用户名: 密码: 验证码:
从钴废料回收钴产品
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了从钴锂膜废料和硬质合金处理渣中回收生产氧化钴、氧化亚钴、超细钴粉等钴产品。
     依据钴锂膜废料的组成特点,采用碱溶除铝、酸浸出、喷淋沉铁铝之后,溶液直接草酸铵沉钴,再煅烧制取钴氧化物产品工艺处理钴锂膜废料。通过实验室条件试验,确定最佳条件:液固比4:1、温度80℃、时间1h、n(NaOH)/3n(渣中Al)=1.10,在此最佳条件下,85%以上的铝进入溶液,钴浸出率>99.5%,钴直收率为91.5%,总回收率95.4%,钴氧化物符合国标Y类产品要求,钴粉符合硬质合金生产标准
     以钴锂膜废料处理过程中生产的COCl_2溶液制取的Co(OH)_2为原料,用乙二醇为溶剂和还原剂,制得了分散性很好,球形超细钴粉。NaOH浓度的增加,能够大大提高反应速度。单位体积乙二醇中的Co(OH)_2加入量及添加剂的用量,均对钴粉的的粒度与形貌产生一定的影响。在Co(OH)_2 150g/L、NaOH用量40g/L及30g表面活性剂/L乙二醇,194℃回流2h的条件下,制得的钴粉的粒度分析表明粒度分布较窄,平均粒径为0.88μm,比表面积为2.705m~2/g。
In this article the productions, such as cobalt oxide, cobaltous oxide and ultrafine cobalt powder, were recovered from the scraps of cobalt and lithium film and residues of treating hard alloys.
    According to the constituent characteristics of the scraps of cobalt and lithium film, the flow sheet includes these steps, such as removing aluminum by alkali solution, leaching cobalt by hydrochloric acid, removing aluminous, cupric and ferric, depositing cobalt with ammonium oxalate and calcining the cobalt oxalate. After laboratory experiments studying, the optimum conditions of every process were determined. In the processing of removing the aluminum by alkali solution, when the
    optimum conditions were ratio of liquid and solid 4:1, temperature 80℃,
    reacting time 1 hour, nNaOH/3nAl(in residues) 1-1. more than 85% Al enter into the solution. In order to reducing the consumption of hydrochloric acid using in leaching and of alkali using in neutralizing, two steps of leaching were used. At the first step the optimum conditions were hydrochloric
    acid 2.4~2.5mol/L , temperature 80℃, reacting time 2 hours. Through
    increasing the terminal hydrochloric acid concentration of the second decomposition step, the cobalt content in the residues is lower than 1.0% and leaching ratio is more than 99.5%. In the process of removing Fe, Al
    by spray-pour method, temperature was more than 80℃ and terminal pH
    value was controlled ranging from 5.5 to 6.0. The content of Fe, Al in the purified solution was lower than 0.008g/L and 0.014g/L respectively. The cobalt content in the purified residues was lower than 1.0% averagely and the direct and sum recovery is 91.5% and 95.4% respectively. The quality of cobalt oxide accords with the requirement of grade Y of national standards.
    The flow sheet includes roasting, leaching, depositing Fe and Cu by spray-pour method, directly depositing cobalt by ammonium oxalate and calcining. The product of grade T1 was recycled from the residues of treating hard alloys. According to the characteristic of residues that cobalt exists in Co9S8 form, sodium nitrate is used as oxidant. The optimum
    
    
    
    conditions of roasting are W(NaNO3)/W(residues) 0.8 times, temperature 750℃, time 2.5 hours. The spray-pour method is used during the process
    of purification, which avoids forming the iron hydroxide colloid. The terminal pH value was controlled ranging from 5.5 to 6.0, some impurities, such as Fe3+ and Cu2+, can be removed thoroughly. The average cobalt content in the purified residues is about 1.0% and the direct and sum recovery is 90.15% and 92.78% respectively. The recovery of tantalum is 85% and the tantalum content in residues is more than 15%.
    Ultrafine, monodispersed, spherical cobalt powder has been fabricated by reducing cobalt hydroxide with glycol. The basic material of cobalt hydroxide was produced by depositing cobalt chloride solution which is recycled from the scraps of cobalt and lithium film. It was investigated that the increasing of NaOH concentration speeds the reaction rate greatly. The concentration of cobalt hydroxide and surfactant bring about effects on the morphology and particle size.
引文
[01]乐颂光.钴冶金.北京:冶金工业出版社,1987
    [02]文德荣,草酸钴和氧化钴.江西冶金,1997,17(5):54~56
    [03]孙晓刚.世界钴资源的分布和应用.世界有色金属,2000,(1):38~41
    [04]L Soriano, M Abbate, A Fernandes, et al. Oxidation state and size effects in CoO nanoparticles. Journal of Physical Chemistry B, 1999, 103:6679~6682
    [05]Kameswari S. Preparation and characterization of fine cobalt metal and oxide Powders. PMAI News letters, 19784(4):16~21
    [06]刘大星.国内外钴的生产、消费和技术进展.有色冶炼,2000,29(5):4~9
    [07]刘大星.国内外钴冶金技术进展市场.有色金属,1997,26(增刊):1~7
    [08]崔乃良.我国钴生产概述.有色冶炼.1996,25(6)
    [09]《世界镍钴生产公司及厂家》编委会.世界镍钴生产公司及厂家.北京:冶金工业出版社,2000:141~180
    [10]Hanf N W, Schmidt C G. Roasting d leaching of witwatersrand pyrite concentrates. Journal of The South African Institute of Mining and Metallurgy, 1979, 79(13): 365~371
    [11]Anand S, Das R P, Jena P K. Sulphuric acid pressure leaching of Cu-Ni-Co matte obtained from copper converter slag-optimisation through factorial design. Hydrometallurgy, 1991, 26(3): 379~388
    [12]Pandey B D, Bagehi D, Kumar V, et al. Pressure sulpuric acid leaching of a sulphide concentrate to recover copper, nickel and cobalt. Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 2002, 111(May/Aug.): 106~109
    [13]Vu C, Han K N, Lawson F. Leaching behavior of cobaltous and cobalto-cobaltic oxidein ammonia and acid solutions. Hydrometallurgy, 1980, 6(1-2): 75~87
    [14]Jana R K, Akerkar D D. Studies of the metal-ammonia-carbon dioxide-water system in extraction metallurgy of polymetallic sea nodules. Hydrometallurgy, 1989, 22(3): 363~378
    [15]Lawrence R W, Poulin R, Kalin M, et al. The potential biotechnology in the mining industry.Mineral processing and extractive Metallurgy review,1998,19(1): 5
    [16]汪夏燕,李朋恺,易雯.废触媒回收钴生产氧化钴工艺的研究.无机盐工业,
    
    1998,30(5):33~34
    [17]林河成.从钴催化剂废料中回收氧化钴的研究.世界有色金属,1998,(9):19~22
    [18]苏念英,崔嘉麟.废金刚石刀具中钴的回收利用.广西化工,1997,26(3):56~58
    [19]李景国,叶任宇,张忠诚.电化学法分解硬质合金废料制备氧化钴.山东化工,1994,(2):9~11
    [20]柴立元,钟海云.电解法回收废旧硬质合金.稀有金属与硬质合金,1996,(9):38~42
    [21]赵庭凯,唐谟堂.湿法炼锌净化钴渣新处理工艺.中南工业大学学报(自然科学版),2001,32(4):371~75
    [22]Yan Huang, Chunshan Zhou. Hydrometallurgical process for recovery of cobalt from zinc plant residue. Hydrometallurgy, 2002, 63(3): 225~234
    [23]李新怀,陈泽民.含钴锌渣的回收利用.湖北化工,1999,(3):27~28
    [24]S Sakomoto, M Yoshinaka, K Hirota, et al. Fabrication, mechanical properities and electrical conductivity of Co_3O_4 ceramics. Journal of American Ceramic Society. 1997, 80:267~280
    [25]R Van Zee, Y Hamrick, S Li, et al. Cobalt, Rhodium and Iridium Dioxide Molecules and walsh—type rules. Journal of Physical Chemistry 1992, 96: 7247~7249
    [26]D Chen Yih-wen, N N Rommel. Electrolyte electroreflectanced single-crystall CdIn_2Se_4 in a photoelectrochemlcal solar cell. Journal of electrochemistry Society. 1984, 131(4):731~733
    [27]M H Tikkanen, A Taskinen, P Taskinen. Characteristic properties of cobalt powder suitable for hard metal production. Powder Metallurgy, 1975, 18(36): 259~282
    [28]Mustaph EI Baydi, Gerard Poillerat, Jean-Luc Rehspringer, et al. A Sol-Gel route for the preparation of Co_3O_4 catalyst for oxygen electrocatalysis in alkaline medium. Journal of Solid State Chemisty, 1994, 109:281~288
    [29]关荐伊,赵元,侯士法.CoO纳米粒子的制备及催化性能粗探.河北师范大学学报(自然科学版),1999,23(1):90~93
    [30]Guiliana Funanetto, Leonardo F. Precipitation of spherical Co_3O_4 particles. Journal of Colloid and Interface Science, 1995, 170:169~175
    [31]Yonghong Ni, Xuewu Ge, Zhicheng Zhang, et al. A simple reduction~oxidation route to prepare Co_3O_4 nanocrystals. Materials Research Bulletin 2000, 36:
    
    2383~2387
    [32]H C Zeng, Y Y Ling. Synthsis of Co_3O_4 Spinel at ambient conditions. Journal of Materials Research, 2000, 15(6): 1250~1253
    [33]Ronalds Sapieszko, Egon Matijevic. Preparation of well defined colloidal particles by thermal decomposition of metal chelates Ⅱ cobalt and nickel. Corrosion-Nace, 1980, 36(10): 522~530
    [34]B Basavalingu, J A K Tareen, G T Bhanadage. Thermodynamic properties of Co(OH)_2 from hydrothermal equilibrium in cobalt oxide system. Journal of Materials Science Letters, 1986, (5): 1227~1229
    [35]P Jeevanandam, Yu Koltypin, A Gedanken, et al. Synthesis of α-cobalt(Ⅱ) hydroxide using ultrasound radiation. Journal of Materials Chemistry, 2000, 10: 511~514
    [36]Biljann Pejova, Ardijana Isahi, Metodija Najdoski, et al. Fabrication and characterization of nanocrystalline cobalt oxide thin film. Materials Research Bulletin, 2001, 36:519~522
    [37]T Ishikawa, E Matijevie. Formation of uniform particles of cobalt compounds and cobalt. Colloid Polymer Science. 1991,269:179~286
    [38]R N Singh, J F Koeing, G Poillerat, et al. Electrochemical studies on protective thinCo_3O_4and NiCo_2O_4 films prepared on titanium by spray pyrolysis for oxygen evolution. Journal of Electrochemistry Society. 1990, 173: 1408~1413
    [39]Eiji Fujll, Hideo Torii, Atsuhi Tomozawa, et al. Preparation of cobalt oxide films by plasma-enlaaneed metalorganic chemical vapor deposition. Journal of Materials Science, 1995, (30):6013~6018
    [40]GB6518-86.氧化钴.1986,6,23
    [41]1988, (9): 60
    [42]国外硬质合金编写组.国外硬质合金.北京:冶金工业出版社,1976:359
    [43]郭志猛,宋月清.超硬材料与工具.北京:冶金工业出版社,1996
    [44]Figlarz M.制备金属轱粉新工艺.刘金山译.北京:冶金工业出版社,1985
    [45]李维,赵秦生.真空热分解法制备硬质合金用钴粉.中国有色金属学报,1998,8(1):101~105
    
    
    [46]李维,赵秦生.纳米钴粉的特性研究.中南工业大学学报(自然科学版),1998,25(5):461~463
    [47]Evans D J I. Production of metals by gaseous reduction from solution—Process and chemistry. Advances in extractive Metallurgy, London: Ins. Min. Metall., 1968:631~640
    [48]Hydrometallurgically Processing Fine Cobalt. Metal Powder Report, 1998,51(12): 18~22
    [49]喻克宁,毛铭华,梁焕珍等.Co(OH)_2碱性浆化氢还原制备超细Co粉.过程工程学报,2001,1(1):62~65
    [50]Fievet F, Langier J P. Homogeneous and Heterogeneous Nucleations In the Polyol Process for the Preparation of Micro and Submicro Size Metal Particles. Solid State Ionics, 1989, (32/33): 98~103
    [51]M Figlarz, F Fievet. Process for the reduction of metallic compounds by polyol, and metallic powders obtained by this process. US4539041, 1985
    [52]Viau G, Tongguzzo P, Pierrard A, et al. Heterogeneous nucleation and growth of metal nanoparticles in polyols[J]. Scripta Materialia,2001, 44(8/9):2263~2267
    [53]赵振声,吴明忠,何华辉.多元醇还原法制备高纯度金属磁粉.磁性材料及器件,1998,29(3):
    [54]郭炳琨,李新海,杨松清.化学电源,长沙:中南工业大学出版社,2000
    [55]闵小波,柴立元,刘强,等.电池用钴基合金废料中有价金属的综合回收.矿产保护与利用,1999,(2):52~54
    [56]廖春发.从含铝锂钴废料中回收氧化钴工艺研究.南方冶金学院学报,199,20(3):181~184
    [57]邓日章.广西宣武锌锰矿在盐酸氯化物体系中锌、锰同时浸出—电解的理论和新工艺研究[D],长沙:中南工业大学冶金系,1991
    [58]彭崇慧,冯建章,张锡瑜.定量化学分析简明教程.北京:北京大学出版社,1990
    [59]林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用.有色金属(冶炼部分),1996,(5):4~6
    [60]有色金属提取手册.稀有高熔点金属.北京:冶金工业出版社,1999,104~110
    [61]姜文伟,高晋,普崇恩,等.硫酸钠熔炼法处理废硬质合金工艺中钴的回收.稀有金属与硬质合金.2000,(141):22~25
    [62]潘泽强,杨声海.从钴锂膜废料生产钴产品.稀有金属.2001,(1):39~42
    [63]林河成.从钴催化剂废料中回收氧化钴的研究.世界有色金属.1998,(9):
    
    19~21
    [64]李洪桂.稀有金属冶金学.北京:冶金工业出版社,990
    [65]何焕华,蔡乔方.中国钴镍冶金.北京:冶金工业出版社,2000,312
    [66]Lamer V K, Dineger R H. Journal of American Ceramic Society, 1950, 72:4847
    [67]Tadao Sugimoto. Preparation of Mono-dispersed colloidal particles. Advances in Colloidal and Interface Science, 1987, 28:65~108
    [68]Kahlaeit M. Ripening Of precipitation. Advances in Colloidal and Interface Science, 1975, 5:1~35
    [69]徐燕莉.表面活性剂的功能.北京:化学工业出版社,2000:208
    [70]左藤 T,鲁赫 R T.聚合物吸附对胶态分散体稳定性的影响.北京:科学出版社,1988:32~54
    [71]陈爱成,孙世刚.乙二醇在铂电极上吸附和氧化过程的现场FTIR反射光谱研究(Ⅱ)——碱性介质.高等学校化学学报,1994,15(4):548~551
    [72]陈宗淇.Smoluchowski粒子碰撞凝并理论.北京:高等教育出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700