用户名: 密码: 验证码:
比较分析熟扁豆提取物与生扁豆提取物的抗血管紧张素Ⅱ诱导的高血压及心肌肥厚作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发展中国家,高血压是心血管疾病的一个重要危险因素。血压的升高可以导致很多心血管事件,如休克、心肌梗死、肾功能衰竭等并发症乃至死亡。预防血压的升高对减少此类心血管事件的发生起着重要作用。血管内皮的收缩因子及舒张因子的失衡是高血压的一个重要致病机制。
     血管紧张素II通过不同机制使血压升高,主要的机制有收缩阻力血管、刺激醛固酮合成和释放、增加肾小管对钠的重吸收(间接或直接通过醛固酮)、刺激口渴和释放抗利尿激素、提高交感神经的兴奋性。血管紧张素Ⅱ是由血管紧张素Ⅰ在血管紧张素转化酶的作用下,水解产生的多肽(八肽)物质。重要的是,血管紧张素II直接激活血管紧张素1型受体(AT1)和间接地刺激多种生长因子和细胞因子的释放来诱导心肌和血管肥厚、增生。豆类植物作为重要的食物来源,它为饮食提供了复杂碳水化合物,可溶解纤维和基础维生素,并且含有多酚成分,如类黄酮、异黄酮和木酚素。生物活性成分主要为自然多酚,其包括简单多酚,安息香酸衍生物,类黄酮,芪类,单宁类,木酚素类,木素,这些成分的抗氧化能力对身体健康起到了保护作用。扁豆具有比其他豆类更多的抗氧化物质,并且先前的研究已经证实了,生扁豆提取物具有抗氧化、抗高血压的作用。
     有研究发现,扁豆的热加工过程可以降低扁豆提取物的生物活性成分,但是否同时降低其抗氧化性是本课题的重要研究目的。
     实验方法:
     1制备熟扁豆及生扁豆提取物
     2大鼠原代心肌细胞培养;
     3使用可以与ROS结果的荧光探针DHE检测原代培养心肌细胞的自由基水平;
     4对原代心肌细胞进行免疫组织化学染色,使用Image J软件分析各组中大鼠心肌的增生情况;
     5测量各组中大鼠心脏的重量,并计算心脏重量与体重比值评价心脏肥大情况;
     6对大鼠的心脏及肾脏进行HE染色,测量左心室厚度及心肌细胞大小,评价心脏及肾脏血管重构;
     7对大鼠的心脏及肾脏进行天狼星红染色,评价心脏及肾脏血管周围纤维程度。
     实验结果:
     1熟扁豆提取物与生扁豆提取物的抗ROS作用:25μg/ml、50μg/ml、100μg/ml熟扁豆提取物分别可以降低AngII组10.6±1.3%(n=50, p>0.05)、19.8±2.2%(n=50, p<0.05)、37.2±1.3%(n=50, p<0.05);25μg/ml、50μg/ml、100μg/ml生扁豆提取物分别可以降低16.6±2.7%(n=50, p>0.05)、26.6±3.1%(n=50,p<0.05)、36.5±2.9%(n=50, p<0.05)。
     2熟扁豆提取物与生扁豆提取物的抗心肌细胞肥大作用:AngII组的大鼠心肌细胞相比,25μg/ml、50μg/ml、100μg/ml熟扁豆提取物分别降低了11.3±2.5%(n=50, p>0.05)、16.0±1.7%(n=50, p<0.05)、27.2±4.9%(n=50, p<0.05);与AngII组的大鼠心肌细胞相比,25μg/ml、50μg/ml、100μg/ml生扁豆提取物分别可以降低了12.6±4.5%(n=50, p>0.05)、21.2±2.9%(n=50, p<0.05)、28.9±1.2%(n=50,p<0.05)。
     3熟扁豆提取物与生扁豆提取物的降压作用:AngII200ng/kg/min微量泵皮下注射,明显引起大鼠血压升高,平均动脉压由93.4mmHg±2.0mmHg升高到126.7±2.1mmHg (n=5, P<0.01)。熟扁豆提取物明显减弱了AngII对大鼠血压的影响,Ang II+CLE组大鼠的平均动脉压为105.2±1.8mmHg,明显低于AngII组大鼠的平均动脉压126.7±2.1mmHg (n=5, p<0.05)。同样,生扁豆提取物也明显减弱了AngII对大鼠血压的影响,Ang II+RLE组大鼠的平均动脉压为96.6±1.2mmHg,明显低于AngII组大鼠的平均动脉压126.7±2.1mmHg(n=5, p<0.05)。
     4熟扁豆提取物与生扁豆提取物抗AngII诱导的心室肥厚:Ang II+CLE组相同切面心室壁厚度为3.51±0.13mm,明显低于AngII组(n=5, p<0.01);AngII+RLE组相同切面心室壁厚度为3.48±0.11mm,明显低于AngII组(n=5, p<0.01);AngII+CLE组相同切面心室壁厚度略高于AngII+RLE组,但二者见无明显差别(n=5,p>0.05)。
     5熟扁豆提取物与生扁豆提取物抗AngII诱导的微血管重构:心脏微血管:AngII+CLE组相同切面小动脉血管壁与血管内腔比值为26.9±1.6%,明显低于AngII组(n=5,p<0.05);AngII+RLE组相同切面小动脉血管壁与血管内腔比值为25.1±1.3%,明显低于AngII组(n=5, p<0.05); Ang II+CLE组略高于AngII+RLE组,但二者无统计学差异(n=5, p>0.05)。肾脏微血管:Ang II+CLE组相同切面小动脉血管壁与血管内腔比值为39.6±2.8%,明显低于AngII组(n=5,p<0.05);AngII+RLE组相同切面小动脉血管壁与血管内腔比值为36.0±1.7%,明显低于AngII组(n=5, p<0.05); Ang II+CLE组略高于AngII+RLE组,但二者无统计学差异(n=5, p>0.05)。
     6熟扁豆提取物与生扁豆提取物抗AngII诱导的血管周围纤维化:心脏微血管:Ang II+CLE组相同切面小动脉纤维化比值为29.1±2.6%,明显低于AngII组(n=5,p<0.05);AngII+RLE组相同切面小动脉纤维化比值为28.2±2.1%,明显低于AngII组(n=5, p<0.05); Ang II+CLE组略高于AngII+RLE组,但二者无统计学差异(n=5, p>0.05)。肾脏微血管:Ang II+CLE组相同切面小动脉纤维化比值为35.3±2.3%,明显低于AngII组(n=5,p<0.05);AngII+RLE组相同切面小动脉纤维化比值为33.9±1.7%,明显低于AngII组(n=5, p<0.05);Ang II+CLE组略高于AngII+RLE组,但二者无统计学差异(n=5, p>0.05)。
     结论:
     1.熟扁豆提取物与生扁豆提取物具有降低AngII诱导原代大鼠心肌细胞诱导的ROS;
     2.熟扁豆提取物与生扁豆提取物具有抗AngII诱导原代大鼠心肌肥大的作用;
     3.熟扁豆提取物与生扁豆提取物具有降低AngII诱导的大鼠高血压的作用;
     4.熟扁豆提取物与生扁豆提取物具有抗AngII诱导的心室肥厚的作用;
     5.熟扁豆提取物与生扁豆提取物具有抗AngII诱导的心脏、肾脏血管重构的作用;
     6.熟扁豆提取物与生扁豆提取物具有抗AngII诱导的心脏、肾脏血管周围纤维化作用;
     7.热加工使扁豆提取物的抗氧化作用略有下降,但熟扁豆提取物与生扁豆提取物的抗氧化作用无明显统计学差异。
Hypertension is an important risk factor of cardiovascular disease in somedeveloping countries. Elevation of blood pressure is a risk factor for adversecardiovascular outcomes, including stroke, myocardial infarction, renal failure anddeath. Prevention of increased blood pressure therefore plays a crucial role in areduction of those outcomes. Broke balance between relaxing and contracting factorsin the endothelium of blood vessels is an important pathogenic mechanism ofhypertension. Increased pro-oxidant and decreased antioxidant activities have beenshown to be some of the mechanisms of the pathogenesis of hypertension.
     Ang II increases blood pressue by various mechanisms, including constrictingresistance vessels, stimulating aldosterone synthesis and release and renal tubularsodium reaborption, stimulating thirst and release of antidiuretic hormone, andenhacing sympathetic outflow from the brain. Importantly, Ang II induces cardiac andvascular cell hypertrophy and hyperplasia directly by activating the Ang II type1receptor and indirectly by stimulating relase of several growth factors and cytokines.
     Legumes are an important source of foods, which supply the diet with solublefibers, complex carbohydrates, essential vitamins, metals, and polyphenols such asflavonoids, isoflavones and lignans. Natural polyphenols, including simple phenols,phenylpropanoids, benzoic acid derivatives, flavonoids, tannins, stilbenes, and lignins,exert their beneficial health effects by their antioxidant activities. Lentil has morenatural polyphenols than other type of legumes. Some studies have shown lentilextract has the function of anti-oxidant and anti-hypertension.
     Someone reported that cook process could reduce the natural polyphenols oflentil. However, whether the cooked lentil extract still have anti-oxidant function isthe object of our study.
     Methods:
     1Preparation of cooked lentil extracts and raw lentil extracts.
     2Primary rat cardiomyocytes.
     3Measurement of intracellular ROS generation of cardiomyocytes with DHE.
     4Immunocytochemistry and measurement of cell surface area with Image Jsoftware.
     5Assessed cardiac hypertrophy by heart weight-to-body weight ratio (HW/BW).
     6Assessment of left ventricle hypertrophy and arterial remodeling in heart andkidney with HE staining.
     7Assessment of perivascular fibrosis in heart and kidney with Sirius red staining.
     Results:
     1Effects of cooked lentil extracts and raw lentil extract on Ang II-induced cellularROS stress in cultured cardiomyocytes: pretreatment of cardiomyocytes with cookedlentil extracts significantly attenuated Ang II-induced increase of in intracellular ROSlevel by10.6±1.3%(n=50, p>0.05)、19.8±2.2%(n=50, p<0.05)、37.2±1.3%(n=50,p<0.05) in25μ g/ml、50μ g/ml、100μ g/ml respectively; pretreatment ofcardiomyocytes with raw lentil extracts significantly attenuated Ang II-inducedincrease of in intracellular ROS level by16.6±2.7%(n=50, p>0.05)、26.6±3.1%(n=50, p<0.05)、36.5±2.9%(n=50, p<0.05) in25μg/ml、50μg/ml、100μg/ml respectively.
     2Effects of cooked lentil extracts and raw lentil extract on Ang II-inducedcardiomyocyte hypertrophy: The Ang II-induced cardiomyocyte hypertrophy wasattenuated by11.3±2.5%(n=50, p>0.05)、16.0±1.7%(n=50, p<0.05)、27.2±4.9%(n=50, p<0.05) after treatment with cooked lentil extracts at doses of25μg/ml、50μg/ml and100μg/ml; The Ang II-induced cardiomyocyte hypertrophy wasattenuated by12.6±4.5%(n=50, p>0.05)、21.2±2.9%(n=50, p<0.05)、28.9±1.2%(n=50, p<0.05) at doses of25μg/ml、50μg/ml and100μg/ml.
     3Cooked lentil extracts and raw lentil extracts attenuated Ang II-induced increase inBP: Chronic subcutaneous infusion of Ang II (200ng/kg/min) significantly increasedMAP from93.4±2.0to126.7±2.1mmHg (n=5, p<0.01); The pressor effect of Ang IIwas significantly attenuated by preeatment with cooked lentil extracts (BP:126.7± 2.1mmHg in Ang II group and105.2±1.8mmHg in Ang II+CLE group respectively,n=5, p<0.05) or raw lentil extracts (BP:126.7±2.1mmHg in Ang II group and96.6±1.2mmHg in Ang II+CLE group respectively, n=5, p<0.05).
     4Effects of CLE and RLE on cardiac remodeling induced by Ang II: Oraladministration of CLE significantly attenuated Ang II-induced increases in leftventricular wall thickness from4.00±0.11mm to3.51±0.13mm (n=5, p<0.01); RLEalso significantly attenuated Ang II-induced increases in left ventricular wall thicknessfrom4.00±0.11mm to3.48±0.11mm (n=5, p<0.01). The left ventricular wallthichness of rats receiving RLE is smaller than CLE, but there is no significantdifference between two groups.
     5Effects of CLE and RLE on peripheral vascular remodeling: Oral administrationof CLE significantly attenuated increase in small arterial media/lumen ratio (26.9±1.6%vs31.5±1.4%, n=5, p<0.05), and RLE also significantly attenuated increase insmall arterial media/lumen ratio (25.1±1.3%vs31.5±1.4%, n=5, p<0.05) in ratheart; Oral administration of CLE significantly attenuated increase in small arterialmedia/lumen ratio (39.6±2.8%vs51.7±1.9%, n=5, p<0.05), and RLE alsosignificantly attenuated increase in small arterial media/lumen ratio (36.0±1.7%vs51.7±1.9%, n=5, p<0.05) in rat kidney. The peripheral vascular remodeling of ratsreceiving RLE is feebler than CLE, but there is no significant difference between twogroups.
     6Effects of CLE and RLE on perivascular fibrosis induced by Ang II: Oraladministration of CLE significantly attenuated increase in perivascular fibrosis (29.1±2.6%vs37.1±3.0%, n=5, p<0.05), and RLE also significantly attenuated increasein perivascular fibrosis (25.1±1.3%vs37.1±3.0%, n=5, p<0.05) in rat heart; Oraladministration of CLE significantly attenuated increase in perivascular fibrosis (35.3±2.3%vs43.9±2.9%, n=5, p<0.05), and RLE also significantly attenuated increasein perivascular fibrosis (33.9±1.7%vs43.9±2.9%, n=5, p<0.05) in rat kidney. Theperivascular fibrosis of rats receiving RLE is feebler than CLE, but there is nosignificant difference between two groups.
     Conclusion:
     1Oral administration of CLE or RLE significantly attenuated Ang II-induced ROSgeneration of cardiomyocytes;
     2Oral administration of CLE or RLE significantly attenuated Ang II-inducedcaridomyocytes hypertrophy;
     3Oral administration of CLE or RLE significantly attenuated Ang II-inducedhypertension;
     4Oral administration of CLE or RLE significantly attenuated Ang II-induced leftventricle hypertrophy;
     5Oral administration of CLE or RLE significantly attenuated Ang II-induced heartand kidney small arterial remodeling;
     6Oral administration of CLE or RLE significantly attenuated Ang II-induced heartand kidney perivascular fibrosis;
     7The cook process attenuated the effects of antihypertensive and antioxidant insome degree, but the CLE has similar antihypertensive and antioxidant effect as RLE.
引文
[1] Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. Worldwideprevalence of hypertension: a systematic review. J hypertens.2004;22:11-9.doi:10.1097/00004872-200040100-00003.
    [2] Frey, N.; Olson, E.N. Cardiac hypertrophy; the good, the bad, and the ugly.Annu. Rev. Physiol.2003;65:45-79.
    [3] Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognosticimplications of echocardiographically determined left ventricular mass in theFramingham Heart Study. N Engl J Med.1990;322:1561-1566.
    [4] Swynghedauw B. Molecular mechanisms of myocardial remodeling. PhysiolRev.1999;79:215-262.
    [5] Reid IA, Morris BJ, Ganong WJ. The renin-angiotensin system. Annu RevPhysiol.1978;40:377-410.
    [6] Sadoshima JI, Izumo S. Molecular characterization of angiotensin II-inducedhypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts:critical role of the AT1receptor subtype. Circ Res.1993;73:413-423.
    [7] Ainscough JF, Drinkhill MJ, Sedo A et al. Angiotensin II type-1receptoractivation in the adult heart causes blood pressure-independent hypertrophyand cardiac dysfunction. Cardiovasc Res.2009Feb15;81(3):592-600.
    [8] Custodis, F., Eberl,M., Kilter, H., Bohm, M., and Laufs, U. Association ofRhoGDIalpha with Rac1GTPase mediates free radical production duringmyocardial hypertrophy. Cardiovasc Res.2006;71:342-351.
    [9] Mastsusaka T, lchikawa I. Biological functions of angiotensin and its receptors.Annu Rev Physiol.1997;59:395-412.
    [10] Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW. Angiotension IIsignaling in vascular smooth muscle: new concepts. Hypertension.1997;29(pt2):366-373.
    [11] Berk BC, Corson MA. Angiotensin II signal transduction in vascular smoothmuscle: role of tyrosine kinases. Circ Res.1997;80:607-616.
    [12] Rao GN, Berk BC. Active oxygen species stimulate vascular smooth musclecell growth and proto-oncogene expression. Cire Res.1992;70:593-599.
    [13] Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR.Griendling KK. Role of NADH/NADPH oxidase-derived H2O2in angiotensinII-induced vascular hypertrophy. Hypertension.1998;32:488-495.
    [14] Fridovich I. Superoxide anion radical, superoxide dismutases, and relatedmatters. J Biol Chem.1997;272:18515-18517.
    [15] Pimentel DR, Amin JK, Xiao L et al. Reactive oxygen species mediateamplitude-dependent hypertrophic and apoptotic responses to mechanicalstretch in cardiac myocytes. Circ Res.2001;89:453-460.
    [16] Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of agp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiachypertrophy in mice. Circulation.2002;105:293-296.
    [17] Hayashi D, Kudoh S, Shiojiama I et al. Atrial natriuretic peptide inhibitscardiomyocyte hypertrophy through mito-gene-activated protein kinasephosphatase-1. Biochem Biophys Res Commun.2004;322:310-319.
    [18] Bass AS, Berk BC. Differential activation of mitogen-activated protein kinasesby H2O2and O2in vascular smooth muscle cells. Circ Res.1995;77:29-36.
    [19] Oboh, G. Antioxidant properties of some commonly consumed. Eur. Food. Res.Technol.2006,224,61-65.
    [20] Shahidi, F; Naczk, M. Phenolics in food and nutraceuticals; CRC Press: BocaRaton, FL,2004; pl,403.
    [21] Alia, M; Horcajo, C; Bravo, L; Goya, L. Effect of grape antioxidant dietaryfiber on the total antioxidant capacity and the activity of liver antioxidantenzymes in rats. Nutr. Res.(N.Y)2003,23,1251-1267.
    [22] Amic, D; Davidovic-Amic, D; Beslo, D; Trinajstic, N. Structure radicalscavenging activity relationships of flavonoids. Croat. Chem. Acta.2003,76,5561-5565.
    [23] Baojun Xun and Sam.K.Chang. Phenolic substance characterization andchemical and chemical and cell-based antioxidant activities of11lentils grownin the northern unitied states. J.Agric.Food Chem.2010;58:1509-1517.
    [24] Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology.Circulation.2000;101;329-35.[PMID:10645931]
    [25] Calhoun DA, Bakir SE, Oparil S. Etiology and pathogenesis of essentialhypertension. In: Crawford MH, DiMarco JP, eds. Cardilogy. London: MosbyInternational;2000:3.1-3.10.
    [26] Guyton AC. Blood pressure control-special role of the kidneys and body fluids.Science.1991;252:1813-6.
    [27] Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO, et al.The NHLBI twin study of cardiovascular disease risk factors: methodologyand summary of results. Am J Epidemiol.1977;106:284-5.
    [28] Longini IM Jr, Higgins MW, Hinton PC, Moll PP, Keller JB. Environment andgenetic sources of familial aggregation of blood pressure in Tecumseh,Michigan. Am J Epidemiol.1984;120:131-44.
    [29] Biron P, Mongeau JG, Bertrand D. Familial aggregation of blood pressure in558adopted children. Can Med Assoc J.1986;115:773-4.
    [30] Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of humanhypertension. Cell.2001;104:545-56.
    [31] Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C,Desitter K, et al. Human hypertension caused by mutations in WNK kinases.Science.2001;293:1107-12.
    [32] Hsueh WC, Mitchell BD, Schneider JL, Wagner MJ, Bell CJ, Nanthakumar, etal. QTL influencing blood pressure maps to the region of PPH1onchromosome2q31-34in Old Order Amish. Circulation.2000;101:2810-6.
    [33] Levy D, Destefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, et al.Evidence for a gene influencing blood pressure on choromosome17. Genomescan linkage results for longitudinal blood pressure phenotypes subjects fromthe framingham heart study. Hypertension.2000;36:477-83.
    [34] Harrap SB. Genetics. In: Oparil S, Weber MA, eds. Hypertension: Acompanion to Brenner and Rector’s The kidney. Philadelphia: WBSaunders;2000:29-42.
    [35] Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A,et al. Molecular basis of human hypertension: role of angiotensiogen. Cell.1992;71:169-80.
    [36] Corvol P, Persu A, Gimenez-Roqueplo AP, Jeunemaitre X. Seven lessons fromtwo candidate genes in human essential hypertension: angiotensiogen andepithelial sodium channel. Hypertension.1999;33:1324-31.
    [37] Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E. Variationin the region of the angiotensin-converting enzyme gene influencesinterindividual differences in blood pressure levels in young white males.Circulation.1998;97:1773-9.
    [38] O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ,et al. Evidence for association and genetic linkage of theangiotensin-converting enzyme locus with hypertension and blood pressure inmen but not women in the Framingham Heart Study. Circulation.1998;97:1766-72.
    [39] Niu Tog, Yang J, Wang B, Chen W, Wang Z, Laird N, et al. Angiotensinogengene polymorphisms M235T/T174M: no excess transmission to hypertensiveChinese. Hypertension.1999;33:698-702.
    [40] Melander O, Orho M, Fagerudd J, Bengtsson K, Groop PH, Mattiasson I, et al.Mutation and variants of the epithelial sodium channel gene in Liddle’ssyndrome and primary hypertension. Hypertension.1998;31:1118-24.
    [41] Carter AR, Zhou ZH, Calhoun DA, Bubien JK. Hyperactive ENaC identifieshypertensive individuals amenable to amiloride therapy. Am J Physiol CellPhysiol.2001;281:C1413-21.
    [42] Selby JV, Newman B, Quiroga J, Christian JC, Austin MA, Fabsitz RR.Concordance for dyslipidemic hypertension in male twins. JAMA.1991;265:2079-84.
    [43] Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality fromcoronary heart disease in subjects with type2diabetes and in nondiabeticsubjects with and without prior myocardial infarction. N Engl J Med.1998;339:229-34.
    [44] Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolicabnormalities-the role of insulin resistance and sympathoadrenal system. NEngl J Med.1996;334:374-81.
    [45] Mark AL. The sympathetic nervous system in hypertension: a potentiallongterm regulator of arterial pressure. J Hypertens Suppl.1996;14:S259-65.
    [46] Brook RD, Julius S. Autonomic imbalance, hypertension, and cardiovascularrisk. Am J Hypertens.2000;13:112S-122S.
    [47] Kim JR, Kiefe CI, Liu K, Williams OD, Jacobs DR Jr, Oberman A. Heart rateand subsequent blood pressure in young adults: the CARDIA study.Hypertension.1999;33:640-6.
    [48] Esler M. The sympathetic system and hypertension. Am J Hypertens.2000;13:99S-105S.
    [49] Chapleau MW, Hajduczok G, Abboud FM. Mechanisms of resetting of arterialbaroreceptors; an overview. Am J Med Sci.1988;295:327-34.
    [50] Guo GB, Thames MD, Abboud FM. Arterial baroreflexes in renal hypertensiverabbits. Selectivity and redundancy of baroreceptor influence on heart rate,vascular resistance, and lumbar sympathetic nerve activity. Cire Res.1983;53:223-34.
    [51] Guo GB, Abboud FM. Impaired central mediation of the arterial baroreflex inchronic renal hypertension. Am J physiol.1984;246:H720-7.
    [52] Li Z, Mao HZ, Abboud FM, Chapleau MW. Oxygen-derived free radicalscontribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res.1996;79:802-11.
    [53] Chapleau MW, Hajduczok G, Abboud FM. Suppression of baroreceptordischarge by endothelin at high carotid sinus pressure. Am J Physiol.1992;263:R103-8.
    [54] Somers VK, Mark AL, Abboud FM. Potentiation of sympathetic nerve resposesby hypoxia in borderline hypertensive subjects. Hypertension,1988;11:608-12.
    [55] Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neuralmechanisms in obstructive sleep apnea. J Clin Invest.1995;96:1897-904.
    [56] Grassi G, Giannattasio C, Failla M, Pesenti A, Peretti G, Marinoni E, et al.Sympathetic modulation of radial artery compliance in congestive heart failure.Hypertension.1995;26:348-54.
    [57] Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflowof catecholamine neurotransimitters to the circulation:source, fate, andfunctions. Physiol Rev.1990;70:963-85.
    [58] Hollenberg NK, Adams DF, Solomon H, Chenitz WR, Burger BM, Abrams HL,et al. Renal vascular tone in essential and secondary hypertension:hemodynamic and angiographic responses to vasodilators. Medicine.1975;54:29-44.
    [59] Dibona GF, Kopp UC. Neural control of renal function: role in humanhypertension. In:Hypertension:Pathophysiology, Diagnosis, andManagement.2ndEdition. Laragh JH, Brenner BM, eds. New York: RavenPr;1995:1349-58.
    [60] Thoren P, Richsten SE. Recordings of renal and splanchnic sympatheticnervous activity in normotensive and spontaneously hypertensive rats. Clin Sci(Lond).1979;57Suppl3:197s-199s.
    [61] Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, FouadTarazi F,et al. Sympathetic overactivity in patients with chronic renal failure. N Engl JMed.1992;327:1912-8.
    [62] Ziegler MG, Mills P, Dimsdale JE.Hypertensives’ pressor response tonorepinephrine. Analysis by infusion rate and plasma levels. Am JHypertens.1991;4:586-91.
    [63] Bianchetti MG, Beretta-Piccoli C, Weidmann P, Ferrier C. Blood pressurecontrol in normotensive members of hypertensive families. Kidney Int.1986;29:882-8.
    [64] Frohlich ED. Other adrenergic inhibitors and the direct-acting smooth musclevasodilators. In: Oparil S, Weber MA, eds. Hypertension: A companion toBrenner and Rector’s The Kidney. Philadelphia: WB Saunders;2000:637-43.
    [65] Light KC. Environmental and psychosocial stress in hypertension onset andprogression. In: Oparil S, Weber MA, eds. Hypertension: A companion toBrenner and Rector’s The Kidney. Philadelphia: WB Saunders;2000:59-70.
    [66] Calhoun DA, Mutinga ML, Collins AS, Wyss JM, Oparil S. Normotensiveblaks have heightened sympathetic response to cold pressor test. Hypertension.1993;22:801-5.
    [67] Folkow B. Physiological aspects of primary hypertension. Physiol Rev.1982;62:347-504.
    [68] Schiffrin EL. Effects of antihypertensive drugs on vascular remodeling: do theypredict outcome in response to antihypertensive therapy? Curr Opin NephrolHypertens.2001;10:617-24.
    [69] Thybo NK, Stephens N, Cooper A, Aalkjaer C, Heagerty AM, Mulvany MJ.Effect of antihypertensive treatment on small arteries of patients withpreviously untreated essential hypertension. Hypertension.1995;25:474-81.
    [70] Henke F, Lubarsch O, eds. Handbuch der speziellen pathologischen Anatomieund Histoligie, Volume VI. Harnorgane mannliche Geschlechtsorgane. Berlin,Germany;Julius Springer;1925;3:368-405.
    [71] Goldblatt H. The renal origin of hypertension. Physiol Rev.1947;27:120-65.
    [72] Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B. Subtleacquired renal injury as a mechansim of salt-sensitive hypertension. N Engl JMed.2002;346:913-23.
    [73] Sealey JE, Blumenfeld JD, Bell GM, Pecker MS, Sommers SC, Laragh JH. Onthe renal basis for essential hypertension: nephron heterogeneity withdiscordant renin secretion and sodium excresion causing a hypertensivevasoconstriction-volume relationship. J hypertens.1988;6:763-77.
    [74] Sanai T, Kimura G. Renal function reserve and sodium sensitivity in essentialhypertension. J Lab Clin Med.1996;128:89-97.
    [75] Rich MW. Uric acid: is it a risk factor for cardiovascular disease? Am J Cardiol.2000;85:1018-21.
    [76] Saito I, Saruta T, Kondo K, Nakamura R, Oguro T, Yamagami K, et al. Serumuric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc.1978;26:241-7.
    [77] Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, et al. Hyperuricemiainduces a primary renal arteriolopathy in rats by a blood pressure-independentmechanism. Am J Physiol Renal Physiol.2002;282:F991-7.
    [78] O’Rourke MF, Hayward CS, Lehmann ED. Arterial stiffness. In: OparilS,Weber MA, eds. Hypertension: A Companion to Brenner and Rector’s TheKidney. Philadelphia: WB Saunders;2000:134-51.
    [79] Safar ME. Hypothesis on isolated systolic hypertension in elderly. J HumHypertens.1999;13:813-5.
    [80] Abboud FM, Eckstein JW. Comparative changes in segmental vascularresistance in response to nerve stimulation and to norepinephrine. Circ Res.1966;18:263-77.
    [81] O’Rourke MF, Avolio AP, Lee L. Reduction of wave reflection is the pricipalbeneficial action of felodipine in isolated systolic hypertension. Am JHypertens.1997;10:3A-4A.
    [82] McConnaughey MM, McConaughey JS, Ingenito AJ. Practical considerationsof the pharmacology of angiotensin receptor blocks. J Clin Pharmacol.1999;39:547-59.
    [83] Carey RM, Siragy HM. Newly recognized components of theRenin-Angitensin system: potential roles in cardiovascular and renalregulation. Endocr Rev.2003;24:261-71.
    [84] Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q4th,Taylor WR, etal. p22phox mRNA expression and NADPH oxidase activity are increased inaortas from hypertensive rats. Circ Res.1997;80:45-51.
    [85] Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. AngitensinII induces monocyte chemoattractant protein-1gene expression in rat vascularsmooth muscle cells. Circ Res.1998;83:952-9.
    [86] Pitt B, Remme W, Zeaton J, Martinez F, Roniker B, et al. Eplerenone, aselective aldosterone blocker, in patients with left ventricular dysfunction aftermyocardial infarction. N Engl J Med.2003;348:1309-21.
    [87] Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P.Hyperaldosteronism among black and white subjects with resistanthypertension. Hypertension.2002;40:892-6.
    [88] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular disease: the roleof oxidant stress. Circ Res.2000;87:1337-40.
    [89] Panza JA. High-normal blood pressure-more “high” than “normal”[Editorial].N Engl J Med.2001;345:1337-40.
    [90] Ergul S, Parish DC, Puett D, Ergul A. Racial differences in plasmaendothelin-1concentrations in individuals with essential hypertension.Hypertension.1996;28:652-5.
    [91] Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, et al.Effects of the dual endothelin-receptor antagonist bosentan in patients withpulmonary hypertension: a randomised placebo-controlled study. Lancet.2001;358:1119-23.
    [92] Hardig JL,Yeh MW, Robinson BG, et al. Potential pitfalls in the diagnosis ofphaeochromocytoma [J]. Med J Aust,2005,182(12):637-640.
    [93] Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushingssyndrome: an endocrine society clinical practice guideline [J]. J Clin EndocrnoMetab,2008,93(3):1526-1540.
    [94] Safian RD,Texbor SC. Renal-artery stenosis [J]. N Engl J Med,2001,344(6):431-442.
    [95] Bloch MJ, Basile J. Diagnosis and Management of renovascular diseases andrenovascular hypertension [J]. J Clin Hypertens (Greenwich),2007,9(5);381-389.
    [96] Bloch MJ, Basile J. Clinical insights into the diagnosis and management ofrenovascular disease. An evidence based review [J]. Minerva Med,2004,95(5):357-373.
    [97] Derk, F.;Christian, K;Hugo, A.K; Norbert, F. Calsarcin-1protects againstangioten-II-induced cardiac hypertrophy. Circulation2007;116:2587-2596.
    [98] Wollert, K.C.; Drexler, H. The rennin-angiotensin system and experimentalheart failure. Cardiovasc. Res.1999;43:838-849.
    [99] Unger, T. The role of the rennin-angiotensin system in the development ofcardiovascular disease. Am.J.Cardiol.2002;89:3A-9A.
    [100] Hirotani, S.; Otsu, K.; Nishida, K.; Higuchi, Y.;Morita, T.; Nakayama, H.;Yamaguchi, O.; Mano, T.; Matsumura, Y.; Ueno, H.; Tada, M.; Hori, M.Involvement of nuclear factor-κB and apoptosis signal regulating kinase1inG-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circ.Res.2002;105:509-515.
    [101] Byrne, J.A.; Grieve, D.J.; Bendall, J.K.; Li, J.M.; Gove, C.; Lambeth, J.D.;Cave, A.C.; Shah, K.M. Contrasting roles of NADPH oxidase isoforms inpressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ. Res.2003;93:802-805.
    [102] Rochfort S, Panozzo J. Phytochemical for health, the Role of Pulses. J AgricFood Chem.2007;55:798-799.
    [103] Xu BJ, Chang SKC. Phenolic substance characterization and chemical andcell-based antioxidant activities of11lentil grown in the Northern UnitedStates. J Agric Food Chem.2010;58:1509-1517.
    [104] Fanrong Yao, Chengwen Sun, and Sam K.C. Chang. Morton lentil extractattenuated Angiotension II-induced cardiomyocyte hypertrophy via inhibitionof intracellular reactive oxygen species levels in Vitro. J. Agric. Food Chem.2010;58:10382-10388.
    [105] Fanrong Yao, Chengwen Sun, and Sam K.C. Chang. Lentil polyphenol extractprevents angiotensin II-induced hypertension, vascular remodeling andperivascular fibrosis. Food Funct.2012;3:127-133.
    [106] Cave A, Griveve D, Johar S, Zhang M, Shah AM. NDAPH oxidase-derivedreactive oxygen species in cardiac pathophysiology. Philos Trans R Soc LondBiol Sci.2005;360:2327-34.
    [107] Touyz RM. Intracellular mechanisms involved in vascular remodeling ofresistance arteries in hypertension: Role of angiotensin II. Exp Physiol,2005;90:449-455.
    [108] Jankow ski V, Vanholder R, Van Der Giet M, et al. Mass speetrometricidentification of a novel angiotensin peptide in human plasma. ArteriosclerThromb Vasc Biol.2007;27:297-302.
    [109] Fortun oA, San Jos G, Moreno Mu, et al. Oxidative stress and vascularremodeling. Exp Physiol,2005;90:457-462.
    [110] Cai H. NAD(P)H oxidase-dependent self-propagation of hydrogen peroxideand vascular disease. Cir Res,2005;96:818-822.
    [111] Xu baojun,Chang SK. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol,and flavonol profiles and antioxidant properties of pinto and black beans(Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem.2009;57:4754-4764.
    [112] Devasagayam, TPA, Tilak JC, Boloor KK, Sane Ketaki S, Ghaskadbi Saroj S,Lele RD. Free radicals and antioxidants in human health: current status andfuture prospects. Journal of association of physicians of India.2004;10(52):796
    [113] Cam A, de Mejia EG. Role of dietary proteins and peptides in cardiovasculardisease. Mol Nutr Food Res.2012Jan;56(1):53-66.
    [114] Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, HilpertKF, Griel AE, Etherton TD. Bioactive compound in foods: their role in theprevention of cardiovascular disease and cancer. Am J Med.2002Dec30;113Suppl9B:71s-88s.
    [115] Yanping Zou, Sam K.C. Chang, Yan Gu and Steven Y. Qian. Antioxidantactivity and phenolic compositions of lentil (Lens culinaris var. Morton)extract and its fractions. J Agric Food Chem.2011; March23;59(6):2268-2276.
    [116] Mulvany MJ. Small atery remodeling and significance in the development ofhypertension. News Physiol Sci.2002; Jun;17:105-9.
    [117] Zalba G, Beaumount FJ, San JoseG, Fortno A, Fortuno MA, Etayo JC, Diez j.Vascular NADH/NADPH oxidase is involved in enhanced superoxideproduction in spontaneously hypertensive rats. Hypertension,2000;35(5):1055-1061.
    [118] Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins Cand E ale associated with altered activation of vascular NADPH oxidaseand superoxide dismutase in stroke-prone SHR. Hypertension,2001;38(3):606-611.
    [119] Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG.Role of superoxide in angiotensin II-induced but not catecholamine-inducedhypertension. Circulation,1997;95(3):588-593.
    [120] Beswick RA, Zhang H, Marable D, Catravas JD, Hill WD, Webb RC.Long-term antioxidant administration attenuates mincralocorticoidhypertension and renal inflammatory response. Hypertension,2001;37(2part2):781-786.
    [121] Zhou MS, Adam AG, Jaimes EA, Raij L. In salt-sensitive hypertension,increased superoxide production is linked to functional upregulation ofangiotensin. Hypertension,2003;42(5):945-951.
    [122] Jung O, Schreiber JG, Geiger H, Pedrazzini T, Brandes RP.gp91phox-containing NADPH oxidase mediates endothelial dysfunction inrenovascular hypertension. Circulation,2004;109(14):1795-1801.
    [123] Nava M, Quiroz Y, Vaziri N, Rodriguez-Iturbe B. Melatonin reduces renalinterstitial inflammation and improves hypertension in spontaneouslyhypertensive rats. Am J Physiol Renal Physiol,2003;284(3):F447-454.
    [124] Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagono PJ. Novel competitiveinhibitor of NADPH oxidase assembly attenuates vascular O2-and systolicblood pressure in mice. Cir Res,2001;89(5):408-414.
    [125] Frenoux JM, Noirot B, Prost ED, Madani S, Blond JP, Belleville JL, Prost JL.Very high alpha-tocopherol diet diminishes oxidative stress andhypercoagulation in hypertensive rats but not in normotensive rats. Med SciMonit,2002;8(10): BR401-BR407.
    [126] Park JB, Touyz RM, Chen X, Schiffrin EL. Chronic treatment with asuperoxide dismutase mimetic prevents vascular remodeling and progressionof hypertension in salt-loaded stroke-prone spontaneously hypertensive rats.Am J Hypertens,2002;15(1pt1):78-84.
    [127] Wollert KC, Drexler H. Regulaion of cardiac remodeling by nitric oxide:focus on cardiac myocite hypertrophy and apoptosis. Heart Fail Rev,2002;7:317-325.
    [128] Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy.Biossays,2004;6:608-615.
    [129] Shirai H, Takahashi K, Katads T, Inagami T. Mapping of G protein couplingsites of the angiotensin II type I receptor. Hypertension,1995;25:726-730.
    [130] Bemstein KE, Ali MS, Sayeski PP, Semeniuk D, Marrero MB. New insightsinto the cellular signaling of seven transmembrane receptors: the role oftyrosine phosphorylation. Lab Invest,1998;78:3-7.
    [131] Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, et al.Pressure overload induces cardiac hypertrophy in angiotension II type1Areceptor knockout mice. Circulation,1998;97:1952-1959.
    [132] Lang D, Mosfer SI, Shakesby A, Donaldson F, Lewis MJ. Coronaymicrovascular endothelial cell redox state in left ventricular hypertrophy: therole of angiotensin II. Circ Res,2000;86:463-469.
    [133] Sato K, Komaru T, Shioiri H, Takeda S, Takahashi K, Kanatsuka H, et al.Hypercholesterolemis impairs transduction of vasodilator signals derivedfrom ischemic myocardium: myocardium-microvessel cross-talk. ArteriosclerThromb Vasc Biol,2004;24(11):2034-2039.
    [134] Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, et al. Reactiveoxygen species in mechanical stress-induced cardiac hypertrophy. BiochemBiophys Res Commun,2001;289:901-907.
    [135] Yao EH, Yu Y, Fukuda N. Oxidative stress on progenitor and stem cells incardiovascular disease. Curr Pharm Biotechnol,2006;7:101-108.
    [136] Redon J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, Saez GT.Antioxidant activites and oxidative stree byproducts in human hypertension.Hypertension,2003;41(5):1096-1101.
    [137] Fortuno A, Olivan S, Beloqui O, San Jose G, Moreno MU, Diez J, Zalba G.Association of increased phagocytic NADPH oxidase-dependent superoxideproduction with diminished nitric oxide generation in essential hypertension.J Hypertens,2004,22(11):2169-2175.
    [138] Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K.Endothelial function and oxidative stress in renovascular hypertension. NEngl J Med,2002;346(25):1954-1962.
    [139] McCord JM. Human disease, free radical, and the oxidant/antioxidant balance.Clin Biochem,1993;26(5):351-357.
    [140] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: therole of oxidant stress. Circ Res,2000;87(10):840-844.
    [141] Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. IncreasedNADPH-oxidase activity and Nox4expression during chronic hypertensionis associated with enhanced cerebral vasodilatation to NADPH in vivo.Stroke,2004,35(2):584-589.
    [142] Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD.Mitochondrial sources of H2O2generation play a key role in flowmediateddilation in human coronary resistance arteries. Circ Res,2003,93(6):573-580.
    [143] Valdez LB, Lores Arnaiz S, Bustamante J, Alvarez S, Costa LE, Boveris A.Free radical chemistry in biological systems. Biol Res,2000,33(2):65-70.
    [144] Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecularbiomarkers of oxidative stress in aquatic organisms in relation to toxicenvironmental pollutants. Ecotoxicol Environ Saf,2006;64(2):178-189.
    [145] Sargis RM, Subbaiah PV. Protection of membrane cholesterol bysphingomyelin against free radical-mediated oxidation. Free Radic Biol Med,2006;40(12):2092-2102.
    [146] Stadtman E R, Levlne R L. Free radical-mediated oxidation of free aminoadds and aminoacid residues in proteins. Amino Acids,2003;25(3-4):207-218.
    [147] Melidou M, Riganakos K, Galaris D. Protection against nuclear DNA damageoffered by flavonoids in cells exposed to hydrogen peroxide: the role of ironchelation. Free Radic Biol Med,2005;39(12):1591-600.
    [148] Turpaev KT. Reactive oxygen species and regulation of gene expression.Biochemistry (Mosc),2002;67(3):281-92.
    [149] Nose K. Role of reactive oxygen species in the regulation of physiologicalfunctions. Biol Pharm Bull,.2000,23(8):897-903.
    [150] Sauer H, Rahimi G, Hescheler J, Wartenberg M. Role of reactive oxygenspecies and phosphatidyinositol3-kinase in cardiomyocyte diferentiation ofembryonic stem cells. FEBS Lett,2000,476(3):218-223.
    [151] Vaziri ND, Wang XQ, Oveisi F, Rad B. Induction of oxidative stress byglutathione depletion causes severe hypertension in normal rats. Hypertension,2000;36(1):142-146.
    [152] Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, SanMartin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Owens GK,Lambeth JD, Griendling KK. Nox1overexpression potentiates angiotensinII-induced hypertension and vascular smooth muscle hypertrophy intransgenic mice. Circulation,2005;112(17):2668-2676.
    [153] Zimmerman MC, Dunlay RP, Lazartigues E, Zhang Y, Sharma RV, EngelhardtJF, Davisson RL. Requirement for Rac1-dependent NAD(P)H oxidase in thecardiovascular and dipsogenic actions of angiotensin II in the brain. Circ Res,2004;95(5):532-539.
    [154] Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increasedreactive oxygen species in rostral ventrolateral medulla contribute to neuralmechanisms of hypertension in stroke-prone spontaneously hypertensive rats.Circulation,2004;109(19):2357-2362.
    [155] Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features,expression, and regulation. Am J Physiol Regul Integr Comp Physiol,2003;285(2): R277-R297.
    [156] Schumacker PT. Angiotension II signaling in the brain: compartmentalizationof redox signaling? Cir Res,2002;91(11):982-984.
    [157] Touyz RM. Recent advances in intracellular signalling in hypertension CurrOpin Nephrol Hypertens,2003;12(2):165-174.
    [158] Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Etayo JC, DiezJ. Vascular NADP/MADPH is involved in enhanced superoxide production inspontaneously hypertensive rats. Hypertension,2000;35(5):1055-1061.
    [159] Callera GE, Touyz RM, Teixeira SA, Muscara MN, Carvalho MH, Fortes ZB,Nigro D, Schiffrin EL, Tostes RC. ETA receptor blockade decreases vascularsuperoxide generation in DOCA-salt hypertension. Hypertension,2003;42(4):811-817.
    [160] Castier Y, Brandes RP, Leseche G, Tedgui A, Lehoux S. p47phox dependentNAD(P)H oxidase regulates flow-induced vascular remodeling. Circ Res,2005;97(6):533-540.
    [161] Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions ofperoxynitrite,tetrahydrobiopterin, ascorbic acid, and thiols: implications foruncoupling endothelial nitric-oxide synthase. J Biol Chem,2003;278(25):22546-22554.
    [162] Forman HJ, Torres M, Fukuto J. Redox signaling. Mol Cell Biochem,2002;234-235(1-2):49-62.
    [163] Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL. Redoxdependent MAP kinase signaling by Ang II in vascu1ar smooth muscle cells:role of receptor tyrosine kinase transactivation. Can J Physiol Pharmaco,2003;81(2):159-167.
    [164] Luchtefeld M, Grote K, Grothusen C, Bley S, Bandlow N, Selle T, Struber M,Haverich A, Bavendiek U, Drexler H, Schieffer B. Angiotensin II inducesMMP-2in a p47phox-dependent manner. Biochem Biophys Res Commun,2005,328(1):183-188.
    [165] Lounsbury KM, Hu Q, Ziegelstein RC. Calcium signaling and oxidant stressin the vasculature. Free Radic Biol Med,2000,28(9):1362-1369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700