用户名: 密码: 验证码:
基于高速电磁开关阀的多缸力加载系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会中,液压系统力协调控制的应用日趋广泛且复杂,如何可靠、安全地保证多缸系统的力协调控制性能,是液压技术发展的重要研究问题之一。鉴于此,本论文搭建了基于高速电磁开关阀的多缸系统的力加载实验平台,引入了CMAC+PID复合控制算法,在此基础上,提出了CMAC自适应PID的完整控制算法,并借助于Matlab RTW xPC实时控制技术,对该实验台进行了深入的实验研究和分析。仿真和实验表明,相比于CMAC+PID复合控制算法,所提出的CMAC自适应PID控制策略,能够大幅提高多缸力加载系统的控制精度、鲁棒性和抗干扰性。
     围绕多缸系统力加载实验平台的控制,本论文主要就平台搭建和硬件选型、系统数学建模、普通PID控制和基于CMAC的智能控制的仿真与实验分析、控制界面设计等方面而展开,所完成的具体研究工作有:
     1)根据多缸力加载控制研究目标,选用了合适的液压缸、高速电磁开关阀及力传感器等硬件搭建了多缸系统力加载实验平台。采用了MathWorks公司实时控制系统—Matlab RTW xPC目标环境实现系统作为控制平台,并选用了研华PCI 1711多功能数据采集卡作为软硬件交互平台,进行信号的采集和输出。
     2)完成了对多缸力加载实验台的数学建模,并通过普通PID控制算法初步进行了仿真和实验。通过分析,确认了普通PID控制的不足和需要改进的地方。
     3)将CMAC+PID复合控制算法引入进来,通过AMESim和Matlab软件的联合,进行了多缸力加载系统的仿真和实验。通过对比,对CMAC+PID复合控制算法相较于普通PID控制的优点进行了分析,表明了其在精度、鲁棒性和抗干扰能力等方面具有较好的控制效果,并同样指出了其需要改进的不足。
     4)在CMAC+PID控制算法的基础上,提出了一种更为优越的算法—CMAC自适应PID控制策略。通过仿真和实验对比分析,表明了与其他两种算法相比,该算法能够提高控制精度,增强鲁棒性和抗干扰能力,充分发挥硬件系统的性能,实现对多缸系统力加载的理想控制。
     5)将Lab VIEW与Matlab进行联合,为多缸系统力加载研究搭建了控制界面,增强了实验台的操作简易性,实现了控制平台的实用和美观。
The coordinated force control of hydraulic systems is becoming more and more widely used and complex, so how to ensure the reliability and security is one of the important aspects to develop hydraulic technology. Therefore, this thesis builds a test rig of multi-cylinders based on high speed on/off valves to research the force control. CMAC+PID compound control strategy is used, and presents a new strategy named'intelligent PID control based on CMAC'. Through Matlab RTW xPC, the research and analysis is done to the test rig. The simulation and experiments show that the intelligent PID control strategy based on CMAC can enhance the accuracy, robust and anti-jamming capability of the multi-cylinder system's force control.
     Around the topic, this thesis expands in many aspects:building of the test rig, hardware selection, modeling, analysis on simulation and experimental results based on PID and intelligent CMAC control strategy, writing of control interface, etc.
     The main work is as follows:
     1) Based on the research aim, the thesis selects optimal cylinders, high speed on/off valves, force transducers, and other components to build the test rig. The Matlab RTW xPC of Math Works is used as the control platform, and the PCI 1711 multifunction DAQ card is used as the communication platform between software and hardware, to acquire and output signals
     2) The thesis completes the modeling of the test rig, and uses PID control algorithm to do initial simulation and experiments. Through analysis, the disadvantage and improvement needed of PID is confirmed.
     3) The thesis adopts the CMAC+PID compound algorithm to control the test rig with the combination of AMES im and Matlab. Through the comparison of simulation and experiments results, CMAC+PID control strategy can enhance the control ability, but still has disadvantage.
     4) The thesis presents a new algorithm-intelligent PID control based on CMAC, through the improvement of CMAC+PID, and the simulation and experiments are carried out with this strategy. The comparison of results shows that the intelligent PID control based on CMAC has great advantage in improving the accuracy, robust and anti-jamming capability. With this strategy, the full ability of the test rig can be exerted, and the force of multi-cylinders can be controlled ideally.
     5) The thesis combines LabVIEW and Matlab through calling dll, to write the control interface, and this leads to easy, practical and friendly operation of the research of multi-cylinder system's force control.
引文
[1]佟河,陈维早.多缸同时动作系统的设计与分析[J].机床与液压,2006(11):234-235,238.
    [2]成红梅.多缸液压系统中压力阀的应用研究[J].煤矿机械,2007(7):149-151.
    [3]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989.
    [4]何谦,刘忠.基于高速开关阀的液压同步系统[J].建筑机械,2009(3):91-92.
    [5]刘白雁;丁崇生;史维祥;李天石.高精度多通道电液同步加载系统[J].机床与液压,1991(2):11-13.
    [6]谈宏华,陈卓如,苏尔皇,金朝铭.在同一机构上实现开环及闭环控制的方法[J].机械工人(冷加工),2007(6):64-65.
    [7]李素玲,刘军营.伺服控制与伺服阀的选用[J].液压与气动,2003(9):37-39.
    [8]申永军,史维祥,卢坤.比例控制与比例阀及应用[J].液压与气动,2003(2):30-32.
    [9]施光林,钟廷修.高速电磁开关阀的研究与应用[J].机床与液压,2001(2):7-9.
    [10]史维祥等,杜彦亭.电液伺服系统自适应控制的新发展[J].机床与液压,1995(1):1-12.
    [11]刘少军,李庆春,罗松保.高速开关电磁阀在工程机械方面的应用分析[J].矿业研究与开发,2000,20(1):35-36.
    [12]张小军,凌宁,朱国伟,崔可润.新型高速开关阀的设计与研究[J].机床与液压,2001(6):88-89.
    [13]J. S. Albus:A new approach to manipulator control cerebellar model articu-lation controol(CMAC):Trans. on ASME, J. of Dynamic Systems, Measurement, and Control[J], vol. 97. no.9. (1975) 220-227
    [14]孙克,王长松,罗永军.基于小脑模型神经网络的轧制力预报模型[J].钢铁研究,2004(1):55-57.
    [15]马萍,王松艳,秦莉,杨明.小脑模型神经网络控制器在天线跟踪指向控制中的应用[J].吉林大学学报(工学版),2010(4):1091-1095.
    [16]蔡永强,裘丽华,王占林.力伺服系统的模糊自适应控制[J].北京航空航天大学学报,1999,25(1):22-25.
    [17]蔡永强.电液力伺服系统的鲁棒预测控制[J].机械工程学报,1999,35(6):81-84.
    [18]Miroslav Mihajlov, Vlastimir Nikoli. Dragan Anti. Position Control of an Electro-Hydraulic Servo System Using Sliding Mode Control Enhanced by Fuzzy PI Controller[J],Mechanical Engineering,2002,1(9):1217-1230.
    [19]Jayesh Amin,Bernard Frieldland,Avraham Harnoy.Implementation of a Friction Estimation and Compensation Technique[J],IEEE Control Systems,1997(8):71-76.
    [20]王晓东.基于二次调节原理的电液加载系统研究[D]:[博士学位论文].北京:北京航空航天大学,2003.
    [21]郭建华.位置扰动型电液伺服力加载控制系统的研究[D].中国优秀硕士学位论文全文数据库,2008,(02).
    [22]A.H.Seilly.HELENOID Actuators-A New Concept in Ex2tremely Fast Acting Solenoids[J].SAE 790119,426-435.
    [23]A.H.Seilly.Colnoid Actuators-Further Developments in Ex2tremely Fast Acting Solenoids[J].SAE 810462,1770-1781.
    [24]A GENTILE, N I GIANNOCCARO, GREINA Experimental tests on position control of a pneumatic actuator using on/off solenoid valves[J]. IEEE 1CIT'O2, Bangkok, THAILAND, 2002,555-560.
    [25]Takayoshi, M. Hironao, Y. Yoshikatu, S. Digital control of hydraulic actuator system operated by differential pulse width modulation[J]. JSME,1990(33).641-648.
    [26]苗建中,郑云川.螺纹插装式高速电磁阀.液压与气动,1993(16),29-30.
    [27]贺娟,袁颂岳.高速开关阀控液压缸位置控制系统的H∞控制[J].控制工程,2008(15),79-82.
    [28]高建臣,梁昭峰,吴平东.高速开关式位置伺服系统的模糊控制器的研究[J].机械工程学报.1997(33),60-65.
    [29]T. Yamamoto, M. Kaneda:Intelligent controller using CMACs self-organized structure and its application for a process system[J]. IEICE Trance. Fundamentals,1999(E82),856-860.
    [30].Yamamoto and S.L.Shah. Design and experimental evaluation of a multivariable selftuning pid controller[C]. Proc. of IEEE Conference on Control Applications pp.1998, 1230-1234.
    [31]BORDON M E.DA SILVA I N, S. Design of digital PID controller with gain planning based on CMAC[C]. Neural Networks,19999(4).2456-2460.
    [32]周旭东,王国栋.双向规划小脑模型神经网络CMAC学习控制[J].控制与决策,1997(2):190-191.
    [33]罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997(4):455-461.
    [34]梁天才,梁磊,孔一忠.一种新型液压控制元件——高速电磁开关阀[J].山西机械,2003(4):12-16.
    [35]田静.高速开关阀PWM控制电路的开发[J].中国民航学院学报,2003,21(6):26-30.
    [36]陈宝江,杨树兴,曹泛.PWM高速开关阀特性分析[J].北京理工大学学报,1993,13(3):354-360.
    [37]刘金琨.先进PID控制MATLAB仿真[M].第2版.北京:电子工业出版社,2004.
    [38]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.
    [39]徐丽娜.数字控制[M].黑龙江:哈工大出版社,1991.
    [40]Toru Yamamoto, Ryota Kurozumi and Shoichiro Fujisawa. A Design of CMAC Based Intelligent PID[C]. Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 Lecture Notes in Computer Science,2003(27),2456-2460.
    [41]李云娟,方彦军.一种RBF神经网络自适应PID控制器在超临界温度系统的应用研究[J].自动化技术与应用,2010(11):1-3,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700