用户名: 密码: 验证码:
膨润土有机凝胶的制备与特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨润土有机凝胶是一种触变性凝胶,主要用作有机分散体系的增稠剂、粘度调节剂、触变剂、悬浮剂、乳胶稳定剂和吸附剂,目前已在深井钻井泥浆、油漆、油墨、润滑脂、日用化学品工业、药膏方面得到了广泛应用。此外,还是制备性能优异的聚合物/蒙脱石纳米复合材料的原料。本文以辽宁钙基膨润土为原料,首先对其钠化提纯,然后以十八/十六烷基氯化铵为有机复合剂,采用水热合成技术对膨润土进行有机改性,将改性膨润土充分分散于二甲苯-甲醇体系中制备出产品质量稳定、性能国内领先的膨润土高档有机凝胶矿物材料。利用XRD、TEM等测试分析手段和现代胶体化学理论表征其结构和性能,探讨了材料的形成机理、凝胶特性、纳米特性、触变性以及在环氧防锈漆中的应用等。论文的研究内容及主要结果为:
     1.在系统研究膨润土原矿物理性质、矿物组成和化学成分的基础上进行钠化提纯,确定了钠化提纯适宜的工艺流程和工艺参数。研究表明:膨润土原矿经过钠化提纯后,其物理化学性能均发生了明显改善,杂质矿物含量显著降低,蒙脱石含量提高至90.0%,钠化提纯效果良好;提纯工艺采用连续动态离心技术,能保证钠化提纯产品质量的稳定,从而为后续的有机改性、凝胶的制备提供性能优异、质量稳定的基料。
     2.以钠化改型高纯膨润土为基料,十八/十六烷基氯化铵为有机复合剂,采用二甲苯-甲醇为有机分散体系,通过水热合成、压滤脱水、粉碎干燥、凝胶的制备等工艺,制备出质量稳定、动力粘度5.0Pa·s的膨润土有机凝胶。研究了影响膨润土有机凝胶性能的主要因素:水热合成反应作业反应釜中设置温度自动控制系统;粉碎干燥采用强力粉碎干燥工艺,使干燥与碎散同时进行,既提高了干燥效率,又避免过分干燥而降低产品质量;膨润土基料选择低层电荷膨润土;通过不同覆盖剂用量、不同反应时间、不同矿浆pH值的正交试验及显著因素的单因素优化试验,确定了有机改性最佳的工艺条件;考察了产品水分对膨润土有机凝胶性能的影响,确定了有机改性产品水分适宜的控制范围。通过上述工艺流程的优化和工艺条件的试验,可保证膨润土有机凝胶产品质量稳定、性能优良,工业化后经济效益较好。
     3.利用XRD、TEM等测试分析手段和现代胶体化学理论研究膨润土有机凝胶的特性和结构。研究表明:膨润土有机凝胶是分散的有机蒙脱石以端-端、端-面结合形成包裹大量溶剂的网架结构的假塑性体,为一种弹性冻胶;有机覆盖剂十八/十六烷基氯化铵在蒙脱石晶层间呈倾斜单层排布,其直链与硅氧层面的夹角α=25.9°;温度对凝胶性能的影响也较为显著;通过电镜照片分析及对分散凝胶的观察,有机改性膨润土在有机介质中,被分散成具透明性的纳米凝胶,用于高档油漆、化妆品及聚合物/蒙脱石纳米复合材料等高新技术领域,市场前景广阔;膨润土有机凝胶的触变性较好,触变值为1.6。膨润土有机凝胶溶胀的动力学理论模型可表述为:
     (1)凝胶表面线性扩散过程,动力学方程为:W_t/W_m=k_0/(C_0d)t;
     (2)凝胶内部网络的溶胀过程,可用Li-Tanaka方程处理,动力学方程为:
     4.膨润土有机凝胶在环氧防锈漆中的应用试验表明:将膨润土有机凝胶在环氧防锈漆中进行应用后发现,环氧防锈漆制漆过程中分散性、研磨效果都较好,油漆研磨后不易沉底,涂膜主要机械物理性能均优良,对于提高涂料的贮存稳定性效果更佳,在油漆中推广应用具备显著的性能竞争优势。
The organic bentonite gel is a kind of thixotropic gel. It is mainly used as the thickener, viscosity regulator, thixotrope, agent for suspension, emulsion stabilizer and adsorbent in organic disperse system. It has been used extensively in oil-based drill slurry, paint, print ink, lubricant grease, household chemical industrial products and ointment, etc. In addition, it is a raw material for polymer/ montmorillonite nanometer compound material. In this paper, using Liaoning's Ca-bentonite as matrices, modifying with sodium compound at first, organically modifying with Octadecyl/Hexadecyl ammonium chloride as the cover agent, based on hydrothermal process, and dispersing the modified bentonite into the dimethyl benzene-methyl alcohol system fully, we synthesized the high-grade organic bentonite gel with stable quality and excellent characteristics. By some test and analyze methods as XRD, TEM etc., and by modern colloid chemistry theories, we investigated the structure and properties of the gel, the synthesized mechanism of the material, the gel characteristics, the nanometer characteristics, the thixotropy of the organic gel and its application in the epoxy-resin anti-rusting paint etc. The main contents and results of the paper are included as following:
     1. The suitable modification and purification process and process parameters are selected by sodium modification and purification experiment based on studying systematically the physical properties, mineral and chemical compositions of the bentonite run-of mine. The results show that after the sodium purification, the physical and chemical properties are improved significantly; the impurity in the bentonite sample has obviously decreased; the montmorillonite content are raised to 90%; the sodium purification has a remarkable effect. The purification process uses the continuous dynamic centrifugal separation technique to guarantee the quality stability of sodium purified product, so it can provide the matrix with excellent properties and stable quality to the next organic modification and gel synthesis.
     2. The organic bentonite gel with 5.0Pa·s and stable quality is synthesized using sodium purified bentonite as matrix, octadecyl/Hexadecyl ammonium chloride as the cover agent, dimethyl benzene-methyl alcohol as the organic dispersant, based on hydrothermal process, filtering, grinding and drying, gel synthesis process etc. The main influence elements on the gel properties are studied. The hydrothermal process uses the auto control system of the temperature in the reaction kettle. The grinding and drying process uses strong-power grinding and drying process. It makes grinding and drying carry out at the same time to promote the drying efficiency and avoid the excessive dry and reduce the product quality. The bentonite matrix selects the low layer charge bentonite. The optimum process conditions of organic modification are determined by the orthogonal tests with different cover agent dosages and pulp pH values and different reaction time and the single element optimization test. The influence of the moisture content of the organic bentonite product on the gel characteristics is studied, so the suitable range of the moisture content is determined. The quality stability and excellent properties of the organic bentonite gel can be guaranteed by the above-mentioned process optimization and process conditions experiment. The economic benefit is good if the organic bentonite product is industrial.
     3. By some test and analyze methods as XRD, TEM etc., and by modern colloid chemistry theories, we investigated the structure and properties of the gel. The results show that the organic bentonite gel is an artificial space-truss-structure plastomer with large quantity of solution, which is formed by dispersed organic montmorillonite with end-to-end and end-to-face combination and it is a kind of elastic and jelly gel. The organic cover agent Octadecyl/Hexadecyl ammonium chloride configurated in montmorillonite interlayer with paraffin-type monolayer. The angle between the straight chain and the Si-0 layer is 25.9°. The influence of gel temperature on the gel properties is remarkable. By analyzing the TEM photos and observing the dispersed gel, the organic bentonite gel has favorable transparence and nanometer effect. It can be used in such high-new technical fields as high-grade paint, cosmetic and polymer/ montmorillonite nanometer compound material etc. The thixotropy of the organic bentonite gel is good and the thixotropy value is about 1.6.The dynamic theory models of the organic bentonite gel swelling can be described:
     (1) the linear diffusion of the surface region swelling, the dynamic equation
     (2) the swelling in the gel internal space-truss-structure is described withLi-Tanaka equation, the dynamic equation is
     4. The application experiment in the epoxy-resin anti-rusting paint of the organic bentonite gel indicates: After the organic bentonite gel is used in the paint, it can make the dispersive and grinding effect of the paint better, make the paint not easy to sink to the bottom, make the main mechanical physical properties excellent, and it can improve the storage stability of the paint more effectively, so it would have a properties advantage if it would be used in the paint extensively.
引文
[1] 古阶祥等.非金属矿物原料特性与应用[M].武汉:武汉工业大学出版社,1990
    [2] 王鸿禧.膨润土[M].北京:地质出版社.1980
    [3] 姚道坤等.中国膨润土矿床及其开发应用[M].北京:地质出版社,1994
    [4] 栾文楼等.膨润土的开发应用[M].北京,地质出版社,1998
    [5] 荣葵一等.非金属矿物与岩石材料工艺学[M].武汉:武汉工业大学出版社,1996
    [6] 刘伯元.中国非金属矿开发与应用[M].北京:冶金工业出版社,2003
    [7] A. Vahedi-Fardi, et al. Crystal structure of tetramethylammonium-exchanged vermiculite[J]. Clays and Clay Minerals, 1997, 45(6): 859-866
    [8] Calvin C. Ainsworth, et al, Transformation of-1-aminonapthalene at the surface of smectite clays[J], Clays and Clay Minerals, 1991, 39(4): 416-427
    [9] F. Bergaya, at al. Acrylonitrile-Smectite complexs[J]. Clay Minerals, 1991, 26(1): 33-41
    [10] G. Lagaly. Characterization of clays by organic compounds[J]. Clay Minerals, 1981, 16(1): 1-21
    [11] James L. Bonczek, et al. Monolayer to bilayer transitional arrangements of hexadecyltrimethylammoniam cations on Na-montmorillonite[J]. Clays and Clay Minerals, 2002, 50(1): 11-17
    [12] Kang song, et al Characterization of montmorillonite surfaces after modification by organosilane[J]. Clays and Clay Minerals, 2001, 49(2): 119-125
    [13] Seung Yeop Lee, et al. Expansion of smecfite by hexadecyltrimethylammonium[J]. Clays and Clay Minerals, 2002, 50(4): 435-445
    [14] Youjun Deng, et al. Intercalation and surface modification of smectite by two non-ionic surfactants[J]. Clays and Clay Minerals, 2003, 51(2): 150-161
    [15] Alther, et al. Organically modified clay removes oil from water[J]. Waste Management, 1995, 15(8): 623-628
    [16] F. Annabi-Bergaya, et al. Adsorption of alcohols by smectites: Ⅰ. Distintion between internal and external surfaces[J]. Clay Minerals, 1979, 14(2): 249-223
    [17] F. Annabi-Bergaya, et al. Adsorption of alcohols by smectites: Ⅱ. Role of the exchangeable cations[J]. Clay Minerals, 1980, 5(2): 219-223
    [18] F. Annabi-Bergaya, et al. Adsorption of alcohols by smectites: Nature of the bonds[J]. Clay Minerals, 1980, 15(2): 225-237
    [19] F. Annabi-Bergaya, et al. Adsorption of alcohols by smectites: Ⅳ Models[J]. Clay Minerals, 1981, 16(1): 115-122
    [20] ee J. F, et al. Adsorption of benzene, toluene and xylene by two terrace-hylammonium-mectites during different charge densities[J]. Clays and Clay Minerals, 1990, 38(2): 113-130
    [21] Jaynes W. F, et al. Hydrophobicity of siloxane surface in smectites as revealed by aromatic hydrocarbon adsorption from water[J]. Clays and Clay Minerals, 1991, 39(4): 428-436
    [22] P. J. Isaacson, et al sorption and transformation of phenols on clay surfaces: Effect of exchangeable cations[J]. Clay Minerals, 1983, 18(2): 253-265
    [23] Smith F. A, et al. Sorption of nonionic organic contaminants to single-and dual organic cation bentonites from water[J]. Environmenfal Science and Technology, 1995, 29(3): 685-692
    [24] Alexander Moronta, et al Adsorption of olefins on Aluminum and aluminum/tetramethylammonium-exchanged bentonites[J]. Clays and Clay Minerals, 2002, 50(2): 265-271
    [25] Yuan Chun, et al. Sorptive characteristics of tetraalkylammonium-exchanged smectites clays[J]. Clays and Clay Minerals, 2003, 51(4): 415-420
    [26] Lizhong zhu, et al. Benzene vapor sorption by organobentonites from ambient air[J]. Clays and Clay Minerals, 2002, 50(4): 421-427
    [27] Y. Soma, et al. Adsorption of benzidines and anilines on Cu-and Fe-montmorillonites studied by resonance Raman spectroscopy[J]. Clay Minerals, 1988, 23(1): 1-12
    [28] Fukushina Y, et al. Swelling behavior of montmorillonite by poly6-amide[J]. Clay Minerals 1988, 23(1): 27-34
    [29] Giarmelis EP. Polymer layered silicate nanocomposites[J]. Advanced Materials, 1996, 8(1): 29-35
    [30] Mitsunagu, et al. Modification of biodegradable resin by Clay nanocomposite[J]. 成形加工, 2002, 14(9): 604-610
    [31] Robert A. Schoonheydt. Smectite-type clay minerals as nanomatefials[J]. Clays and Clay Minerals, 2002, 50(4): 411-420
    [32] Sudip Ray, et al. Synthesis, Characterization and properties of montmorillonite clay-polyacrylate hybrid material and its effect on the properties of engage-clay hybrid composite[J]. Rubber Chemistry and Technology, 2001, 74(5): 835-840
    [33] Vaia RA, et al. Thermoset layered silicate namocomposite, Quaternary ammonium montmorillonite with primary diamine cured epoxies[J]. Chemistry of Materials, 2000, 12(11): 3376-3384
    [34] Yanok, et al. Synthesis and properties of polyimide-clay hybrid films[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1997, 35(11): 2289-2294
    [35] T. R. Jones, The properties and uses of clays which swell in organic solvents[J]. Clay Minerals, 1983, 18(3): 399-410
    [36] 余丽秀等.蒙脱石有机化插层改性及应用性能评价研究[J].中国非金属矿工业导刊,2003(4):22—25
    [37] 王贵领等.利用拜泉膨润土制备有机膨润土的研究[J].非金属矿,2003,26(2):25—26,49
    [38] 孙红娟等.新疆某地钠蒙脱石的季铵盐理与插层复合物制备[J].非金属矿,2002,25(3):10—13
    [39] 周春晖等.有机膨润土制备研究和应用[J].浙江化工,2001,32(3):3~6
    [40] 王玉洁等.有机膨润土的制备及测试[J].长春科技大学学报,2000,30(2):206—208
    [41] 郭瓦力等.有机膨润土的制备[J].辽宁化工,1999,3:157—159
    [42] 王厚亮等.用天然钙质膨润土制取有机膨润土[J].离子交换与吸附,1999,15(1):186—189
    [43] 张永华等.有机膨润土的制备研究[J].非金属矿,1996,4:15—17
    [44] 徐固华.有机膨润土的制备工艺研究[J].信阳师范学院学报(自然科学版)1994,7(4):407—410
    [45] 刘国良等.有机膨润土的合成、性能和某些应用的研究[J].华南理工大学学报(自然科学报),1992,20(1):91—93
    [46] 郑贤旺.有机膨润土制备及其工艺选择[J].非金属矿,1991,6:27—29
    [47] 方晓明等.膨润土纳米层间的有机改性及其影响因素[J].非金属矿,2003,26(3):23—24,31
    [48] 刘福生等.四川三台有机膨润土制备实验研究[J].矿产综合利用,2002,1:8—11
    [49] 翁祖华等.季胺盐表面活性剂烷烃链数目对蒙脱石结构的影响[J].日用化学工业,2001,5:8—9
    [50] 王重等.有机膨润土的制备[J].山东化工,2000,29(2):21—23
    [51] 荣葵一等.高性能有机膨润土防沉剂的制备方法[J].涂料工业,1997,4:13—15
    [52] 林鸿福.有机膨润土的应用及其制备[J].地质实验室,1988,4(2):134—139
    [53] 周基业.7812有机膨润土的试制[J].涂料工业,1981,2:11—14
    [54] 袁昌来等.粘土/有机纳米复合粉体材料[J].中国非金属矿工业导刊,2003,4:14—17
    [55] 余丽秀等.蒙脱石/尼龙6纳米复合材料制备和应用研究[J].矿产保护和利用,2003,1:15—18
    [56] 张术根等.膨润土高层次开发利用研究新进展[J].中国非金属矿工业导刊,2002,1:17—20
    [57] 刘福生等.膨润土有机化、纳米复合研究及利用进展[J].中国非金属矿工业导刊,2001,6:7—11
    [58] 彭先佳等.改性膨润土在废水处理中的应用[J].中国非金属矿工业导刊,2000,5:40—41
    [59] 焦晓燕等.改性膨润土对苯甲酸和多甘醇的酯化催化作用[J].非金属矿,2000,23(4):9—11
    [60] 朱利中等.阴—阳离子有机膨润土吸附水中苯胺、苯酚的性能[J].环境科学,2000,1:42-46
    [61] 雷东升.非金属矿在环境保护中的应用[J].第三届全国采矿学术会议论文集,1999,10
    [62] 朱利中等.双阳离子有机膨润土吸附水中有机物的特性及机理研究[J].环境科学学报,1999,19(6):597—603
    [63] 孙家寿.层状粘土纳米复合材料制备及应用进展[J].武汉化工学院学报,1999,4:30—33
    [64] 李虑杰等.膨润土改性技术与工业废水处理[J].矿产综合利用,1998,5:40—43
    [65] 金辉等.新型有机膨润土对苯胺,硝基苯与十二烷基硫酸钠的吸附性比较[J].重庆环境科学,1998,20(3):29—32
    [66] 乔放等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,3:135—143
    [67] 漆宗能等.一种聚酯/层状硅酸盐纳米复合材料及其制备方法[P].中国专利:97104055,1997,09
    [68] 向阳等.有机铵盐改性蒙脱石、海泡石吸附去除水中苯、甲苯和乙苯等污染物的研究[J].同济大学学报,1993,21(2):139—144
    [69] 郑水林.非金属矿物材料的加工与应用[J].中国非金属矿工业导刊,2002,4:3—7
    [70] 万朴.矿物材料与非金属矿工业市场[J].中国非金属矿工业导刊,2002,1:3—9
    [71] 归凤铁等.高纯钠基膨润土制备新工艺研究[J].非金属矿,1999,4:36—38
    [72] 陈淑祥等.钙基膨润土钠化改型新方法研究[J].非金属矿,1999,22(1):8—10
    [73] 张建乐等.膨润土Ca~(2+)~Na~+阳离子交换平衡[J].非金属矿,1996,1:23—26
    [74] 胡智荣等.膨润土改性的研究[J].非金属矿,1993,5:33—35
    [75] 祁根德等.钙基膨润土钠化改型及其应用[J].化学建材,1992,6,243—245
    [76] 吴东印等.膨润土的提纯与开发应用[J].非金属矿,2000,23(3):23—24
    [77] 童筠.钠基膨润土湿法提纯[J].非金属矿,1999,22(3):21—22
    [78] 王泽民等.膨润土的提纯及应用研究[J].非金属矿,1999,22(3):19—20
    [79] 黄明华.二次分级在膨润土矿提纯上的研究[J].非金属矿,1994,2:27—29
    [80] 余丽秀等.有机膨润土凝胶性能研究[J].中国矿业,2003,12(10):66~69
    [81] 邱俊等.对蒙脱石层电荷的测定[J],矿业快报,2006,6:6~9
    [82] 林鸿福等.有机膨润土的生产实践及其应用[J],建材地质,1997,增刊:50~55
    [83] 许时,矿石可选性研究[M].北京:冶金工业出版社,1989
    [84] 周祖康等.胶体化学基础[M].北京:北京大学出版社,1996
    [85] 沈钟等.胶体与表面化学[M].北京:化学工业出版社,1991
    [86] 地质矿产部科学技术司.膨润土矿物化性能测试暂行统一方法[M].武汉:湖北科学技术出版社,1989
    [87] 赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991
    [88] Vaia R A, Teukolsky P K, Giannelis E P. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater, 1994, 6: 1017~1022
    [89] lagaly G. Characterization of clays by organic compounds. Clay Minerals, 1981, 16:1~21
    [90] Beneke K, Lagaly G. The brittle mica-like KniAsO4 and its organic derivatives. Clay Minerals, 1982, 17: 175~183
    [91] Tamura K, Nakazawa H. Intercalation of n-alkyltrimethylammonium into swelling fluoro-mica. Clays and Clay Minerals, 1996, 44: 501~505
    [92] Brindley, G. W. and Hofmarm, R. W. Orientation and packing of aliphatic chain molecules on montmorillonite. Clays and Clay Minerals, 1962, 9: 546~556
    [93] Laird, D. A. Evaluation of the structure formula and alkylammonium methods of determining layer charge in layer charge characteristics of 2: 1 silicate clay minerals (A. R. Mermut, editor). The Clay Minerals Society. Boulder, Colorado. 1994: 80~103
    [94] 朱建喜等.HDTMA~+柱撑蒙脱石城建有机离子的排布模型及演化.科学通报,2003,48(3):302~306
    [95] Li Y, Tanaka T. Kinetics of swelling and shinking of gels[J]. J Chem Phys, 1990, 92(4): 1365~1368.
    [96] Zrinyi M, Rosta, Horkay F. Studies on the swelling and shinking kinetics of chemically cross-linked disk-shaped poly (vinyl acetate)[J]. Macro molecules, 1993, 26(6): 3037~3101.
    [97] Geissler E, Hecht A M. The poissson ratio in polymer gels[J]. Macro molecules, 1980, 13(4): 1276~1279.
    [98] Erdogan M. Temperture effect on gel awelling: a fast transient fluorescence study[J]. Polymer, 2001, 42(12): 4973~4982
    [99] Tanaka T, Film ore D. Kinetics of swelling of gels[J]. Chem Phys, 1979, 20(4): 1214~1216
    [100] Peter A, Candan S T. Kinetics of swelling of spherical and cylindrical gels[J]. Macro molecules, 1988, 21(6): 2278~2283
    [101] Wilhelm O, Britte L, Bettina V. Network inhomogeneities in polyer gels[J]. Polym Prepr, 2000, 16(2): 125~127
    [102] 徐建宽等.凝胶结构非均匀性的静态散射研究[J].高分子材料科学与工程,2000,16(2):125~127
    [103] Enscore D, Hopfenbergard H. Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres[J]. Polymer, 1977, 18(8): 793~802
    [104] 中华人民共和国国家技术监督局.GB/T1723-93.涂料粘度测定法.北京:中国标准出版社,1993-12-01
    [105] 中华人民共和国国家技术监督局.GB/T1728-79.漆膜、腻子膜干燥时间测定法.北京:中国标准出版社,1979-12-01
    [106] 中华人民共和国国家技术监督局.GB/T1724-79.涂料细度测定法.北京:中国标准出版社,1979-12-01
    [107] 中华人民共和国国家技术监督局.GB/T9296-1998.色漆和清漆漆膜的划格试验.北京:中国标准出版社,1999-06-01
    [108] 中华人民共和国国家技术监督局.GB/T1731-93.漆膜柔韧性测定法.北京:中国标准出版社,1993-12-01
    [109] 中华人民共和国国家技术监督局.GB/T1732-93.漆膜耐冲击测定法.北京:中国标准出版社,1993-12-01

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700