用户名: 密码: 验证码:
沉积型钴锰矿选冶新工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钴作为一种重要的战略物资金属,在国民经济和社会经济发展中具有重要意义。由于钴具有较强的迁移能力,在地壳中90%呈分散状态。同时,钴具有亲硫亲铁双重性,所以多以伴生金属产出,很少形成独立的或以钻为主的工业矿床。中国也是钴资源缺乏的国家之一,汉源钴锰矿(轿顶山钴锰矿)地处四川南部的汉源县北部,该矿床是“优质富锰矿床”是四川省重要的锰矿石生产基地。
     汉源钴锰矿属于典型的化学沉积型含钻菱锰矿石,由于该钴矿石主要分布于岩石的夹层中,并且矿层较薄,只能与锰矿石混采,钴锰矿石为不均匀浸染状矿石,分选难度很大。虽然矿石中钴以硫镍钴矿为主,锰以菱锰矿为主,但是长期以来仅仅对锰进行回收,由于钴的分选难度较大,没有对钻进行回收利用,导致钴资源的严重浪费。
     本研究针对汉源沉积型钴锰在进行了大量的矿石工艺矿物学研究和试验研究工作的基础上,创造性地提出“浮选—强磁选—氯化离析—弱磁选”的高效选冶新工艺,并得到了理想的技术指标,实现了钴锰的综合回收。该选冶新工艺技术将对汉源钴锰的开发利用,尤其是对钴的回收具有重要的指导意义。
     首先,对矿石进行了大量的工艺矿物学研究,研究结果得出原矿含钴0.23%、含锰10.52%、含镍0.29%属于以钴锰为主的多金属矿石。矿石中钴主要以硫镍钴矿和辉砷钴形式存在,但大部分钴矿物与黄铁矿呈固溶体形式产出,嵌布粒度细,部分粒度细至2微米,相互共生,包裹现象严重;有10.43%的钴矿物分布于菱锰矿、白云石、方解石等脉石中且粒度很细。锰主要以菱锰矿形式产出,嵌布粒度为0.005~0.1mm。沉积型钴锰中虽然钴锰均以独立矿物存在,但由于嵌布粒度细、呈固溶体形式产出、互相包裹、浸染现象严重等因素,给钴锰综合回收带来了相当大的难度。
     在矿石工艺矿物学研究的基础上,进行了钴锰分选富集钻试验研究。试验结果表明,强磁选对锰能实现较好的分选效果,重选能够提高钻的品位,但均存在不能得到理想钴锰分选指标的问题。为此,进行了浮选预先富集钴试验,通过大量的浮选工艺条件试验得出一次粗选两次扫选的浮选工艺流程,得到了钴品位为0.84%,钻回收率为87.64%钴分选指标;浮选尾矿采用一次粗选一次精选的强磁选工艺流程得到了锰品位为30.12%,锰回收率为72.37%的锰分选指标。结合浮选钴精矿的XRD衍射分析、硫物相分析、砷物相分析及化学成分分析结果得出,浮选钴精矿要通过物理的分选方法进一步提高钴品位及回收率是很困难的。
     为进一步提高钴的分选指标,对浮选钴精矿采用硫酸化焙烧—浸出进行了分离钴试验研究。试验结果表明,由于浮选钴精矿中CaO、MgO、SiO2、Al2O3等杂质含量较高及钴矿物的嵌布特征,呈现钴的浸出率低、耗酸量大、固液分离困难等问题。导致在焙烧温度为600℃、焙烧时间为3h、浸出液固比L/S=3、浸出时间为3h、浸出pH=1的综合工艺条件下,钻的浸出率仅为71.05%,脱硫率为82.86%。因此,硫酸焙烧—浸出工艺分离钴不可行。
     由于硫酸化焙烧—浸出分离钴指标较差,因此,采用氯化离析—弱磁选矿相重构法进行了深入的分离钻试验研究,在氯化离析过程中添加赤铁矿作为钴离析的活化剂,热力学分析结果也验证了赤铁矿的活化作用;添加石灰调整离析物料硅酸度,促进反应进行的同时使硫砷得到了固定,硫主要形成硫酸盐,砷主要形成砷酸盐;添加氯化亚铜作为催化剂,使离析时间从75min缩短至45min。在离析温度为1100℃、离析时间为45min、焦炭用量为7%、焦炭粒度为-0.5+Omm、氯化钙用量为11%、硅酸度R4=0.70、赤铁矿(含铁66.78%)用量为5%、氯化亚铜用量为1%、磨矿细度-0.045mm占90%、弱磁选磁场强度H=0.15T的氯化离析—弱磁选分离钻工艺条件下,得到了钴品位为4.18%,钴作业回收率为96.14%的离析钴精矿分选指标。对氯化离析过程产生以氯化氢气体为主的尾气进行了初步再生利用试验,试验结果得出采用石灰水吸收尾气可使Cl-的吸收效率达到75.27%,再生氯化钙可作为氯化剂返回使用,且钴的离析指标也比较理想。
     为考查钴锰选冶联合全工艺流程选别指标,进行了浮选—强磁选—氯化离析—弱磁选全工艺流程试验。在前面所取得的综合工艺参数条件下,得到了钴品位为4.18%,含镍1.92%,钴回收率为82.64%的钴精矿;锰品位为30.12%,含镍0.18%,锰回收率为72.42%的锰精矿,实现了汉源沉积型钴锰矿钻锰的综合利用。
     为揭示浮选钴精矿在氯化离析焙烧矿相重构过程中的演变机理,为此分别对浮选钴精矿和离析产品进行SEM矿相与EMPA成分分析,分析结果显示钴矿相从硫钴矿(硫镍钻矿、辉砷钴矿)转变成为以铁钴镍为主的新矿相—钴铁矿。依据现有新相生成理论、氯化离析冶金动力学模型及分析研究结论,提出氯化离析矿相重构过程中的“气—固相颗粒结构变化模型”,并对动力学模型进行了数学分析,分析结果得出在氯化离析过程铁钴镍主要以金属粒子形式存在,正是由于固体粒子结构发生了变化,最终新成了新的“钴铁矿”矿相,同时也形成了部分“钴黄铁矿”矿相。
     本论文针对汉源沉积型钴锰矿,采用“浮选—强磁选—氯化离析—弱磁选的选冶联合新工艺”进行试验及机理研究,尤其是获得了钴品位为4.18%,钴综合回收率为86.24%的钴精矿,打破了目前仅仅对锰进行回收的局面,对汉源沉型钴锰矿石的综合利用奠定了重要的试验基础与理论依据。
Cobalt plays a significant role in the development of national economy. As cobalt has a property of strong migration,90%of cobalt appears in dispersion state in the crust. At the same time, the cobalt has thiophilic and siderophile affinities, so most is generated with associated metal and a few independent or cobalt-based industrial ore deposits are formed. China is one of the countries lacking cobalt resources. Hanyuan cobalt-manganese ore (The Jiaodingshan mountain cobalt-manganese ore) is located in the north of the Hanyuan County in the south of Sichuan province, and this mineral deposit is a "high quality manganese-rich deposit", which is an important production base of manganese ore in Sichuan province.
     Hanyuan cobalt-manganese ore belongs to typical chemical depositional cobaltiferous rhodochrosite ore. Since cobalt ores are mainly distributed in the interlayer of rocks, and the ore bed is rather thin, they can only be mined with manganese ore. Cobalt-manganese ore is present in the form of uneven distributed dissenminated ore, which leads that the separation is difficult. Although cobalt is predominately present in siegenite, and manganese in rhodochrosite, only manganese is recovered for a long time, and cobalt is not recovered as it is difficult to separate cobalt. This results in serious waste of cobalt resources.
     For Hanyuan depositional manganese cobalt, a new and effective metallurgical process of "flotation-high intensity magnetic separation-chlorinated segregation-low intensity magnetic separation" is proposed in this study based on the study of process mineralogy of ore and relevant experiments. Meanwhile, an ideal technology index is obtained through the testwork, and comprehensive recovery of manganese and cobalt is realized. The new technology will have an important instructive significance for the development and utilization of cobalt-manganese, especially for the recovery of cobalt.
     First, a large number of minerals mineralogical studies have been conducted, and the results indicate that the crude ore with cobalt grade of0.23%, manganese grade of10.52%, nickel gradeof0.29%belongs to polymetallic ore which predominately appears as cobalt and manganese. Cobalt exists in the ore mainly in the form of siegenite and cobaltite, but most of cobalt is outputted in the form of solid solution together with pyrite, which is present as fine disseminated granularity, part of the granularity to2microns. It demonstrates the phenomenon of mutual symbiosis and serious mutual package.10.43%of cobalt minerals are distributed in rhodochrosite, dolomite, calcite, etc and in a form ofsuper-fine granularity. Manganese is mainly present as rhodochrosite, with disseminated granularity from0.005mm to0.1mm. Although cobalt and manganese are present independently in the depositional cobalt-manganese ore, it is difficult to recover cobalt and manganese due to such factors as fine disseminated granularity, output form of solid solution, serious mutual packaging, dissemination etc.
     On the basis of mineralogical study, the tests and studies on separation cobalt and manganese for the enrichment of cobalt have been performed. test results show that the method of high intensity magnetic separation can achieve great separation effect for manganese, and the method of gravity separation can improve the grade of cobalt, but ideal cobalt and manganese separation index can not obtained through both methods. Therefore, the testwork of flotation for pre-enrichment cobalt is conducted. The process flow of rough floating for one time and scavenging for two times is worked out through lots of tests under flotation process conditions, through which cobalt appears in the grade of0.84%with separation index of87.64%. It adopts high intensity magnetic separation process of roughing for one time and handpicking for one time to recover test flowsheet of to manganese from flotation tailings. The manganese separation index shows that manganese is in the grade of30.12with recovery rate of72.37%. In a word, it comes to the conclusion that it is difficult to further improve cobalt grade and the recovery rate through physical separation methods through such analysis as cobalt concentrate flotation of XRD diffraction analysis, sulfur content phase analysis, arsenic object is analysis and chemical composition analysis.
     In order to further improve the cobalt separation indexes, the tests of cobalt separation from flotation cobalt ore concentrate have been carried out through the method of sulfating roasting-leaching. The test results indicate that the impurities like CaO, MgO, SiO2, Al2O3are relatively high and cobalt minerals are present with the following embedded characters such as low leaching rate, large consumption of acid, and the difficulty of solid-liquid separation. These lead that, under such comprehensive process conditions as roasting temperature of600℃, roasting time of3h, leaching liquid-solid ratio of L/S=3, leaching time of3h, and leaching pH=1, cobalt leaching rate is only71.05%, and desulphurization rate is82.86%. Therefore, sulfating roasting-leaching separation cobalt is not workable.
     As sulfated roasting-leaching separation cobalt index is quite poor, the method of chlorinated segregation-low intensity magnetic separation mineralogical reconstruction is employed for further research of the separation of cobalt. In the process of chlorinated segregation, hematite is fed as activator for cobalt segregation. Meanwhile, thermodynamic analysis results have verified the activation function of hematite. Lime is used for adjustment the degree of silicate for separated materials, which promotes the reaction while making sulfur and arsenic fixed. Sulfur is mainly transformed into sulfate and arsenic mainly into arsenate during the process. The application of cuprous chloride as a catalyst can shorten the segregation time from75min to45min. Under the following conditions: segregation temperature of1100℃, segregation time of45min, coke dosage of7%, coke granularity of-0.5+0mm, calcium chloride dosage of11%, silicate degree of R4=0.70, hematite dosage of (including iron66.78%) of5%, cuprous chloride dosage of1%, and90%of-0.045mm grinding fineness, segregation cobalt concentrate separation indexes are obtained by cobalt separation process of chlorination separation-low intensity magnetic separation with magnetic separation degree of H=0.15T. The indexes appear that the outputted cobalt is in grade of4.18%with work recovery rate of96.14%. Preliminary recycled tests have been performed for the tail gas with main ingredient of hydrogen chloride gas which is produced in the process of chlorinated segregation. Test results indicate that:the recovery efficiency of Cl-is up to75.27%when limewater is employed to absorb tail gas; and regenerated calcium chloride can be recycled and used as as chlorinated agent; meanwhile, the obtained index of cobalt segregation is ideal.
     In order to survey beneficiation indexes of overall combined technique of processing and metallurgy for cobalt and manganese, tests have been conducted for the whole process of flotation-Strong magnetic separation-chlorination separation-low intensity magnetic separation. Based on previously achieved comprehensive process parameters, it comes to the results as follows:cobalt grade of4.18%, contained nickel of1.92%, and cobalt concentrate with cobalt recovery rate of82.64%; manganese grade of30.12%, contained nickel of0.18%, and manganese concentrate with manganese recovery rate of72.42%. Through the tests, the comprehensive utilization of cobalt and manganese has been realized for Hanyuan depositional cobalt-manganese ore.
     To find out the evolution mechanism of cobalt concentrate in the process of chlorination segregation and mineralogical roasting reconstruction, mineralogical phase of SEM and composition of EMPA analyses have been separately processed for flotated cobalt concentrate and segregated products. The results indicate that cobalt mineralogical phase, as linnaeite (siegenite and cobaltite) has been transformed into a new cobalt mineralogical phase——"cobaltiferous iron ore" which is predominately present as cobalt, nickel and iron. Under the current theory of generation of new phase, chlorinated segregation metallurgical kinetic model and conclusion of relevant analyses and researches,"gas-solid phased particles structure change model" has been proposed in the process of chlorination segregation and reconstruction of Mineralogical Phase, and mathiematical analyses also have been conducted for the dynamic model. It reaches a conclusion, based on the results, that iron, cobalt and nickel are mainly present as metal particles during the process of chloride segregation; finally new mineralogical phase of "cobaltiferous iron ore" has been formed actually due to the changes of solid particles structure; meanwhile, part of mineralogical phase of "cobalt pyrite" has been formed.
     In this thesis, testwork has been performed together with mechanism research for Hanyuan depositional cobalt-manganese ore by "the new combined technique of processing and metallurgy of "flotation-high intensity magnetic separation-chlorinated segregation-low intensity magnetic separation". The greatest achievement is that cobalt concentrate ore has been produced with cobalt grade of4.18%and cobalt comprehensive recovery of86.24%.This breaks the current situation that only manganese is recover, and establises an important test foundation and theoretical basis for comprehensive utilization of Hanyuan sedimentary cobalt-manganese ore.
引文
[1]许时.矿石可选性研究[M].北京:冶金工业出版社,1989,05
    [2]硅酸盐物理化学[M].高等教育出版社,2001,03
    [3]李启衡主编.碎矿与磨矿[M].冶金工业出版社,1980,07
    [4]周正.单矿物分选学[M].广州:广东科技出版社,1996,12
    [5]王淀佐.矿物浮选和浮选剂[M].湖南:中南工业大学出版社,1986
    [6]张景强,邵传兵.利用钴矿制取氯化钴的试验研究[J].2009,29(4):46-48
    [7]丰成友,张德全,党兴彦.中国钴资源及其开发利用概况[J].矿床地质.2003,23(1):93-100
    [8]潘彤.我国钴矿矿产资源及其成矿作用[J].矿产与地质,2003,17(4):516-518
    [9]蒋金龙,汪模辉.种含钴废矿渣的生物浸出初步研究[J].矿产综合利用,2003(1):42-45
    [10]丰成友,张德全.世界钴矿资源及其研究进展述评[J].地质论评,2002,48(6):627-633
    [11],刘政,姚媛.高砷钴矿火法富集过程中砷的污染和治理[J].江西有色金属,2002,16(1):35-37
    [12]魏逖卡,IK邓彤等.硫铜钴矿和黄铜矿的电化学性质与电动性质及其浮选行为[J].国外金属矿选矿,2002,16(1):29-32
    [13]甘树才[1]周少红.复杂钴矿石中钴镍赋存状态研究[J].岩矿测试,2000,19(1):42-44
    [14]王昌良.某原生钻矿选矿试验研究[J].矿产综合利用,1999(4):13-16
    [15]刘述忠,徐晓军.钴矿及含钴废水选矿处理的研究现状[J].矿产综合利用,1999,36(3):33-36
    [16]杨守生.从低品位硫钻矿中提取钴的研究[J].山东化工,1998(1):28-29
    [17]杨守生.硫钴矿酸浸取动力学研究[J].云南化工,1988(1):56-58
    [18]颜福光.钴铜资源的利用和开发[J].海南矿冶,1998,8(3):12-13
    [19]杨敏等.某难选含碳钴锰矿选矿试验研究[J].矿产综合利用,2010(03):6-8
    [20]潘君来.高砷钴矿提钴过程中砷的分布与回收[J].有色金属(冶炼部分),1991(5):12-15
    [21]钴矿资源的特点[J].新疆有色金属,2010(4):86-88
    [22]李生元,彭正英,赵克智.含银黄铁矿烧渣的离析浮选研究[J].江苏冶金,1988,(S1)
    [23]硫化矿物的离析浮选[J].国外金属矿选矿,1991,(11):30-34
    [24]A.T.Grotowski,王光闾.硫化-氧化铜矿石的离析法处理[J].国外金属矿选矿,1990(1):25-27
    [25]罗永吉,肖军辉.某含铜鲕状赤铁矿选矿试验[J].金属矿山,2011,(06):81-85:96
    [26]张桂芳,刘金浪,张宗华.高磷赤褐铁矿提铁降磷氯化离析工艺条件试验研究[J].中国矿业,2010(7):67-70
    [27]王保士.苏联镍—钴冶金工业废渣的利用[J].世界有色金属,1991(20):12-13
    [28]孙玉秀,周平等.云南某地难选氧化铜矿选矿试验研究[J].矿业工程,2010(1):30-32
    [29]张军,张宗华.铁镁质硅酸镍矿的离析选别试验研究[J].矿业工程,2007(6):36-38
    [30]陈晓鸣,张宗华.元江硅酸镍矿开发新技术半工业试验研究[J].有色金属(选矿部分),2007(3):25-28
    [31]杨新华.探究氧化铜矿的回收[J].云南冶金,2003(6):13-15
    [32]陈连秀,刘中华.难选氧化铜矿离析—浮选试验研究[J].新疆有色金属,2003,(01):22-26
    [33]魏昶,姜琪等.重有色金属冶炼中砷的脱除与回收[J].有色金属,2003(S1):46-50
    [34]肖安雄.用新型离析焙烧炉处理难选氧化铜矿[J].有色金属(冶炼部分),2001(4):18-20
    [35]王成彦.元江贫氧化镍矿氯化离析焙砂的氨浸[J].有色金属(冶炼部分),2001(2):12-14
    [36]李运刚.某低品位难选离析铜矿的加压氨浸[J].矿产综合利用,2001(1):1-4
    [37]唐娜娜,莫伟,马少健.钴矿资源及其选矿研究进展[C].第十二届全国粉体工程及矿产资源可持续开发利用学术研讨会,2006
    [38]吴熙群,李成必等.钴矿资源开发利用选矿技术现状和进展[C].复杂难处理矿石 选矿技术—全国选矿学术会议论文集,2009
    [39]张渊,张俊辉,杨永涛.某低品位铁钴矿选矿试验研究[C].循环经济与矿产综合利用技术发展研讨会论文集,2009(08):42-52
    [40]邹仿棱.钴的资源、市场与应用[C].第九次全国硬质合金学术会议论文集,2006(09):176-181
    [41]张启修龚柏凡黄芍英.钴硫精矿硫酸化焙烧研究[C].全国第二届镍钴学术会议论文集,1992,08
    [42]李金辉.氯盐体系提取红土矿中镍钴的工艺及基础研究[D].中南大学博士论文,2010
    [43]刘婉蓉.低品位红土镍矿氯化离析—磁选工艺研究[D].中南大学硕士论文,2010
    [44]肖军辉.某硅酸镍矿离析工艺试验研究[D].昆明理工大学硕士论文,2007
    [45]滕浩.高砷钴矿提钴新工艺研究[D].中南大学硕士论文,2010
    [46]彭志伟.红土镍矿有机酸浸提取镍钴的研究[J]中南大学硕士论文,2008
    [47]徐爱东,顾其德.钻价低位震荡需求稳中有增—2011年上半年国内外钴市场回顾及展望[J].世界有色金属,2011,(8)
    [48]李亮,杨成.攀枝花某地钒钛磁铁矿选矿基础试验研究[J].钢铁钒钛,2011,(1):29-33:46
    [49]徐远志.以低品位铜钴矿制取氧化钴的工艺研究[J].云南冶金,2010(05):35-39:53
    [50]J. Ndalamo,A.F. Mulaba-Bafubiandi,B.B. Mamba.UV/visible spectroscopic analysis of Co3+ and Co2+ during the dissolution of cobalt from mixed Co-Cu oxidized ores[J].International jouranal of minerals metallurgy and materals,2011,18(3):260-269
    [51]闫艳玲;李向前等.中非铜带残坡积钴矿床地质特征及找矿方向[J].地质与勘探,2011,47(3):512-517
    [52]王成彦;王含渊等.钴锰矿矿浆电解试验研究[J].有色金属:冶炼部分,2006(4):2-5
    [53]中南矿冶学院冶金研究室编,国外重金属高温氯化焙烧发展现状[M].1974,内部资料
    [54]北京矿冶研究院技术情报室编,有色冶金技术资料[M].1972,(2):22-26,内部资料
    [55]中南矿冶学院冶金研究室编,氯化冶金[M].冶金工业出版社,1997
    [56]王常任主编.磁电选矿[M].北京:冶金工业出版社,2002
    [57]天津大学物理化学教研组编.物理化学[M]上、下册第四版.高等教育出版社,2001,12
    [58]傅崇说主编.有色冶金原理[M].冶金工业出版社,1984,11
    [59]韩德刚,高执棣编著.化学热力学[M].北京:高等教育出版社,1997
    [60]McGlashan M L著.化学热力学[M].刘天和,刘芸译.北京:中国计量出版社,1989
    [61]穆尔J W,皮尔逊R G著.化学动力学和历程[M].均相化学反应的研究.第二版,孙承谔,王之朴等译.北京科学出版社,1987
    [62]周祖康等.胶体化学基础[M].北京:北京大学出版社,1996
    [63]黄希梏.钢铁冶金原理[M].冶金工业出版社,1981
    [64]魏寿昆.冶金过程热力学[M].上海科学技术出版社,1980
    [65]傅崇说.冶金溶液热力学原理计算[M].冶金工业出版社,1979
    [66]傅崇说.重金属硫化物在水溶解中反应的热力学分析[J].中南矿冶学院学报,1962
    [67]黎海雁.化学选矿[M].中南工业大学出版社,1986.06
    [68]黄礼煌.化学选矿[M].冶金工业出版社,1990
    [69]全宏东.矿物化学处理[M].冶金工业出版社,1986.06
    [70]莫鼎成.冶金动力学[M].冶金工业出版社,1987,07
    [71]曹异生.中国有色金属二次资源再生利用[J].世界有色金属,2006(5):15-18
    [72]Feng Chengyou, Qi Feng, Zhang Dequan, et,al. China's First Independent Cobalt Deposit and its Metallogenic Mechanism:Evidence from Fluid Inclusions and Isotopic Geochemistry[J]. Acta geologica sinica-ernglish edition,2011,85(6):1403-1408
    [73]Senanayake G, Childs J., Akerstrom B. D. et,al. Reductive acid leaching of laterite and metal oxides-A review with new data for Fe(Ni,Co)OOH and a limonitic ore[J]. Hydrometallurgy,2011,110(1-4):13-32
    [74]Kaya S., Topkaya Y. A. High pressure acid leaching of a refractory lateritic nickel ore [J]. Minerals engineering,2011,24(11):1188-1197
    [75]Fan Chuanlin, Zhai Xiujing; Fu Yan, et,al. Kinetics of selective chlorination of pre-reduced limonitic nickel laterite using hydrogen chloride [J].Minerals engineering,2011, 24(9):1016-1021
    [76]Lund K.; Tysdal R. G., Evans K. V., et,al. Economic geology [J]. Interanatonal joural of minerals metallurgy and materials,2011,18(3):260-269
    [77]Yang Congren, Qin Wenqing, Lai Shaoshi, et,al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore [J]. Ydrometallurgy,2011,106(1-2):32-37
    [78]Guo Qiang; Qu Jingkui, Qi Tao, et,al. Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate [J].Minerals engineering, 2011,24(8):825-832
    [79]Luo Wei, Wang Dianzuo, Feng Qiming, et,al. Improved nickel and cobalt recovery from nickeliferous laterites in acidic fluoride media [J].Mineals & metallurgical processing, 2010,27(3):117-123
    [80]Katsiapi A.; Tsakiridis P. E.; Oustadakis P.; et,al. Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching [J].Minerals engineering,2010,23(8):643-651
    [81]Tretiakova Irina G., Borisenko Alexander S, Naumov Evgeniy A., et, al. The hydrothermal cobalt deposits of the Altay-Sayan fold area (Russia):age and relationships with magmatism [J].Smart science exploration and mining,2010(1):297-299
    [82]Ito Mayumi; Tsunekawa Masami, Yamaguchi Eiji, et,al. Estimation of degree of liberation in a coarse crushed product of cobalt-rich ferromanganese crust/nodules and its gravity separation [J]. Interanatonal joural of minerals metallurgy and materials,2008, 87(3-4):100-105
    [83]Sahu SK; Agrawal A, Pandey BD, et,al. Recovery of copper, nickel and cobalt from the leach liquor of a sulphide concentrate by solvent extraction [J].Minerals engineering,2004,17(7-8):949-951
    [84]Moskalyk RR, Alfantazi AM. Review of present cobalt recovery practice [J]. Mineals & metallurgical processing,2000,17(4):205-216
    [85]Mainza AN, Simukanga S, Witika LK. Effect of different collector dosage rates on cobalt segregation [J]. Effect of different collector dose rates on cobalt segregation,1999, 12(9):1033-1040
    [86]Hawkins MJ.Recovring cobalt from primary and secondary resources [J].Jom-jouanal of the minerals metals & materials society,1998,50(10):46-50
    [87]Liu Wan-rong, Li Xin-hai, Hu Qi-yang, et,al. Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites [J].Transaction of nonferrous metals society of china,2010,20(1):S82-S86
    [88]Sargsyan L. Ye., Hovhannisyan A. M. Activated Sulfating Roasting of the Chalcopyrite Concentrate for Sulfuric-Acid Leaching [J].Russian journal of non-ferrous metals,2010, 51(5):386-388
    [89]Pandher R., Utigard T. Roasting of Nickel Concentrates [J]. Metallurgical and meterials transactions processing science,2010,41(4):780-789
    [90]Song Jingjing, Zhu Guocai, Zhang Ping, et,al. Reduction of low-grade manganese oxide ore by biomass roasting [J].Acta metallurgical sinica-english letters,2010, 23(3):223-229
    [91]Guo Xueyi, Li Dong, Park Kyung-Ho, et,al. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process [J].Hydrometallurgy, 2009,99(3-4):144-150
    [92]Kim Byung-Su, Kim Eun-Young, Kim Chi-Kwon, et,al. Kinetics of oxidative roasting of complex copper concentrate [J].Materilas transaction,2008,19(5):1192-1198
    [93]Zhu Guocai, Zheng Mingdan, Fan Guanglong, et,al. Recovering indium with sulfating roasting from copper-smelting ash[J]. Rare metals,2007,26(5):488-491
    [94]Bulut G. Recovery of copper and cobalt from ancient slag [J].Waste management & research,2006,24(2):118-124
    [95]Kar BB, Swamy YV.Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting [J].Minerlas engineering,2000,13(14-15):1635-1640
    [96]Ziyadanogullari B. Recovery of copper and cobalt from concentrate and converter slag [J]. Separation science and technology,2000,35(12):1963-1971
    [97]Aydin F, Yavuz O, Ziyadanogullari B, et,al. Recovery of copper, cobalt, nickel, cadmium, zinc and bismuth from electrolytic copper solution [J].Turkish journal of chemistry,1998,22(2):149-154
    [98]北京矿冶研究总院;吉林长白山钴业有限公司.一种硫化铜钴矿中提取钻的方法:中国,CN200910238457.5[P].2009.11.20
    [99]中南大学.一种低品位氧化铜钴矿中铜、钴镍的分离提取方法:中国,CN200910042830.X[P].2009.03.11
    [100]云南嘉明科技实业有限公司.一种从氧化铜钴矿中提铜钴镍的方法:中国,CN200810058787.1[P].2008.08.04
    [101]北京有色金属研究总院.含砷硫化镍钴矿的生物堆浸工艺:中国,CN03137339.9[P].2003.06.18
    [102]昆明理工大学.一种硅酸镍矿回转窑直接还原制备镍铁的方法:中国,CN200910218209.4[P].2009.11.18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700