用户名: 密码: 验证码:
TAT-PDX1蛋白诱导的人胎肝间充质干细胞分化为胰岛β样细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨人胎肝来源的间充质干细胞(mesenchymal stem cells derived fromhuman fetal liver,hFLMSCs)的分离和特性;用转录子TAT-PDX1(trans activitortranscription-pancreatic duodenal homeoboxl)蛋白诱导其分化为胰岛β样细胞能力,以及分化细胞表达胰岛素定性和治疗NOD/SCID鼠糖尿病的效果。
     方法:
     取12-20周流产胎儿肝脏,剪切、吹打胎肝组织获取肝细胞悬液,通过二步离心收集肝非实质细胞,再用羟乙基淀粉沉淀红细胞,从而使有核细胞得到富集。接种、培养上述细胞,利用细胞差速贴壁生长的特性纯化hFLMSCs。流式细胞仪检测hFLMSCs的细胞周期和表面标志,对P10代及冻存半年后复苏的hFLMSCs进行染色体分析,用经典方法诱导hFLMSCs向脂肪细胞、成骨细胞分化。
     用TAT-PDX1蛋白为主的方案体外诱导P3 hFLMSCs分化为胰岛β细胞,观察细胞形态变化,用RT-PCR方法检测基因的表达情况,用双硫腙染色,免疫荧光染色检测胰岛素、C-肽的表达。用化学发光法测定胰岛素累积分泌量并用胰岛素释放实验检测分化的细胞对葡萄糖的反应性;并用Western blot的方法检测胰岛素的表达情况。
     用STZ腹腔注射制作NOD/SCID鼠糖尿病模型,并将诱导后的细胞移植到糖尿病鼠左肾包膜下,动态观察血糖变化及糖尿病症状变化情况,测定移植前后小鼠胰岛素、C-肽水平,并行腹腔糖耐量试验检测移植细胞对血糖变化的反应情况。
     对血糖降至正常的小鼠,摘除其左肾以观察血糖是否反弹,对摘除的小鼠的肾脏进行免疫组化检测,以及用RT-PCR的方法检测胰岛素表达相关基因的情况。
     结果:
     从人胎儿肝脏中分离、纯化得到梭形贴壁的MSCs;P3代hFLMSCs均有90%以上处于GO/GI期,表达CD90、CD105和CD166,不表达CD14、CD34、CD45以及AFP、HLA-DR等;在多次传代(P10代)及冻存半年后复苏仍保持正常核型。在常规诱导条件下,hFLMSCs可分化为成脂细胞、成骨细胞等。
     用TAT-PDX1蛋白为主的方案体外诱导后,细胞快速变成圆形或椭圆形,并聚集形成越来越多的胰岛样细胞团;RT-PCR结果显示胰岛样细胞团表达胰岛相关基因,如Neuro D、Nkx2.2、Nkx6.1、Pax4、Pax6、Isl-1和PDX1等;经双硫腙染色后呈现棕红色阳性反应;激光共聚焦显微镜检测细胞团中胰岛素、C-肽等胰岛特异性蛋白表达阳性;化学发光法测得培养液上清中胰岛素累积分泌量逐渐增加,而且随着时间延长分泌量维持在较高水平;胰岛素释放实验表明胰岛样细胞团具有一定的糖反应性;Western blot证实诱导分化的胰岛样细胞团蛋白提取物中有胰岛素的表达。
     用STZ腹腔注射制作NOD/SCID鼠糖尿病模型成模率高,移植胰岛样细胞团到糖尿病小鼠的肾包膜下,可观察到小鼠的血糖逐渐下降,而非移植组糖尿病小鼠则持续高血糖;移植前后小鼠的胰岛素、C-肽水平有显著性差异,腹腔糖耐量试验检测到移植细胞对血糖变化有反应。
     摘除血糖降至正常的小鼠左肾,可见血糖出现反弹,再次升高;该鼠肾被膜下移植物的免疫组织化学染色可以看到胰岛素阳性细胞。取小鼠左肾,用RT-PCR的方法检测到人胰岛素相关基因(Nkx2.2、Nkx6.1、Pax6、Isl-1 and PDX1)的表达。
     结论:
     人12-20周流产胎儿肝脏含有MSCs,能在体外培养和扩增,hFLMSCs强表达CD90、CD105和CD166,不表达CD14、CD34、CD45以及AFP、HLA-DR等;hFLMSCs具有很强的多向分化能力,且免疫原性弱,能长时间保持正常核型,可以作为人类组织工程和再生医学研究的种子细胞。用TAT-PDX1蛋白为主的方案体外诱导hFLMSCs能分化为胰岛β样细胞并稳定表达胰岛素;移植到糖尿病鼠肾包膜下,能快速降低血糖水平;取出移植物,血糖水平再次升高。
Objectives
     To study the basic biological characteristics of the mesenchymal stem cells derived from human fetal liver(hFLMSCs),the ability of TAT-PDX1 protein to induce hFLMSC_s to differentiate into isletβ-like cells in vitro,and the therapeutic effects of these cells when transplanted into the renal subcapsular space of NOD/SCID diabetic mice.
     Methods
     Cells were isolated from the aborted fetuses of 12-20 week's gestation.The hepatic tissue was cut,and then pipetted to obtain the hepatocyte suspension.The non-parenchyma mesenchymal cells were collected through two-step centrifugation, and then the red blood cells were removed by hydroxyethyl starch sedimentation to enrich the nuclear cells.
     The cells in suspension were inoculated and cultured,and MSC_s purification was done by adhesive screening method(because different kinds of cells have the different adherence to the wall of culture flask).The cell cycle and surface markers of hFLMSC_s were identified using immunochemistry and flow cytometry.Karyotype analysis of hFL-MSC_s was made at passage 8 after recovery from cryopreservation for 6 months.The hFLMSC_s were induced by routine inducing protocols to differentiate toward adipocytes and osteoblastes.
     The hFLMSC_s were induced to differentiate toward isletβlike cells by TAT-PDX1 protein primarily in virto.Morphological change was observed under microscope.
     When the figures of the islet-like clusters changed,the expression of islet cells related genes were detected by RT-PCR,and the islet-specific proteins were tested by immumofluorescent staining.Dithizone(DTZ) staining was performed to identify the Zinc in the islet-like clusters.In addition,the quantity of insulin secretion and intracellular insulin were examined by chemiluminescence immunoassay.The test of glucose-stimulated insulin release was made to evaluate the function of the islet-like clusters.Western blot was conducted to identify the secretion of insulin.
     A diabetic model in NOD/SCID mice was established by intraperitoneal injection of streptozotocin.Finally,the islet-like clusters were transplanted into the left renal subcapsular space of diabetic mice.Blood glucose levels were dynamic monitored after transplantation.The changes of diabetes symptoms were observed.
     The level of insulin and C-peptide was examineded before and after transplantation.The test of intraperitoneal glucose tolerance test was made to evaluate the function of the cells.The grafts from the left kidney of the diabetic mice were detected the expression of isletβcells related genes with immunohistochemistry and RT-PCR.
     Results
     The hFLMSC_s can be isolated and purified from human fetal liver.There is over 90%hFL-MSC_s of passage 3 in G0/G1 phase,hFLMSC_s expressed adhesion molecules of CD90、CD105and CD166,but not antigens of hematopoietic CD14、CD34 CD45,and not antigens such as AFP and HLA-DR.The hFLMSC_s showed normal karyotype at passage 10 after cryopreservation for six months.Exposure of hFLMSC_s to routine inductive agents resulted in morphological changes towards adipocytes,osteoblasts.
     When hFLMSC_s were induced by TAT-PDX1 protein primarily in virto,they changed quickly into round and oval shape and gathered more and more islet-like clusters.RT-PCR showed the islet-like clusters expressed islet-related genes including Neuro D、Nkx2.2、Nkx6.1、Pax4、Pax6、Isl-1 and PDX1.The islet-like clusters were stained crimson red by dithizone indicating the high zinc content in the cells.The immumofluorescence demonstrated that the islet-like clusters were positive for Insulin and C-peptide by Laser scanning confocal microscope.Chemiluminescence immunoassay demonstrated that the insulin accumulation quantity of secretion was increased and maintained at a higher level with the time.
     The test of glucose-simulated insulin release showed the islet-like clusters could elevate the insulin secretion upon glucose challenge.The results of Western blot showed that insulin were present in the protein extraction of the islet-like clusters.
     NOD/SCID mice were easily into models of diabetes mellitus by intraperitoneal injection of streptozotocin.After the islet-like clusters were transpanted into the left renal subcapsular space of diabetic mice,the blood glucose levels decrease gradually, but control animals that did not receive transplants exhibited persistent hyperglycemia.
     There was a significant difference in the level of insulin and C-peptide before and after transplantation.The test of intraperitoneal glucose tolerance showed these cells had the response to glucose.When the left kidneys that contain the transplanted cells were removed,the hyperglycemia reappeared.Immunohistochemistry staining showed the transplanted cells under the kidny capsule were positive for insulin and C-peptide.RT-PCR showed the transplanted cells under the kidny capsule expressed human islet-related genes including Nkx2.2、Nkx6.1、Pax6、Isl-1 and PDX1.
     Concusions
     The MSCs from the aborted fetal liver of 12-20 week's gestation can be cultured and expanded in vitro,hFLMSCs strongly expressed CD90,CD105,CD166,but no CD14,CD45,CD34,HLA-DR and AFP was found.The hFLMSC_s have the ability to differentiate into the derivative cell types,moreover,they have a lower immunogenic activity and A long time to maintain a normal karyotype,so provide the ideal source for tissue engineering and cellular therapeutics.The hFLMSC_s can be induced to differentiate into isletβ-like cells with TAT-PDX1 protein primarily and have the ability of Stable secretion of insulin in vitro.When these cells were transplanted into the left renal subcapsular space of diabetic mice,the blood glucose levels decrease gradually and steadily.The grafts cells removed,the hyperglycemia reappeared.
引文
1.Ashizawa S,Brunicardi FC,Wang XP.PDX-1 and the pancreas[J].Pancreas,2004,28 (2):109-120.
    2.Friedenstein AJ,Gorskaja J F,Kulagina NN,et al.Fibroblast precursors in normal and irradiated mouse hematopictic organs[J].Exp Haematol,1976,4;267-274.
    3.Caplan AI.Mesenchymal stem cells[J].J Orthop Res 1991;9:641-650.
    4.Conget PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J].J Cell Physiol,1999,181(1):67-73.
    5.Chegini N,Rong H,Bennett B,et al.Peritoneal fluid cytokine and eicosanoid levels and their relation to the incidence of peritoneal adhesion[J].J Soc Gynecol Invest,1999,6(3):153.
    6.Deans RJ,Moseley AB.Mesenchymal stem cells:biology and potential clinical uses[J].Exp Hematol.2000;28:875-884.
    7.Erices A,Conget PA,Mingue JJ.Mesenchymal progenitor cells in human umbilical cord blood[J].Br J Haematology.2000;109:235-242.
    8.Lee OK,Kuo TK,Cheng WM,et al.Isolation of multipotent mesenchymal stem cells from umbilical cord blood[J].Blood.2004;103:1669-1675.
    9.Sanchez Ramos J,Song S,Cardozo Pelae F,et al.Adult bone marrow stromal cells differentiate into neuroal cells in vitro[J].Exp Neurol,2000,164 (2):247-256.
    10.Chen LB,Jiang XB,Yang L.Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells[J].World J Gastroenterol.2004;10:3016-3020.
    11.Potian JA,Aviv H,Ponzio NM,et al.Veto-like activity of mesenchymal stem cells:functional discrimination between cellular responses to alloantigens and recall antigens[J].J Immunol.2003;171:3426-3434.
    12.Le-Blanc K,Rasmusson I,Gotherstrom C,et al.Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor)and CD38 on phytohaemagglutinin-activated lymphocytes [J].Scand J Immunol.2004;60: 307-315.
    13.Blair A,Thomas DB.The proliferative status of haematopoietic progenitor cells in the developing murine liver and adult bone marrow[J].J Anat,1998,193:443-447.
    14.Massimo S,Prolo O,Elena B,et al.Long-term cultures of human fetal liver cells:a three dimensional expenmental model for morntonng liver tissue development [J].J Hepatol,1998,28(3):480-490.
    15.Caplan AI.The mesengenic process[J].Clin Plast Surg,1994,21(3):429-435.
    16.Cain GR,Champlin RE.Long-term complete chimerism and stable hematopoiesis in beagles after fetal liver hematopoietic stem cell transplantation [J].Am J.Vet Res,1989,50(8):1282-1284.
    17.Cain G,Stitzel K,Gale R,Champlin R.Transplantation of DLA-compatible and incompatible fetal liver hematopoietic stem cells from fetal liver,cord blood,and adult marrow[J].Exp Hematol,1999;27(9):1481-1427.
    18.巩秋红,李光伟.2005北京国际糖尿病预防高层论坛纪要[J].中华内分泌代谢杂志,2006,22(1):90-91.
    19.Bertuzzi F,Marzorati S,Secchi A.Islet cell transplantation[J].Curt Mol Med,2006,6(4):369-374.
    20.Scharp DW,Lacy PE,Santiago JV,et al.Insulin independence after islet transplantation into type i diabetic patient[J].Diabetes,1990,39(4):515-518.
    21.Brandhorst H,Brandhorst D,Brendel MD,et al.Assessment of intracellular insulin content during all steps of human islet isolation procedure[J].Cell Transplant,1998,7(5):489-495.
    22.Shapiro AM,Lakey JR,Ryan EA,et al.Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J].N Engl J Med,2000,343(4):230-238.
    23.Shapiro AM,Ricordi C,Hering B.Edmonton's islet success has indeed been replicated elsewhere[J].Lancet,2003,362(9391):1242.
    24.Luzi L,Perseghin G,Brendel MD,et al.Metabolic effects of restoring partial beta-cell function after isl et allotransplantation in type Ⅰ diabetic patients[J].Diabetes,2001,50(2):277-282.
    25.Fiorina P,Folli F,Zerbini G,et al.Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants [J].J Am Soc Nephrol,2003,14(8):2150-2158.
    26.Fiorina P,Gremizzi C,Maffi P,et al.Islet transplantation is associated with an improvement of cardiovascular function in type 1 diabetic kidney transplant patients[J].Diabetes Care,2005,28(6):1358-1365.
    27.Burns CJ,Persaud SJ,Jones PM.Stem cell therapy for diabetes:do we need to make beta cells? [J]J Endocrinol,2004,183(3):437-443.
    28.Fernandez Vina R,Andrin O,Saslavsky J,et al.Increase of‘c’peptide level in type 1 diabetics patients after direct pancreas implant by endovascular way of autologous adult mononuclear CD34+CD38(-)cells (Teceldiab 2 study).4th International Society for Stem Cell Research Annual Meeting.Toronto,2006:Thu-381.
    29.Fernandez Vina R,Saslavsky J,Andrin O,et al.First word reported data from Argentina of implant and cellular therapy with autologous adult stemcells in type 2 diabetic patients (Teceldiar study 1).4th International Society for Stem Cell Research Annual Meeting.Toronto,2006:Thu-380.
    30.Shi Y,Hou L,Tang F,et al.Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid[J].Stem Cells,2005,23(5):656-662.
    31.Ramiya VK,Maraist M,Arfors KE,et al.Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells[J].Nat Med,2000,6(3):278-282.
    32.Yang L,Li S,Hatch H,et al.In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells[J].Proc Natl Acad Sci U S A,2002,99(12):8078-8083.
    33.Hess D,Li L,Martin M,et al.Bone marrow-derived stem cells initiate pancreatic regeneration[J].Nat Biotechnol,2003,21(7):763-770.
    34.Ruhnke M,Ungefroren H,Nussler A,et al.Differentiation of in vitromodified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells[J].Gastroenterology,2005,128(7):1774-1786.
    35.Moriscot C,de Fraipont F,Richard MJ,et al.Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro[J].Stem Cells,2005,23(4):594-603.
    36.李艳华,张锐,王韫芳,赵连旭,陈琳,岳文,裴雪涛.腺病毒载体介导pdx-1在骨髓间充质干细胞中的表达[J].生物化学与生物物理进展,2004,31(6):538-542.
    37.Zalzman M,Gupta S,Gift RK,et al.Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells[J].Proc Natl Acad Sci USA,2003,100(12):7253-7258.
    38.Bayley H.Protein therapy-delivery guaranteed[J].Nat Biotech no1,1999,17(11):1066-1067.
    39.Green M,Loewenstein PM.Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans activator protein[J].Cell,1988,55(6):1179-1188.
    40.Frankel AD,Pabo CO.Cellular uptake of the tat protein from human immunodeficiency virus[J].Cell,1988,55(6):1189-1193.
    41.Vives E,Brodin P,Lebleu B.Atruncated HIV-1 Tat protein basic Domain rapidly translocates through the plasma membrane and accumulates in the nucleus[J].J Biol Chem,1997,272(25):16010-16017.
    42.Kerkis A,Hayashi MA,Yamane T,et al.Properties of cell penetrating peptides (CPPs)[J].IUBMB Life,2006,58(1):7-13.
    43.Lindgren M,Hallbrink M,Prochiantz A,et al.Cell penetrating peptides[J].Trends Pharmacol Sci,2000,21(3):99-103.
    44.Mae M,Langel U.Cell penetrating peptides as vectors for peptide,protein and oligo nucleotide delivery[J].Curr Opin Phamacol,2006,6(5):509-514.
    45.Elliott G,O'Hare P.Intercellular trafficking and protein delivery by a herpes virus structural protein[J].Cell,1997,88(2):223-233.
    46.Lundberg M,Johansson M.Is VP22 nuclear homing an artifact?[J].Nat Biotechnol,2001,19(8):713-714.
    47.Derossi D,Joliot AH,Chassaing G,et al.The third helix of the Anteunapedia homeodomain translocates through biological membranes[J].J Biol Chem,1994,269(14):10444-10450.
    48.Console S,Marty C,Garcia-Echeverria C,et al.Antennapedia and HIV transactivator of transcription(TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans[J].J Biol Chem,2003,278(37):35109-35114.
    49.Derossi D,Calvet S,Trembleau A,et al.Cell internalization of the third helix of the Antenapedia homeodomain is receptor independent [J].J Biol Chem,1996,271(30):18188-18193.
    50.Ho A,Schwarze SR,Mermelstein SJ,et al.Synthetic protein transduction domains:enhanced transduction potential in vitro and in vivo [J].Cancer Res,2001,61(2):474-477.
    51.Derossi D,Joliot A H,Chassaing G,et al.The 3rd helix of the Antennapedia homeodomain translocates through biological-membranes[J].J Biol Chem,1994,269(14):10444-10450.
    52.Viv(?)s E,Brodin P,Lebleu B.A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus[J].J Biol Chem,1997,272(25):16010-16017.
    53.Elmquist A,Lindqren M,Bartfai T,et al.VE2cadherinderived cell-penetrating peptide,pVEC,with carrier functions[J].Exp Cell Res,2001,269(2):237-244.
    54.Nakase I,Takeuchi T,Tanaka G,et al.Methodological and cellular aspects that govern the internalization mechanisms of arginine-richcell-penetrating peptides[J].Adv Drug Deliv Rev,2008,60 (425):598-607.
    55.Gump J M,Dowdy S F.TAT transduction:the molecular mechanism and therapeutic prospects[J].Trends Mol Med,2007,13 (10):443-448.
    56.Morris MC,Vidal P,Chaloin L,et al.A new peptide vector for efficient delivery of oligonucleotides into mammalian cells[J].Nucleic Acids Res,1997,25(14):2730-2736.
    57.Shen H,Mai Jc,Qiu L,et al.Evaluation of peptide-mediated transduction in human CD34+ cells[J].Hum Gene Ther,2004,15(4):415-419.
    58.Spitere K Toulouse A O'suUivan DB,et al.TAT-PAX6 protein transduction in neural progenitor cells:a novel approach for generation of dopaminergic neurones in vitro[J].Brain Res.2008,1208(l):25-34.
    59.Kwon YD,Oh SK,Kim HS,et al.Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction[J].Mol Ther,2005,12(l):28-32.
    60.乔永萍,任磊,王林,等.穿膜肽Tat以脂筏介导的巨胞饮方式进入骨髓间充质干细胞[J].厦门大学学报(自然科学版),2008,47(2):235-239.
    61 Manceur AP,Audet J.Measurement of cell-penetrating peptide-mediated transduction of adult hematopoietic stem cells[J].Methods Mol Biol 2009;482(1):43-54.
    62.Melloul D,Marshak S,Cerasi E.Regulation of PDX1 gene expression[J].Diabetes,2002,51(suppl):S320-S326.
    63.Hui H,Perfetti R.Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood[J].Eur J Endocrinol,2002,146(2):129-141.
    64.Edlund H.Developmental biology of the pancreas[J].Diabetes,2001,50(suppl):S5-S9.
    65.Melloul D.Transcription factors in islet development and physiology:role of PDX-1 in beta-cell function.[J].NY Acad Sci,2004,1014(1):28-37.
    66.Sharma A,Zangen DH,Reitz P,et al.The homeodomain protein PDX1 increases after an early burst of proliferation during pancreatic regeneration[J].Diabetes,1999,48(3):507-513.
    67.Johnson JD,Ahmed NT,Luciani DS,et al.Increased islet apoptosis in PDX1~(+/-)mice[J].J Clin Invest,2003,111(8):1147-1160.
    68.Li Y,Cao X,LiLX,et al.beta-Cell PDX1 expression is essential for the glucoregulatory,proliferative,and cytoprotective actions of glucagons-like peptide-1[J].Diabetes,2005,54(2):482-491.
    69.Kawamori D,KajimotoY,Kaneto H,et al.Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX1through activation of c-Jun NH(2)-terminal kinase[J].Diabetes,2003,52(12):2896-2904.
    70.Harmon JS,Stein R,Robertson RP.Oxidative stress-mediated,post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells[J].J Biol Chem,2005,280(12):11107-11113.
    71.Zhao L,Guo M,Matsuoka TA,et al.The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription[J].J Biol Chem,2005,280(12): 11887-11894.
    72.Karlsson O,Edlund T,Moss JB,et al.A mutational analysis of the insulin gene transcription control region:expression in beta cells is dependent on two related sequences within the enhancer[J].Proc Natl Acad Sci USA,1987,84 (24):8819-8823.
    73.Kulkarni RN,Jhala US,Winnay JN,et al.PDX1 hap loinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance[J].J Clin Invest,2004,114 (6):828-836.
    74.Ferber S,Halkin A,Cohen H,et al.Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocininduced hyperglycemia[J].Nat Med,2000,6(5):568-572.
    75.Kojima H,Fujimiya M,Matsumura K,et al.NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice [J].Nat Med,2003,9(5):596-603.
    76.Ber I,Shternhall K,Perl S,et al.Functional,persistent,and extended liver to pancreas transdifferentiation[J].J Biol Chem,2003,278(34):31950-31957.
    77.Junta I,Hideki K,Tetsuya Y,et al.Constitutively active PDX1 induced efficient insulin production in adult murine liver[J].BBRC,2005,326(2).404-409.
    78.Koizumi M,Doi R,Toyoda E,et al.Hepatic regeneration and enforced PDX1 expression accelerate transdifferentiation in liver[J].Surgery,2004,136 (2):449-457.
    79.Zhao M,Amiel SA,Christie MR.Insulin-producing cells derived from human pancreatic non-endocrine cell cultures streptozotocin induced hyperglycaemia in mice[J].Diabetologia,2005,48(10):2051-2061.
    80.Chen S,Ding J,Yu C,et al.Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1 [J].Gene Ther,2007,14(8),1102-1110.
    81.Nakajima-Nagata N,Sugai M,Sakurai T,et al.PDX1 enables insulin secretion by regulating synaptotagmin 1 gene expression[J].Biochem Biophys Res Commun,2004,318(3):631-635.
    82.Sapir T,Shternhall K,Meiwar-Levy I,et al.Cell-replacement therapy for diabetes:generating functional insulin-producing tissue from adult human liver cells[J].Proc Natl Acad Sci USA,2005,102(22):7964-7969.
    83.Fodor A,Harel C,Fodor L,et al.Adult rat liver cells transdifferentiated with lentiviral IPF1 vectors reverse diabetes in mice an ex vivo gene therapy approach[J].Diabetologia 2007,50(1):121-130.
    84.Miyazaki S,Yamato E,Miyazaki J.Regulated expression of PDX1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells[J].Diabetes,2004,53(4):1030-1037.
    85.Tang DQ,Lu S,Sun YP.Reprogramming liver-stem WB cells into fimctional insulin-producing cells by persistent expression of PDX1 and PDX1-VP16mediated by lentiviral vectors[J].Lab Invest,2006,86(1):83-93.
    86.姜铧,张洹.小鼠胎肝间充质干细胞体内向骨骼肌细胞分化的研究[J].暨南大学学报,2006,27(2)164-171.
    87.姜铧,张洹.小鼠胎肝间充质干细胞体外分化为肌细胞的实验研究[J].中国病理生理学杂志,2006,22(4):810-813.
    88.Ko IK,Song HT,Cho EJ,et al.In vivo MR imaging of tissue-engineered human mesenchymal stem cells transplanted to mouse:a preliminary study[J].Ann Biomed Eng.2007,35(1):101-108.
    89.Pittenger MF,Martin BJ.Mesenchymal stem cells and their potential as cardiac therapeutics[J].Circ Res.2004,95(1):9-20.
    90.Rubinstein P,Dobrila L,Rosenfield RE,et al.Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution[J].Proc Natl Acad Sci,1995,92:10119-10122.
    91.Tamir A,Perocelli T,Stetler K,et al.Stem cell factor inhibits erythroid differentiation by modulating the activity of Gl-cyclin-dependent kinase complexes:A role for p27 in erythroid differntiation coupled G1 arrest[J].Cell Growth Differ,2000,11:269-277.
    92.Bruder S P,Jaiswal N,Haynestorth S E.Growth kinetics,selfrenewal,and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J].J Cell biochem,1997,64:278-294.
    93.Bogenrieder T,Herlyn M.Cell-surface proteolysis,growth factor activation and intercellular communication in the progression of melanoma[J].Crit Rev Oncol Hematol.2002,44(1):1-15.
    94.Majumdar MK,Thiede MA,Mosca JD,et al.Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs) and stromal cells[J].J Cell Physiol.1998,176(1):57-66.
    95.Miyatsuka,T.et al.Ectopically expressed pdx-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis.Biochem.Biophys[J].Res.Commu,.2003,310:1017-1025.
    96.Satsuki Miyazaki,Eiji Yamato,and Jun-ichi Miyazaki.Regulated Expression of pdx-1 Promotes In Vitro Differentiation of Insulin-Producing Cells From Embryonic Stem Cells[J].Diabetes,2004,53:1030-1037.
    97.Battaglia PA,Ponti D,Naim V,et al.The HIV-Tat protein induces chromosome number aberrations by affecting mitosis[J].Cell Motil Cytoskeleton.2005,61(3):129-136.
    98.Makino E,Sakaguchi M,Iwatsuki K,et al.Introduction of an N-terminal peptide of S100C/All into human cells induces apoptotic cell death[J].J Mol Med.2004,82(9):612-620.
    99.Vocero-Akbani A,Lissy NA,Dowdy SETransduction of full-length Tat fusion proteins directly into mammalian cells:analysis of T cell receptor activation-induced cell death[J].Methods Enzymol.2000;322:508-521.
    100.Santra S,Yang H,Stanley JT,et al.Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots[J].Chem Commun(Camb),2005(25):3144-3146.
    101.王莉,吴玉章,石统东,等.穿膜肽HIV-Tat49-57和CTL表位融合多肽疫苗的初步免疫学效应研究[J].第三军医大学学报,2002,24(10):1159-1161.
    102 Temsamani J,Viadal P.The use of cell-penetrating peptides for drug delivery[J].Drug Discov Today,2004,9(23):1012-1019.
    103.Ahlgren U,Jonsson J,Jonsson L,et al.Beta-cell-specific inactivation of the mouse Ipfl/Pdxl gene results in loss of the beta-cell phenotype and maturity onset diabetes[J].Genes Dev,1998,12:1763-1768.
    104.Stoffers DA,Ferrer J,Clarke WL,et al.Early-onset type-2 diabetes mellitus(MODY4) linked to IPFI[J].Nat Genet.1997,17(1):138-139.
    105.Cao Li-Zhen,Tang Dong-Qi,Horb ME,et al.High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells[J].Diabetes,2004,53:3168-3178.
    106.Roche E,Assimacopoulos F,Lee Aet al.Induction by glucose of genes coding for glycolytic enzymes in a pancreaticβ-cell line(INS-1)[J].J.Biol.Chem,1997,272:3091-3098.
    107.Segev H,Fishman B,Ziskind A,et al.Differentiation of human embryonic stem cells into insulin-producing clusters[J].Stem Cells 2004,22(3):265-274.
    108.辛颖.人骨髓间充质干细胞向胰岛素分泌细胞诱导分化的实验研究.吉林大学博士学位论文,2007,74-76.
    109.Inui K,Oreffo RO,Triffitt JT.Effects of beta mercaptoethanol on the proliferation and differentiation of human osteoprogenitor cells[J].Cell Biol Int.1997,21(7):419-425.
    110.Brubaker PL,Drucker DJ.Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas,gut and central nervous system[J].Endocrinology,2004,145:2653-2659.
    111.闫磊,慕晓玲.胰高血糖素样肽-1与干细胞定向分化[J].中国生物工程杂志,2007,27(4):115-119.
    112.Li L,Seno M,Yamada H,et al.Betacellulin improves glucose metabolism by promoting conversion of intraislet precursor cells to β-cells in streptozotocin -treated mice[J].Am J Physiol Endocrinol Metab,2003,285:E577-E583.
    113.Hisanaga E,Park KY,Yamada S,et al.A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4[J].Endocr J,2008,55(3):535-543.
    114.Takasu N,Komiya I,Asawa T,et al.Streptozocin and alloxaninduced H_2O_2generation and DNA fragmentation in pancreatic islets[J].Diabetes,1991,40(9):1141-1145.
    115.Papaccio G,Pisanti FA,Latronico MV,et al.Multiple low-dose and single high-dose treatments with streptozotocin do not generate nitric oxide[J].J Cell Biochem.2000,77(1):82-91.
    116.施美莲,高静华,鲍世民,等.NOD小鼠的遗传学特性和部分生物学特性观察[J].上海交通大学学报,2002,20(3):207-212.
    117.施红,金国琴,余文珍.诱导构建最佳类似人类2型糖尿病大鼠的造模方式[J]. 中国临床康复,2005,9(39):69-71.
    118.Akbarzadeh A,Norouzian D,Mehrabi MR,et al.Induction of diabetes by streptozotocin in rats[J].Indian Journal of Clin Biochem,2007,22(2) 60-64.
    119.黄昕,崔磊,曹谊林,STZ诱导裸鼠糖尿病模型的建立及观察[J].组织工程与重建外科杂志,2007,3(4):186-188.
    120.Koya V,Lus,Sun YP,et al.Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1:a novel protein transduction domain-based therapy[J].Diabetes,2008,57(3):757-769.
    121.Tang DQ,Cao LZ,Burkhardt BR,et al.In vivo and in vitro characterization of Insulin-producing cells obtained from murine bone marrow[J].Diabetes,2004,53:1721-1732.
    122.Voltarelli JC,Couri CB,Stracieri A,et al.Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus[J].JAMA,2007,297(14):1568-1576.
    123.Bonner-Weir,Taneja,M.,Weir,GC.et al.In vitro cultivation of human islets from expanded ductaltissue[J].ProcNatl,Acad Sci,USA,2000,97:7999-8004.
    124.Ramiya,VK,Maraist,M,Arfors,KE,et al.Reversal of insulin dependent diabetes usnig islets generated in vitro from pancreatic stem cells[J].Nat.Med,2000,6:278-282.
    125.Sofia,B,Roche,E,Berna,G,et al.Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice[J].Diabets,2000,49:157-162.
    126.周毅,许评,刘晓岭,等.机械分离成人尸体胰腺提高胰岛数量和质量[J].中华器官移植杂志,2005,26(8):467-469.
    127.孟庆敏,龚家镇.14例胰岛素依赖型糖尿病患者胚胎胰腺组织移植的远期临床分析.中华器官移植杂志,1999,20(1):25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700