用户名: 密码: 验证码:
氯盐体系提取红土矿中镍钴的工艺及基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效提取红土矿中镍钴资源,避免现有工艺技术中所存在的问题,本论文提出以氯化物为提取介质,分别采用常压盐酸浸出、氯化焙烧、氯化离析-磁选等工艺提取红土矿中的镍钴,并研究了矿相重构对红土矿中镍、钴等元素提取行为的影响机理。
     在热力学理论分析的基础上,对常压盐酸浸出红土矿中镍、钴等有价金属进行工艺研究。结果表明,矿料粒度为-0.15 mm,初始酸浓度8 mol/L,浸出温度353 K,固液比S/L=1:4,搅拌速度300 r/min,反应时间2 h,镍、钴、锰、铁、镁的浸出率分别达到93.94%、60.5%、94%、56%、94%。由于在红土矿矿相中,几乎所有的镍和大部分的钻存在铁矿物的矿相中,因此铁的浸出与镍的浸出具有很好的相关性;而钴由于有相当一部分存在于硅酸盐中,因此,钴的浸出率较低并且与铁浸出的相关性较差。动力学实验研究结果表明镍、钴、锰浸出过程动力学符合未反应收缩核模型,属于固膜扩散控制,镍、钴、锰浸出活化能分别为11.56 kJ/mol、11.26 kJ/mol、10.77 kJ/mol。矿石中各主要矿相溶解的优先顺序为:针铁矿矿相>利蛇纹石矿相>磁铁矿矿相≥赤铁矿矿相。
     根据热力学计算,氯化焙烧可以选择性的提取红土矿中的镍、钴,并实现有价金属与杂质金属的分离。实验表明,低温通入氯化氢气体进行氯化焙烧可以有效提取镍钴并抑制铁的浸出,其最佳工艺为:矿物粒度为-0.074 mm,焙烧温度300℃,氯化氢气体流速不小于80 mL·min-1,焙烧时间不少于30 min,镍浸出率可达80.6%,钴浸出率为60%,镍铁比相对原矿提高了约15倍,镍镁比相对原矿提高了约8倍。中温氯盐焙烧实验表明,加入固体氯化剂进行焙烧同样可以有效提取镍钴,并抑制杂质铁的浸出,其最佳工艺条件为:矿物粒度为-0.074 mm,以氯化钠和六水氯化镁复配盐作为氯化剂(质量比0.4),其加入量为矿料的18%,焙烧温度900℃,焙烧时间1.5 h,镍浸出率可达85%,钴浸出率为60%,镍铁比相对原矿提高了约20倍,镍镁比相对原矿提高了约15倍。动力学实验结果表明镍、钴的氯化反应属于未反应收缩核模型,镍和钴的氯化反应表观活化能分别为16.469 kJ/mol和32.792 kJ/mol。氯化机理研究结果表明以氯化钠和六水氯化镁复配盐作为氯化剂(质量比0.4)氯化效果最好是由于复配盐具有更低的共熔点温度,可以使氯化剂在较低温度熔化渗入矿料内部,并且能够在较宽温度范围内产生氯化氢气体,避免了集中释放而无法有效氯化有价金属。
     氯化离析实验结果表明,选择合适氯化剂、控制还原剂用量及反应温度,主要发生镍的离析反应。通过磁场强度实验发现,在湿式磁选中,先用强磁场再用弱磁场对离析后的碚砂磁选,可以得到品位符合要求的镍钴富集物。氯化离析-磁选工艺相关条件实验结果表明:以-0.074mm矿料为原料,以NaCl+MgCl2·6H2O(质量比0.4)为氯化剂,用量为6%,以粒度为-0.2 mm烟煤作为还原剂,用量为2%,离析温度1000℃,离析时间90 min,磁场强度(先用强磁场为3000 Gs,再用弱磁场1000 Gs)进行氯化离析-磁选实验,得到磁选镍精矿。其工艺指标为镍品位5.79%,镍回收率87.69%,钴品位0.187%,钴回收率69.02%。
     对红土矿在不同温度下进行活化焙烧使其发生矿相重构,实验发现矿相中原有的自由水和键合水被分解掉,以及部分矿相的晶型如FeO(OH)在300℃和Mg3[Si2O5(OH)4]在610℃发生脱水反应,导致矿物原有结构的崩塌,比表面积和孔隙增加。当预焙烧温度提高到700℃、800℃时,小颗粒重新团聚成大颗粒,导致比表面积减小,并且发生无定型硅酸镁矿相重构结晶形成镁橄榄石(Mg2SiO4)和顽辉石(MgSiO3)。对比不同温度下预焙烧料和原矿在常压盐酸浸出、氯化焙烧以及氯化离析-磁选实验中镍、钴等浸出率的不同,发现在300℃FeO(OH)的脱水反应使原来存在于铁矿相中的镍钴更多的暴露于反应界面,提高镍、钴在常压盐酸浸出中浸出率的同时抑制铁的浸出,而在610℃发生的Mg3[Si2O5(OH)4]脱水反应使整个矿物达到最大的比表面积,该温度下预焙烧料有利于增加低温通入氯化氢气体焙烧实验中气固反应界面,提高了镍钴浸出率。而中温氯盐焙烧以及氯化离析-磁选实验中氯化剂产生氯化作用的时间较长,导致矿相在未氯化前即开始转变,因此在300℃和610℃下预焙烧未对镍钴的提取产生显著的积极作用。由于在700℃和800℃预焙烧会导致无定型硅酸镁重新结晶,在形成镁橄榄石过程中镍、钴会变得不稳定而进入到硅酸镁盐形成(Mg,Ni)3SiO2并且重结晶形成橄榄石型,不利于其被提取,因此,在此两个温度下预焙烧不利于常压盐酸浸出、氯化焙烧和氯化离析-磁选等过程镍钴的提取。
     本研究提出了以氯化物为提取介质,分别采用常压盐酸浸出、氯化焙烧和氯化离析-磁选等工艺提取红土矿中镍钴等有价金属,形成三套适应于不同目的需求的镍钴提取技术原型。并且氯化焙烧、氯化离析-磁选工艺可以选择性的提取镍钴并抑制铁、镁的提取,显著降低了药剂的使用量和后续净化过程的处理量。这对储量丰富的红土镍矿资源的开发利用具有重要意义。
To avoid disadvantange of traditional leaching conditions and extract nickel and cobalt more effectively, this paper studied some extraction conditions in chloride medium, such as the atmospheric (acid) leaching, chloridizing roasting and chloridizing segregation. The effect and mechanism of mineral phase reconstruction on the extraction behavior of nickel and cobalt from laterite in these extraction conditions are discussed in detail.
     Based on the analysis of thermodynamics, the atmospheric HCl acid leaching conditions are studied. The optimal conditions are that the particle size of laterite is-0.15 mm, initial hydrochloric acid concentration is 8 mol/L, reaction temperature is 353 K, solid/liquid ratio is 1:4, rotation rate is 300 r/min, and the leaching time is 2 h, the results show that the dissolution yields of Ni, Co, Mn, Fe and Mg can be 93.94%, 60.5%,94%,56%and 94%, respectively. Because Ni in the laterite mainly exists in the ferric mineral phase and the leaching of Ni exhibits linear correlation with iron extraction. Due that part of Co exists in silicate, the leaching of Co does not exhibit good linear correlation with iron extraction. The results of kinetics of leaching laterite show that the dissolution rates of Ni, Co and Mn accord with unreacted shrinking core models for solid film control. And the activation energy of Ni, Co and Mn are 11.56 kJ/mol,11.26 kJ/mol and 10.77 kJ/mol. And the dissolution order of different mineral phases in the laterite is that geothite>lizatdite> magnetite≥hematite.
     On the basis of thermodynamic analysis, Ni and Co can be extracted selectively from laterite ore through chloridizing roasting, and impurities extraction can be suppressed. Experimental results show that low temperature chloridizing roasting by hydrogen chloride gas can effectively extract the nickel and cobalt and inhibit the iron extraction. The optimal conditions are as follows:mineral particle size is-0.074 mm, the roasting temperature is 300℃, hydrogen chloride gas flow rate is not less than 80 mL·min-1, the roasting time is not less than 30 min, nickel leaching rate is up to about 80.6% and cobalt leaching rate is about 60%. Ni/Fe molar ratio is about 15 times than that of raw ore, and Ni/Mg molar ratio is about 8 times than that of raw ore. The chloridizing roasting experiments in the intermediate temperature show that nickel and cobalt can be extracted effectively with solid chlorinating agent used and the leaching of iron can be inhibited. The optimum conditions are that mineral particle size is-0.074 mm, the mixture of NaCl and MgCl2·6H2O is chlorinating agent (mass ratio 0.4), the addition of chlorinating agent are 18% of the ore, the roasting temperature is 900℃, the roasting time is 1.5 h, the leaching rate of nickel is up to about 85% and the leaching rate of cobalt is about 60%. The Ni/Fe ratio is about 20 times than that of raw ore, the Ni/Mg ratio is 15 times than that of raw ore. Kinetic experiments show that the chloride reaction of nickel and cobalt belongs to the unreacted shrinking core model. The chloride reaction apparent activation energy of nickel and cobalt are 16.469 kJ/mol and 32.792 kJ/mol, respectively. The mixture of NaCl and MgCl2·6H2O (mass ratio 0.4) used as chloride reagent has eutectic point and can melt at relative low temperature, it favours the uniform mixing and permeation into the ore. And the chloride reagent can produce hydrogen chloride gas in a wide range temperature which avoids the release of excess hydrogen chloride gas.
     Results show that chloridizing segregation of nickel is the main reaction with control of reductant dosage, chlorinating agent dosage and reaction temperature. Through a series of experiments of magnetic field strength, the desired concentrate of nickel and cobalt can be obtained through two times magnetic separation with different magnetic field strength which are 3000 Gs of the first time and 1000 Gs of the second time. The optimum conditions of chloridizing segregation and magnetic separation are that mineral particle size is-0.074 mm, the mixture of NaCl and MgCl2·6H2O is chlorinating agent (mass ratio 0.4), the addition of chlorinating agent are 6% of the ore, the particle size of bituminous coal reductant is-0.2 mm, the reductant dosage is 2% of the ore, reaction temperature is 1000℃, reaction time is 90 min, and magnetic field strength are 3000 Gs of the first time and 1000 Gs of the second time, the grade of nickel and cobalt can be 5.78% and 0.187% respectively and the extraction of nickel and cobalt could reach 87.69% and 69.02% respectively.
     The roasting of laterite ores under atmospheric pressure at different temperatures can lead to the release of free water and bound water, dehydroxylation of goethite at 300℃and lizardite at 610℃respectively, which can lead to the change and reconstruction of the structure of original mineral and more fine pores and scraps on the surface of ore roasted can be found. As roasting temperature increases to 700℃and even 800℃, some fine particles reunite together which lead the decrease of specific surface area, and the amorphous magnesium silicate phase appears to have recrystallised as forsterite (Mg2Si04) and enstatite (MgSiO3). Compared with difference of leaching rate of nickel and cobalt between raw ore and roasted ore in atmospheric (acid) leaching, chloridizing roasting and chloridizing segregation, it can be seen that ore roasted at 300℃can make more nickel is exposed to the reaction interface which benefit the leaching of nickel and cobalt, at the same time, the leaching of iron is suppressed. And raw ore is roasted at 610℃, the main mineral lizardite (Mg3Si2(OH)4O5) begins to discompose and leads to mineral structure destroyed, the specific surface area attains the maximum, which benefit gas-solid reaction in the low temperature chloridizing roasting by hydrogen chloride gas and increase the leaching rate of nickel and cobalt. There is no significant effect on the extraction of nickel and cobalt through pre-roasting at 300℃and 610℃in chloridizing roasting at intermediate temperature and chloridizing segregation because the mineral phase have reconstructed before chloridizing reaction. When roasting temperature increases to 700℃and 800℃, it lead to the incorporation of nickel into the magnesium silicate phase (Mg,Ni)3Si02 followed by recrystallisation into the forsterite phase which appears to be detrimental to the nickel recovery. Thereafter, pre-roasting at 700℃and 800℃do not benefit for nickel recovery in the atmospheric (acid) leaching, chloridizing roasting and chloridizing segregation.
     In conclusion, the present processes proposed for nickel and cobalt extraction from laterite in chloride medium have been studied comprehensively in this paper. Three kinds of technology prototype are established for different target products. And the nickel and cobalt can be extracted selectively through chloridizing roasting and chloridizing segregation-magnetic separation which can decrease the addition of reagent and disposal in subsequent purification process. It is particularly significant in the exploitation of rich reserves of laterite.
引文
[1]彭容秋,任鸿九,张训鹏,等.镍冶金.长沙:中南大学出版社,2005.1-5
    [2]毛麟瑞.战略储备金属-镍.中国物资再生,1999,10:36-37
    [3]何焕华,蔡乔方,查治楷,等.中国镍钴冶金学.北京:冶金工业出版社,2000
    [4]赵天丛.重金属冶金学(上册).北京:冶金工业出版社,1981.270-273
    [5]朱宏力.镍市风云再起.中国有色金属,2009,(18):32-33
    [6]程明明.中国镍铁的发展现状、市场分析与展望.矿业快报,2008,(8):1-3
    [7]徐爱东,范润泽.2008年镍市场回顾及2009年展望.世界金属导报,2009,(3):1-3
    [8]卢生康,赵万双.镍工业发展趋势研究.兰州工业高等专科学校学报,2004,11(4):55-58
    [9]曹异生.国内外镍工业现状及前景展望.世界有色金属,2005,(10):67-71
    [10]范润泽.镍:市场初露止跌势头.中国有色金属,2009,(9):64-65
    [11]符剑刚,王晖,凌天鹰,等.红土镍矿处理工艺研究现状与进展.铁合金,2009,(3):16-22
    [12]宋学旺.元江镍矿区硫化镍矿床找矿思路探讨.矿产与地质,2006,20(4-5):392-396
    [13]翟秀静.镍红土矿的开发与研究进展.世界有色金属,2008,(8):36-38
    [14]Moskalyk R R, Alfantszi A M. Nickel laterite processing and electrowinning practice. Miner Eng,2002,15(20):593-598
    [15]张友平,周渝生,李肇毅,等.红土矿资源特点和火法冶金工艺分析.铁合金,2007,(6):18-22
    [16]畅永锋,翟秀静,符岩,等.还原焙烧红土矿的硫酸浸出动力学.分子科学学报,2008,24(4):241-245
    [17]李启厚,王娟,刘志宏.世界红土镍矿资源开发及湿法冶金技术的进展.湖南有色金属,2009,25(2):21-24,48
    [18]赵昌明,翟玉春.从红土镍矿中回收镍的工艺研究进展.材料导报,2009,23(6):73-76
    [19]王成彦,尹飞,陈永强,等.国内外红土镍矿处理技术及进展.中国有色金属学报,2008,18(S1):1-8
    [20]尹飞,阮书锋,江培海,等.低品位红土镍矿还原焙砂氨浸试验研究.矿冶,2007,16(3):29-32,4
    [21]李建华,程威,肖志海.红土镍矿处理工艺综述.湿法冶金,2004,23(4):191-194
    [22]兰兴华.世界镍市场的现状和展望.世界有色金属,2003,(6):42-47
    [23]周全雄.氧化镍矿开发工艺技术现状及发展方向.云南冶金,2005,36(4):33-36
    [24]张小云,田学达,刘小玲,等.银锰矿中银的回收新工艺.中国有色金属学报,2006,16(5):914-918
    [25]王成彦,江培海.云南中低品位氧化锌矿及元江镍矿的合理开发利用.中国工程科学(增刊),2005,7:147-150,206
    [26]朱德庆,邱冠周,潘健,等.红土镍矿熔融还原制取镍铁合金工艺.CN101033515A,2007
    [27]郭学益,吴展,李栋.镍红土矿处理工艺的现状和展望.金属材料与冶金工程,2009,37(2):3-9
    [28]任鸿九,王立川.有色金属提取手册(铜镍卷).北京:冶金工业出版社,2000.512-514
    [29]黄其兴,王立川,朱鼎之,等.镍冶金学.北京:科学技术出版社.1990.224-225
    [30]何焕华.氧化镍矿处理工艺评述.中国有色冶金,2004,(6):12-15,43
    [31]赵天从.重金属冶金学.北京:冶金工业出版社,1981.125-127
    [32]Canterford J H. The extractive metallurgy of nickel. Reviews of Pure and Applied Chemistry,1972,22(8):13-46
    [33]Girgis B S, Mourad W E. Textural variations of acid-treated serpentine. Journal of Applied Chemistry and Biotechnology,1976, (26):9-14
    [34]Loveday B K. The use of oxygen in high pressure acid leaching of nickel laterites. Minerals Engineering,2008,21(7):533-538
    [35]Johnson J A, R G McDonald, D M Muir, et al. Pressure acid leaching of arid-region nickel laterite ore. Part IV:Effect of acid loading and additives with nontronite ores. Hydrometallurgy,2005,78(3):264-270
    [36]Duyvesteyn W P C, Lastra M R, Liu H. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore. US Patent,5,571,308,1996
    [37]Chandra D, Ruud C O, Siemens R E. Characterization of laterite nickel ores by electron-optical and X-ray techniques. Report of Investigations No.8835. US Department of the Interior, Bureau of Mines, Washington DC,1983.12
    [38]Kim D-J, Chung H-S. Effect of grinding on the structure and chemical extraction of metals from serpentine. Particle Science and Technology,2002,16(20): 159-168
    [39]Whittington B I, Johnson J A, Quan L P, et al. Pressure acid leaching of arid-region nickel laterite ore. Part II:Effect of ore type. Hydrometallurgy,2003, 70(1-3):47-62
    [40]翟秀静,符岩,畅永锋,等.表面活性剂在红土镍矿高压酸浸中的抑垢作用.化工学报,2008,59(10):2573-2576
    [41]Agatzini-Leonardou S, Dimaki D. Method for the extractionof nickel and/or cobalt from nickel and/or cobalt oxide ores by heap leaching with a dilute sulphuric acid solution prepared from sea water at ambient temperature. Greek Patent 1,003,569,2001
    [42]Whittington B I, Johnson J A. Pressure acid leaching of arid-region nickel laterite ore. Part III:Effect of process water on nickel losses in the residue. Hydrometallurgy,2005,78(3-4):256-263
    [43]肖振民.世界红土型镍矿开发和高压酸浸技术应用.中国矿业,2002,11(1):56-59
    [44]Beukes J W, Giesekke E W, Elliot W. Nickel retention by goethite and hematite. Minerals Engineering,2000,13(14-15):1573-1579
    [45]Prieto O, Vicente M A, Banares-Munoz M A. Study of the porous solids obtained by acid treatment of a high surface area saponite. Journal of Porous Materials,1999,11(6):335-344
    [46]Susan Glasauer, Josef Friedl, Udo Schwertmann. Properties of Goethites Prepared under Acidic and Basic Conditions in the Presence of Silicate. Journal of Colloid and Interface Science,1999,216(1):106-115
    [47]Paul M Borer, Barbara Sulzberger, Petra Reichard, et al. Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides. Marine Chemistry,2005,93(2-4):179-193
    [48]Das G K, Anand S, Acharya S, et al. Characterisation and acid pressure leaching of various nickel-bearing chromite overburden samples. Hydrometallurgy,1997, 44(1-2):97-111
    [49]Rubisov D H, Papangelakis V G. Sulphuric acid pressure leaching of laterites-a comprehensive model of a continuous autoclave. Hydrometallurgy,2000,58(2): 89-101
    [50]Mainak Mookherjee, Lars Stixrude. Structure and elasticity of serpentine at high-pressure. Earth and Planetary Science Letters,279(1-2):11-19
    [51]Temuujin J, Okada K, MacKenzie K J D. Preparation of porous silica from vermiculite by selective leaching. Applied Clay Science,2003,22(4):187-195
    [52]Linssen T, Cool P, Baroudi M, et al. Leached natural saponite as the silicate source in the synthesis of aluminosilicate hexagonal mesoporous materials. Journal of Physical Chemistry B:Materials, Surfaces, Interfaces and Biophysical, 2002,106(8):4470-4476
    [53]Stella Agatzini-Leonardou, Ioannis G. Zafiratos. Beneficiation of a Greek serpentinic nickeliferous ore. Part Ⅱ:Sulphuric acid heap and agitation leaching. Hydrometallurgy,2004,74(3-4):267-275
    [54]Weston D. Hydrometallurgical treatment of nickel, cobalt and copper containing materials. US Patent 3,793,430,1974
    [55]Kumar R, Ray R K, Biswas A K. Physico-chemical nature and leaching behaviour of goethites containing Ni, Co and Cu in the sorption and coprecipitation mode. Hydrometallurgy,1990,25(1):61-83
    [56]Lu Z-Y, Muir D M. Dissolution of metal ferrites and iron oxides by HCl under oxidising and reducing conditions. Hydrometallurgy,1988,21(1):9-21
    [57]Lee H Y, Kim S G, Oh J K. Electrochemical leaching of nickel from low-grade laterites. Hydrometallurgy,2005,77(3-4):263-268
    [58]Trolard F, Bourrie G, Jeanroy E, et al. Trace metals in natural iron oxides from laterites:A study using selective kinetic extraction. Geochimica Cosmochimica Acta,1995,59(7):1285-1297
    [59]Cornell R M, Posner A M, Quirk J P. Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH). Journal of Inorganic and Nuclear Chemistry, 1976,38(3):563-567
    [60]Hirasawa R, Horita H. Dissolution of nickel and magnesium from garnierite ore in acid solution. International Journal of Mineral Processing,1987,19(1-4): 273-284
    [61]Aaltonen A, Karpale K, Malmstrom R. Method for recovering nickel and eventually cobalt by extraction from nickel-containing laterite ore. World Patent 03/004709 Al,2003
    [62]Zhang Q, Sugiyama K, Saito F. Enhancement of acid extraction of magnesium and silicon from serpentine by mechan-ochemical treatment. Hydrometallurgy, 1997,45(3):323-331
    [63]Okada K, Arimitsu N, Kameshima Y, et al. Preparation of porous silica from chlorite by selective acid leaching. Applied Clay Science,2005,30(6):116-124
    [64]Huaming Yang, Chunfang Du, Yuehua Hu, et al. Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Applied Clay Science,2006,31(3-4):290-297
    [65]Dutrizac J E, Chen T T. The behaviour of scandium, yttrium and uranium during jarosite precipitation. Hydrometallurgy,2002,98(1-2):128-135
    [66]Swamy Y V, Kar B B, Mohanty J K. Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites. Hydrometallurgy, 2003,69(1-3):89-98
    [67]Kar B B, Swamy Y V, Murthy B V R. Design of experiments to study the extraction of nickel from lateritic ore by sulphatization using sulphuric acid. Hydrometallurgy,2000,56(3):387-394
    [68]Verbaan N, Sist F, Mackie S, et al. Development and Piloting of Skye Resources Sulphation Atmospheric Leach (SAL) Process at SGS Minerals, ALTA 2007 Nickel/Cobalt 12. ALTA Metallurgical Services, Melbourne,2007.23
    [69]Xu Y, Xie Y, Yan L, et al. A new method for recovering valuable metals from low-grade nickeliferous oxide ores. Hydrometallurgy,2005,80(4):280-285
    [70]Neudorf D, Huggins D A. Method for nickel and cobalt recovery from laterite ores by combination of atmospheric and moderate pressure leaching. US Patent 2006/0024224 A1,2006
    [71]Kar B B, Swamy Y V. Extraction of nickel from Indian lateritic ores by gas-phase sulphation with SO2-air mixtures. Transactions of the Institute of Mining and Metallurgy 110, Section C,2001, C73-C78
    [72]Sukla L B, Kanungo S B, Jena P K. Leaching of nickel and cobalt-bearing lateritic overburden of chrome ore in hydrochloric and sulphuric acids. Transactions of the Indian Institute of Metals,1989,42(3-4):27-35
    [73]Panagiotopoulos N, Agatzini S, Kontopoulos A. Extraction of nickel and cobalt from laterites by atmospheric pressure sulfuric acid leaching.115th TMS-AIME Annual Meeting. The Metallurgical Society, Warrendale,1986, PA Paper No. A86-30
    [74]Kawahara M, Mitsuo T, Shirane Y, et al. Dilute sulphuric-acid leaching of garnierite ore after magnetic-roasting the ore mixed with iron powder. International Journal of Mineral Processing,1987,19(1-4):285-296
    [75]Bakker H F, Sridhar R. Leaching of oxide materials containing non-ferrous values. Canadian Patent 1,023,560,1978
    [76]Apostolidis C I, Distin P A. The kinetics of the sulphuric acid leaching of nickel and magnesium from reduction roasted serpentine. Hydrometallurgy,1978,3(2): 181-196
    [77]Willis B. Downstream Processing Options for Nickel Laterite Heap Leach Liquors, ALTA 2006 Nickel/Cobalt 11. ALTA Metallurgical Services, Melbourne,2006.25
    [78]Neudorf D. Atmospheric Leaching Forum, ALTA 2007 Nickel/Cobalt 12. ALTA Metallurgical Services, Melbourne,2007.5
    [79]罗仙平,龚恩民.酸浸法从含镍蛇纹石中提取镍的研究.有色金属(冶炼部分),2006,(4):28-30
    [80]罗永吉,张宗华,陈晓鸣,等.云南某含镍蛇纹石矿硫酸搅拌浸出的研究.矿业快报,2008,(1):24-26
    [81]刘瑶,丛自范,王德全.对低品位镍红土矿常压浸出的初步探讨.有色矿冶,2007,23(5):28-30
    [82]张仪.某红土镍矿加温搅拌浸出试验研究.湿法冶金,2009,28(1):32-33
    [83]周晓文,张建春,罗仙平.从红土镍矿中提取镍的技术研究现状及展望.四川有色金属,2008,(1):38-41
    [84]Chander S, Sharma V N. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy,1981,7(4):315-327
    [85]刘大星.从镍红土矿中回收镍、钴技术的进展.有色金属(冶炼部分),2002,(3):6-10
    [86]陈家铺,杨守志,柯家骏.湿法冶金的研究与发展.北京:冶金工业出版社,1998.18-34
    [87]中南矿冶学院冶金研究室.氯化冶金.北京:冶金工业出版社,1978.93-98
    [88]Luthra K L, Ray H S, Dharmendra Kumar J. Kinetics of reaction of zirconium tetrachloride vapors with solid sodium chloride spheres. Int. Eng. (India),1973, 53(2):58-65
    [89]Voisky A, Sergievskaya E. Theory of Metallurgical Process (Pyrometallurgical Processes), Mir Publishers, Moscow,1971.343-355
    [90]Andrade Gamboa J, Pasquevich D M. Effect of chlorine atmosphere on the anatase-rutile transformation. Journal of the American Ceramic Society,1992, 75(5):2934-2938
    [91]Berto'ti I, Pap I S, Sze'kely T, et al. Comparative thermogravimetric study of chlorinations of hematite and wu stite. Journal of Thermal Analysis,1987,32(4): 281-292
    [92]Kanari N, Gaballah I, Allain E, et al. Chlorination of Chalcopyrite Concentrates. Metallurgical and Materials Transactions B,1999,38B(8):567-576
    [93]Nagata, K, Bolsaitis, P. Selective removal of iron oxide from laterite by sulphurization and chlorination,1987,19(5):157-172
    [94]王成彦.元江贫氧化镍矿的氯化离析.矿冶,1997,6(3):55-59,65
    [95]陈晓鸣,张宗华.元江硅酸镍矿开发新技术半工业试验研究.有色金属(选矿部分),2007,(3):25-28
    [96]Langer S H, Yurchak S. Electrochemical reduction of the benzene ring by electrogenerative hydrogenation. J. Electrochem. Soc.,1969,116(3):1228-1230
    [97]Tan K G, Bartels K, Bedard P L. Lead chloride solubility and density data in binary aqueous solutions. Hydrometallurgy,1987,17(3):335-342
    [98]Dutrizac J E. The dissolution of galena in ferric chloride media. Met. Trans., 1986,17B(1):5-17
    [99]Fuerstenau M C, Chen C C, Han K N, et al. Kinetics of galena dissolution in ferric chloride solution. Met. Trans.,1986,17B(2):415-423
    [100]Suni J, Henein H, Warren G W, et al. Modelling the leaching kinetics of a sphalerite concentrate size distribution in ferric chloride solution. Hydrometallurgy,1989,22(1-2):25-38
    [101]Morin D, Gaunand A, Renon H. Representation of kinetics of leaching of galena by ferric chloride in sodium chloride solutions by a modified mixed kinetics model. Metallurgical Transactions B,1985,16B(1):31-39
    [102]王虹,邓海波,路秀峰.重要有色金属资源-红土镍矿的现状与开发.甘肃冶金,2009,31(1):20-24
    [103]国务院发展研究中心信息网.2010年镍需求将增加约7%价格将平稳上涨.http://202.197.69.6/DRCNet.Mirror.Documents.Web/docview.aspx?docid=2125 950&leafid=983&chnid=1024&searchquerystring=镍&SearchItem=keyword
    [104]Jinhui Li, Xinhai Li, Yunhe Zhang, et al. Study of spent battery material leaching process. Trans Nonferrous Met Soc China,2009,19(3):751-755
    [105]北京冶矿研究总院测试研究所编.有色冶金分析手册.北京:冶金工业出版社,2004
    [106]夏岫云EDTA滴定法测定稀土镁硅铁中氧化镁.理化检验-化学分册,2005, 41(5):364-365
    [107]陈永明.盐酸体系炼锌渣提铟及铁资源有效利用的工艺与理论研究:[博士学位论文].长沙:中南大学,2009
    [108]Olanipekun E O. Kinetics of leaching laterite. Int. J. Miner. Process,2000, 60(1):9-14
    [109]Gibson R W, Rice N M. A hydrochloric acid process for nickeliferous laterites. In:Cooper, W.C., Mihaylov, I. (Eds.), Hydrometallurgy and Refining of Nickel and Cobalt, vol.1. Canadian Institute of Mining and Metallurgy, Montreal, QC, 1997.247-261
    [110]McDonald R G., Whittington B I. Atmospheric acid leaching of nickel laterites review. Part Ⅱ:Chloride and bio-technologies. Hydrometallurgy,2008b,91(1-4): 56-69
    [111]Langer S H, Yurchak S. Electrochemical reduction of the benzene ring by electrogenerative hydrogenation. J. Electroehem. Soc.,1969,116(3):1228-1230
    [112]Tan K G, Bartels K, Bedard P L. Lead chloride solubility and density data in binary aqueous solutions. Hydrometallurgy,1987,17(3):335-342
    [113]Konigsberger E, May P, Harris B. Properties of electrolyte solutions relevant to high concentration chloride leaching Ⅰ. Mixed aqueous solutions of hydrochloric acid and magnesium chloride. Hydrometallurgy,2008,70(2-4):177-191
    [114]Rath P C, Paramguru R K, Jena P K. Kinetics of dissolution of zinc sulphide in aqueous ferric chloride solution. Hydrometallurgy,1981,6(3-4):219-225
    [115]Beolchini F, Petrangeli Papini M, Toro L, et al. Acid leaching of manganiferous ores by sucrose:Kinetic modelling and related statistical analysis. Minerals Engineering,2001,14(2):175-184
    [116]Morin D,Gaunand A, Renon H. Representation of kinetics of leaching of galena by ferric chloride in sodium chloride solutions by a modified mixed kinetics model. Metallurgical Transactions B,1985,16B(1):31-39
    [117]Cano M, Lapid G. Mathematical model for galena leaching with ferric chloride. Proceedings of the International Symposium on Modelling, Simulation and Control of Hydrometallurgical Processes, Public by Canadian Institute of Mining, Metallurgy and Petroleum,1993.77-90
    [118]Jin Z-M, Warren G W, Henein H. Reaction kinetics and electrochemical model for the ferric chloride leaching of sphalerite. Zinc'85:Proceedings of International Symposium on Extractive Metallurgy of Zinc. Sponsored by: Mining & Metallurgical Inst of Japan, Tokyo, Jpn; Japan Mining Industry Assoc, Jpn; Japan Lead Zinc Development Assoc, Jpn Mining & Metallurgical Inst of Japan,1985.111-125
    [119]Kbayhi M, Dutriac J E, Toguri J M. Critical review of the ferric chloride leaching of galena. Canadian Metallurgical Quarterly,1990,29(3):201-211
    [120]Warren G W, Henein H, Jin Z M. Reaction mechanism for the ferric chloride leaching of sphalerite. Metallurgical Transactions B,1985,16B(4):715-724
    [121]Dutrizac J E. Leaching of galena in cupric chloride media. Metallurgical Transactions B,1989,20(4):475-483
    [122]Dixit S, Venkatachalam S, Mallikarjunan R. Direct electrolytic recovery of lead from lead sulphide and galena concentrate. Transactions of the Indian Institute of Metals,1975,28(4):293-298
    [123]JA迪安主编.兰氏化学手册.北京:科学出版社,2003
    [124]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    [125]林传仙.矿物及有关化合物热力学数据手册.北京:科技出版社,1985
    [126]符芳铭,胡启阳,李金辉,等.低品位红土镍矿盐酸浸出实验研究.湖南有色金属,2008,(10):32-35
    [127]Zhang P W, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent Li ion secondary batteries. Hydrometallurgy, 1998,47(2-3):259-271
    [128]Ekinci Z, Colak S, Cakici A. Technical note leaching kinetics of sphalerite with pyrite in chloride saturated water. Minerals Engineering,1998,11(3):279-283
    [129]方成开,谭佩君.从钴镍废料电溶液中分离回收钴镍.湿法冶金,2003,22(4):169-182
    [130]Kui Liu, Qiyuan Chen, Huiping Hu. Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore. Hydrometallurgy, 2009,98(3-4):281-286
    [131]彭容秋编著.重金属冶金学.长沙:中南大学出版社,2004
    [132]刘岩,王虹,蒋贵权,等.含镍废料浸出条件及循环逆流浸出工艺研究.矿冶工程,2006,26(5):44-46
    [133]张小云,田学达.石煤提钒湿法工艺的动力学研究.湘潭大学自然科学学报,2005,27(2):104-107
    [134]马荣骏编著.湿法冶金原理.北京:冶金工业出版社,2007
    [135]韩其勇主编.冶金过程动力学.北京:冶金工业出版社,1983
    [136]邱定蕃.加压湿法冶金过程化学与工业实践.矿冶,1994,3(4):55-67
    [137]陈家镛,杨守志,柯家骏.湿法冶金的研究与发展.北京:冶金工业出版社,1998
    [138]Mishra S K, Kanungo S B. Thermal dehyration and decomposition of Nickel chloride hydrate (NiCi2-xH20). Journal of Thermal Analysis,1992,38(3): 2417-2436
    [139]Kanungo S B, Mishra S K. Thermal dehydration and decomposition of FeCl3·xH2O. Journal of Thermal Analysis,1996,46(3):1487-1500
    [140]Kanungo S B, Mishra S K. Kinetics of Chloridization of Nickel Oxide with Gaseous Hydrogen Chloride. Metallurgical and Materials Transactions B,1997, 28B(6):371-387
    [141]Kofstad P. Non-stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Kreiger Publishers, Malabar, FL,1983.246-51
    [142]叶国瑞,徐家振,贺家齐,等.氧化铜、氧化铅低温氯化的研究.有色金属(冶炼部分),1991,(1):22-26
    [143]张永健.镁电解生产与工艺学.长沙:中南大学出版社,2006
    [144]陈新民,张平民,叶大陆.氯化镁水合物热分解的综合研究.中南矿冶学院学报,1979,(1):21-26
    [145]刘够生,宋兴福,王相田,等.六水氯化镁分子与电子结构的理论化学研究.计算机与应用化学,2005,22(7):509-511
    [146]刘积灵,张玉坤.无水氯化镁的制备技术及发展趋势.无机盐工业,2007,39(8):10-12
    [147]肖军辉.某硅酸镍矿离析工艺试验研究:[硕士学位论文].昆明理工大学,2007
    [148]Wanrong Liu, Xihai Li, Qiyang Hu, et al. Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites. Transactions ofNonferrous Metals Society of China,2010,20(S1):82-86
    [149]阮书锋,江陪海,王成彦,等.低品位红土镍矿选择性还原焙烧实验研究.矿冶,2007,16(2):31-34,67
    [150]Antonios Nestoridis. Upgrading the nickel content from low grade nickel lateritic iron ores. United States Patent,670,224,1986
    [151]Chander S, Sharma V N. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy,1981,7(4):315-327
    [152]Mene'ndez C J, Barone V L, Botto I L, et al. Physicochemical characterization of the chlorination of natural wolframites with chlorine and sulphur dioxide. Minerals Engineering,2007,20(6):1278-1284
    [153]姜涛,何国强,李晓芹,等.焙烧气氛对内配碳赤铁矿球团焙烧行为的影响.中南大学学报(自然科学版),2009,40(4):851-856
    [154]曹琴园,李洁,陈启元,等.机械活化对氧化锌矿碱法浸出及其物化性质的影响.过程工程学报,2009,9(4):669-675
    [155]Jinhui Li, Xinhai Li, Qiyang Hu, et al. Effect of pre-roasting on leaching of laterite. Hydrometallurgy,2009,99(1-2):84-88
    [156]Valix M, Cheung W H. Study of phase transformation of laterite ores at high temperature. Minerals Engineering,2002,15(8):607-612
    [157]李小斌,周秋生,彭志宏,等.活化焙烧-水硬铝石矿增浓溶出过程动力学.中南工业大学学报,2000,31(3):219-221
    [158]Tartaj P, Cerpa A, Garcia-Gonzalez M T, et al. Surface instability of serpentine in aqueous suspensions. J. Colloid Interface Sci.,2000,231(1):176-181
    [159]Mariana A, Elsa H. Rueda, Elsa E. Sileo. Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites. Chemical Geology, 2006,231(4):288-299
    [160]Wei L, Qiming F, Leming O, et al. Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy,2009,96(1-2):171-175
    [161]O'Connor F, Cheung W H, Valix M. Reduction roasting of limonite ores:Effect of dehydroxylation. Int. J. Miner. Process,2006,80(2-4):88-99
    [162]郭立鹤,韩景仪.红外反射光谱方法的矿物学应用.岩石矿物学杂志,2006,25(3):250-256
    [163]Kukura M E, Stevens L G, Auck Y T. [C]//Evans D J I, Shoemaker R S, Veltman H. Development of UOP process for oxide silicate ores of nickel and cobalt. International Laterite Symposium. SME-AIME, New York, USA.1979. 527-552
    [164]Reig F B, Adelantado J V G, Moya Moreno M C M. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta,2002,58 (4):811-821
    [165]Whittington B I, Johnson J A. Pressure acid leaching of arid-region nickel laterite ore. Part III:Effect of process water on nickel losses in the residue. Hydrometallurgy,2005,78(3-4):256-263
    [166]Whittington B I, McDonald R G, Johnson J A, et al. Pressure acid leaching of arid-region nickel laterite ore. Part I:Effect of water quality. Hydrometallurgy, 2003,70(1-3):31-46
    [167]Kosuge K, Shimada K, Tsunashima A. Micropore formation by acid treatment of antigorite. Chem. Mater.,1995,7(12):2241-2246
    [168]Lin F C, Clemency C V. The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure. Am. Mineral.,1981,66(7-8): 801-806

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700