remote sensing tools[C]. Proceedings of the ISPRS Commission IV Joint Workshop Challenges in Geospatial Analysis, Integration and Visualization II, Stuttgart, Germany, 2003, pp. 131–136.
    [79] Takano K T, Doihara T, Shibasaki R. Automatic Building Extraction and 3-D City Modeling from Lidar Data Based Hough Transformation[C]. International Archives of Photogrammetry and Remote Sensing, 2004, 35(B3):277-280
    [80] Tovari D, Vogtle T. Object classification in laser scanning data[C]. Proceedings of ISPRS Working Group VIII/2 Laser-Scanners Forest and Landscape Assess, Freiburg, Germany, Oct. 2004, pp. 45–49.
    [81] Ruijin M. Building Model Reconstruction From Lidar Data and Aerial Photographs[D]. Ohio: Ohio State University, 2004
    [82] Ruijin M. DEM Generation and Building Detection from Lidar Data[J]. Photogrammetry Engineering & Remote Sensing, 2005, 71(7): 847-854.
    [83] Gross H, Thoennessen U, Hansen W V. 3d-modeling of urban structures[C]. International Archives of Photogrammetry and Remote Sensing, 36/3-W24, Vienna, Austria, 2005.
    [84] Zhang K, Yan J, Chen S C. Automatic Construction of Building Footprints from Airborne LiDAR Data[J]. IEEE Transaction on Geoscience and Remote Sensing. 2006. 44(9): 2523-2533.
    [85] Tarsha-Kurdi F, Landes T, Grussenmeyer P, et al. New approach for automatic detection of buildings in airborne laser scanner data using first echo only[C]. International Archives of Photogrammetry and Remote Sensing, Bonn, Germany, 2006.
    [86] Sampath, A, Shan, J. Building Boundary Tracing and Regularization from Airborne Lidar Point Clouds[J]. Photogrammetry Engineering & Remote Sensing, 2007, 73(7):805-812.
    [87] LI Yong, WU Huayi. Adaptive Building Edge Detection By Combining LIDAR Data and Aerial Images[C]. International Archives of Photogrammetry and Remote Sensing, 2008, Beijing, Vol.XXXVII, PartB1: 197-202.
    [88] Yi-chen Shao. Ground Point Selection and Building Detection from Airborne LiDAR Data[D]. Taiwan: Central University, 2007.
    [89]张皓.机载LIDAR数据滤波及建筑物提取技术研究[D].河南郑州:解放军信息工程大学硕士学位论文, 2009.
    [90] Neidhart H, Sester M. Extraction of Building Ground Plans from LIDAR Data[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. PartB2. Beijing, 2008, 405-410
    [91]黄先锋, Gunho Sohn,王潇,等.基于带权点法向量的LiDAR数据屋顶检测方法[J].武汉大学学报信息科学版, 2009, 34(1): 24-27
    [92]张齐勇,岑敏仪,周国清,等.城区LiDAR点云数据的树木提取[J].测绘学报, 2009, 38(4): 330-335.
    [93] Secord J, Zakhor A. Tree Detection in Urban Regions Using Aerial Lidar and Image Data[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. 2007. 4(2): 196-200.
    [94]张峰,薛艳丽,李英成,等.基于SVM的多源遥感影像面向对象建筑物提取方法[J].国土资源遥感. 2008. 2:27-29
    [95] Leena M, Harri K, Juha H. Classification Tree based Building Detection From Laser Scanner and Aerial Image Data[C]. International Archives of Photogrammetry and Remote Sensing. Finland, 2007, September 12-14: Volume XXXVI, Part 3 / W52, pp. 280-287
    [96]穆超,余洁,许磊,等.基于高分辨率遥感影像的DSM建筑物点的提取研究[J].武汉大学学报信息科学版, 2009, 34(4): 414-417
    [97]王建宇,洪光烈.激光主动遥感技术及其应用[J].激光与红外, 2006, 36(9):742-748
    [98] Wehr A, Lohr U. Airborne laser scanning– an introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:68–82
    [99]舒宁.激光成像[M].武汉大学出版社, 2005
    [100]张小红.机载激光雷达测量技术理论与方法[M].武汉大学出版社, 2007
    [101]隋立春,张宝印. Lidar遥感基本原理及其发展[J].测绘科学技术学报, 2006, 23(2):127-129
    [102] Report of the First National Lidar Initiative Meeting[R], February 14-16, 2007, U.S. Geological Survey, Reston, Virginia
    [103] On Web: http://www.leica-geosystems.com[EB/OL]. 2010-01-12
    [104] On Web: http://www.riegl.com[EB/OL]. 2010-03-20
    [105] Harding D, Abshire J, Dabney P, et al. The Swath Imaging Multi-polarization Photo-counting Lidar(SIMPL): A Spaceflight Prototype[C]. IGARSS, 2008.
    [106] Baltsavias E P. Airbonre laser scanning: existing systems and firms and other resources[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2/3):164-198.
    [107] Krabill W B, Collins J G, Link L E, et. al., 1984. Airborne laser topographic mapping results. Photogrammetry Engineering & Remote Sensing, 50(6): 685-694.
    [108] Ackemann F. Airborne laser scanning– present status and future expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54: 64-67.
    [109] Lindenberger J. Laser-Profilmenssungen zur topographischen Gelandeaufnahme[D]. Stuttgart University. 1993.
    [110] Petzold B, Reiss P, Stossel W. Laser scanning– surveying and mapping agencies are using a new technique for the derivation of digital terrain models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:95-104.
    [111] Flood M. Commercial development of airborne laser altimetry: a review of the commercial instrument market and its projected growth[C]. International Archives of Photogrammetry and Remote Sensing. WG III/5 and WG III/2. 9-11 Nov. 1999, Vol. 32, Part 3W14, La Jolla, CA, USA. pp. 13-20.
    [112] Flood M. Laser altimetry: From science to commercial LIDAR mapping[J]. Photogrammetry Engineering & Remote Sensing, 2001, 67:1209-1217.
    [113]李树楷,薛永棋.高效三维遥感集成技术系统[M].科学出版社,2000
    [114]李清泉,李必军,陈静.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报, 2000, 25(5):387-392
    [115] On Web: http:// www.aoe.cas.cn/xwzx/kydt/201003/t20100309_2794137.html[EB/OL]. 2010-03-21
    [116] On Web: http://www.optech.ca[EB/OL]. 2010-01-12
    [117] On Web: http://www.flimap.com[EB/OL]. 2010-01-12
    [118] Maas H, Vosselman G. Two algorithms for extracting building models from raw altimetry data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:153-163.
    [119] Baltsavias E P. A comparison between photogrammetry and laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(1):83-94.
    [120]梁欣廉,张继贤,李海涛,等.激光雷达应用中的几种数据表达方式[J].遥感信息, 2005, 6:60-64.
    [121] Maas H G. Method for measuring height and planimetry discrepancies in airborne laserscanner data[J]. Photogrammetry Engineering & Remote Sensing, 2002, 68(9): 933-940.
    [122] Stoker J M. Voxelsas a representation of multiple-return LIDAR data[C]. Proceedings of ASPRS Annual Conference[C], 2004.
    [123] Rafael C, Gonzalez, Richard E. Woods.数字图像处理(第二版)[M].北京:电子工业出版社, 2007
    [124] Sithole G, Vosselman G. Bridge detection in aorne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61:33–46.
    [125]田野,徐恒力,刘双,等.基于归一化植被指数变化分级的千山植被变化[J].中国水土保持. 2010. (1):25-28.
    [126]王晶晶,白雪,邓晓曲,等.基于NDVI的三峡大坝岸边植被时空特征分析[J].地球信息科学. 2008. 10(6):808-815.
    [127]武永峰,李茂松,刘布春,等.基于NOAA NDVI的中国植被绿度始期变化[J].地理科学进展. 2008. 27(6):32-40.
    [128]刘万里.支持向量机中的若干问题及应用研究[D].西安:西安电子科技大学, 2008.
    [129] On Web: http://www.csie.ntu.edu.tw/~cjlin[EB/OL]. 2009-05-01
    [130] Tao Q, Wu G W, Wang F Y, et al. Posterior probability support vector machines for unbalanced data[J]. IEEE Transaction on Neural Networks, 2005, 16(6): 1561-1573.
    [131] Lin C F, Wang S D. Fuzzy support vector machines[J]. IEEE Transaction on Neural Networks, 2002, 13(2): 464-471.
    [132] Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines[C]. Proceedings of the International Joint Conference on AI, 1999:55-60.
    [133]刘万里,刘三阳,薛贞霞.不平衡支持向量机的平衡方法[J].模式识别与人工智能. 2008. 21(2):136-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700