用户名: 密码: 验证码:
帕米尔前缘逆冲推覆系活动断层和活动褶皱作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕米尔构造结是印度板块向欧亚大陆碰撞的两个突出支点之一,是中国大陆受板块动力作用最强烈、强震频发的地区之一,也是揭示青藏高原形成与演化历史的关键地区之一。晚新生代帕米尔构造结北部向北楔入推移了约300km,形成了一陆内深俯冲带和地震带,但对这一变形过程及方式至今未能很好的限定。沿东经76°附近横跨帕米尔-天山的最新GPS测量结果表明其现今地壳缩短速率为20-24mm/a,几乎占印度板块现今向北推挤速率(40-50mm/a)的一半。帕米尔已成为全球开展现今陆内再造山过程、陆内应变的空间分配和时间变化、陆内强震及其预测等大陆动力学前沿问题研究的关键地区和最理想的天然实验场。
     在帕米尔西缘,构造变形持续集中在帕米尔和塔吉克盆地的边界断层、左旋走滑的达瓦孜-卡拉库尔断层(Darvaz-Karakul Fault,简称DKF)。与西缘不同,在帕米尔北缘的阿莱谷地,变形前缘已由帕米尔前缘逆冲推覆系(Pamir Frontal Thrust,简称PFT)逐步向腹陆方向后退至山前的主帕米尔断层(Main Pamir Thrust,简称MPT)。在帕米尔东缘,自25-20Ma以来构造变形主要通过帕米尔与塔里木盆地的边界断层喀什-叶城转换带(Kashgar-Yecheng Transfer System,简称KYTS)调节;至晚中新世或上新世,KYTS走滑速率由之前的~11-15mm/a减小至~1.7-5.3mm/a,帕米尔与塔里木盆地间的相对运动明显减弱,两大块体已拼接在一起并作为一整体向北运动。区域构造格局的变化,必然导致应变的重新分配。那么最新构造变形带位于何处,具有怎样的变形特征,缩短速率如何?GPS观测的该最新构造变形带现今地壳缩短速率约为6-9mm/a,这与第四纪时期的地质变形速率是否一致?在时间和空间上应变是如何在塔里木与帕米尔两个相互作用的地体间传递、分配的?是一个还是多个构造带吸收了这一构造变形?帕米尔东缘和东北缘的应变分配与西缘和北缘有何不同,与其北邻的天山又有何异同?
     为了回答上述问题,我们选择帕米尔、塔里木与天山碰撞带的最新构造变形带—帕米尔前缘逆冲推覆系(PFT),通过对其重点地段的大比例尺地质-地貌填图、磁性地层年代学和更新世变形河流阶地的详细测量、分析及测年研究,获得了如下几方面的新认识:
     1)帕米尔东北缘活动构造的空间展布
     帕米尔东北缘晚新生代以来的构造变形主要集中在山前的MPT、前锋地区的PFT和两者之间的背驮盆地内。MPT是帕米尔和塔里木盆地的边界断层,是帕米尔东缘的喀什-叶城转换带(KYTS)沿帕米尔和塔里木盆地的边界向西北的延伸,由数条前新生代基底卷入的高角度逆断层组成,断层两侧地质地貌特征对比显著。综合野外调查、地震分布、GPS速率和弹性半空间模型模拟结果,可确定MPT晚第四纪已基本停止活动,构造变形沿背驮盆地下伏的古近纪石膏层向北迁移到PFT上。PFT变形带内活动断层和活动褶皱广泛发育。出露地表的活动断层包括玛依卡克盆地内的别尔托阔依前缘断层、玛依卡克断层和吉勒格由特断层以及盆地以东的托姆洛安断层。活动褶皱包括乌拉根背斜、明尧勒背斜和木什背斜。
     2) PFT变形带内第四纪地层和主要地貌面的年代
     准确而可靠地确定与PFT相关的第四纪地层和地貌面的年龄是本文研究的基础和关键。选择PFT的分支托姆洛安断层下盘明尧勒背斜西南一出露良好,包括阿图什组顶部和西域砾岩厚约2100m的地层剖面开展了详细的磁性地层年代学研究。结合整个磁性地层剖面进行带的分布样式,与Lourens et al.(2004)的磁性极性年表进行对比,将剖面最下部的正极性带N1对应于Matuyama的Reunion正极性亚时,最上部的N4对应于Brunhes正极性时,即剖面底部阿图什组与西域砾岩的分界年龄约为2Ma,西域砾岩顶界年龄为~0.35Ma。据此获得剖面下段1600m厚地层的平均沉积速率约1150m/Ma,各段地层沉积速率大致保持恒定。
     在研究区沿克孜勒苏河、别尔托阔依河、康素河、喀帕卡河两岸普遍发育有多期区域可对比的河流阶地。本文采用光释光侧年方法对这些阶地进行了系统测年。结果表明,这些阶地面形成于气候由冰期向间冰期的转换阶段,反应了阶地形成于气候事件的对应关系。研究区内分布和发育最广泛的阶地面形成于末次冰盛期(Last Glacial Maximum,简称LGM),本文命之为"LGM"阶地。
     3) PFT变形带内主要活动断层的变形特征和速率
     在玛依卡克盆地,位于盆地SW缘的别尔托阔依前缘断层为一向北逆冲、倾角~70°的高角度逆断层,根据盆地内LGM阶地的断错量可得断层的倾滑速率为2.1+1.0/-0.5mm/a,缩短速率为~2.0mm/a。位于盆地北部的玛依卡克断层为一向南逆冲、倾角~15°的低角度逆断层,断层上盘阶地面上发育多条逆弯滑断层和正弯滑断层陡坎;在弯滑断层发育处阶地面发生了明显反向掀斜。综合玛依卡克断层附近阶地面变形特征和下伏构造的形态,认为玛依卡克断层极有可能为乌拉根背斜南翼褶皱生长形成的逆弯矩断层。根据LGM阶地的断错,估算该断层的倾滑速率为3.1+3.0/-1.6mm/a,缩短速率为~3.0mm/a。盆地北缘的吉勒格由特断层为一倾角~45°的向南逆冲的断层,根据阶地面断错,其倾滑速率为~0.25mm/a,缩短速率为~0.2mm/a。由盆地向东为PFT的分支-托姆洛安断层,断层活动使古近纪膏泥岩沿~15°的断层面向北逆冲到明尧勒背斜南翼第四纪西域砾岩之上,最小缩短量为~2.1km。据磁性地层年代学结果,估算该西域砾岩顶界年龄为~0.35Ma,由此可得PFT最小倾滑速率>~6.3mm/a,缩短速率>~6.3mm/a
     4) PFT变形带内主要活动褶皱的变形特征和速率
     在PFT变形带内,活动褶皱的变形非常强烈,在调节区域应变中具有重要作用。但仅利用出露地表的前生长地层无法限定褶皱的生长机制和变形速率。由于褶皱生长过程中,发育在褶皱区的河流阶地也发生了同步变形;通过对河流阶地的详细填图、测量和定年,确定阶地面几何形态及其与下伏基岩间的关系,可推断活动褶皱的生长机制,估算褶皱的变形速率。
     明尧勒背斜为一滑脱褶皱,自~1.6Ma以来的缩短速率为~0.9mm/a。在明尧勒背斜南翼喀帕卡河谷、采金场和背斜SW的阶地面上发育一系列褶皱陡坎。褶皱陡坎是指初始水平或近水平的地层或未固结的沉积物(或阶地面、不整合面、侵蚀面等)受下伏断层或盲断层的转折冲断作用,由于膝折带迁移使活动枢纽与固定枢纽分离而在地表形成的陡坎。根据断层相关褶皱的基本理论,对于滑脱褶皱,尽管由于不发育断坡而不存在断层的转折冲断作用,但在理论上褶皱的膝折带迁移机制也会使活动轴面与固定轴面分离而形成褶皱陡坎;而在翼旋转机制中,为调节内部空间的减小,活动枢纽附近地层的小规模迁移也会在地表形成褶皱陡坎。尽管滑脱褶皱在理论上存在形成褶皱陡坎的可能,却并未有相关野外实例的详细报道。通过对河流阶地变形特征的分析,发现发育在明尧勒背斜南翼喀帕卡河谷和采金场的褶皱陡坎是通过膝折带迁移机制形成的,在背斜西南的褶皱陡坎是通过翼旋转形成的,是两种新的褶皱陡坎类型。根据采金场T2阶地上发育的褶皱陡坎,可得背斜晚第四纪缩短速率>~0.6mm/a。与断弯褶皱作用形成的经典褶皱陡坎对比表明,这几种不同类型的褶皱陡坎在产出位置、野外识别和形态上具有很多相似之处,但在形成机制、造成的阶地变形和规模上也存在诸多不同,在利用褶皱陡坎计算背斜缩短增量时首先要区分褶皱陡坎的类型。
     褶皱在三维空间的生长包括缩短、隆升和侧向扩展。河流阶地作为伴随背斜生长被动变形的地貌面已越来越多地被应用到褶皱缩短和隆升的研究中,但利用河流阶地限定褶皱侧向扩展的实例尚属少见。发育在PFT东部的木什背斜,为一南翼缓、北翼陡由滑脱面或盲断坡控制的断顶褶皱,其缩短量为~700m,隆升量可达~1300m。在背斜核部和北部发育数级开阔平坦的沿背斜轴向展布的河流阶地,伴随背斜生长河流阶地发生了显著变形。通过对阶地面变形特征的分析,木什背斜晚第四纪是通过翼旋转缩短和隆升的,其缩短速率和隆升速率分别为1.5+1.4/-0.5mm/a和2.3+2.3/-0.9mm/a。沿背斜轴向,河流阶地纵剖面发生了明显掀斜。根据木什背斜河流阶地变形特征,提出了区分褶皱侧向扩展方式的模型,与该模型对比表明木什背斜向东的侧向扩展至少自~134ka在T4阶地形成之后已停止活动,侧向扩展仅通过侧向旋转作用进行。
     5)帕米尔东北缘的应变分配及其与西缘和北缘的差别
     在玛依喀克盆地,PFT的变形由别尔托阔依前缘断层、玛依喀克断层和吉勒格由特断层调节,其万年尺度的总缩短速率为~5.0mm/a,由盆地向东PFT两分支托姆洛安断层和明尧勒背斜在百万年尺度内吸收的缩短速率共计~7-8mm/a。因此,PFT在万年和百万年两个不同时间尺度内的缩短速率大致相当,为~5-8mm/a,且该速率与由GPS数据得到的现今会聚速率~6-9mm/a也大致相同,表明PFT在过去的~1-2Ma吸收的缩短速率基本恒定,帕米尔东北缘的主要构造变形可能至少自~1-2Ma以来由山前的MPT向北迁移至PFT上。该速率与研究区以西阿莱谷地内MPT全新世缩短速率>~5.3mm/a和以东南天山南缘喀什前陆盆地内阿图什-喀什褶皱带~4Ma以来的缩短速率~5mm/a相当,表明尽管帕米尔与天山之间的相对运动在不同位置由不同构造吸收,但可能至少自~4Ma以来两大块体的会聚速率是基本恒定的,为~5-8mm/a
     帕米尔与天山间的相对运动在不同边界由不同构造吸收,反映了帕米尔各边界不同的区域构造格局。在帕米尔东缘和东北缘,帕米尔和塔里木盆地边界断层MPT-KYTS活动性的明显减弱及构造变形前缘向北迁移至PFT-南天山南缘均表明两大块体已拼接在一起并作为整体向天山推挤。在帕米尔西缘构造变形持续集中在左旋走滑的DKF上则反应了帕米尔和塔吉克盆地之间仍具有很强的相对运动。而在帕米尔北缘的阿莱谷地,尽管变形前缘向腹陆方向后退,但变形前缘一直位于帕米尔一侧。
     6)帕米尔与天山造山作用和向前陆地区扩展方式的异同
     与北邻天山缩短变形分散在造山带内多条高角度逆断层上不同,帕米尔的构造变形主要集中在边界断层上,反应了两大块体不同的造山过程。帕米尔和天山向前陆地区的扩展都具有脉冲式扩展迁移的特征。但不同的是,帕米尔前陆地区的构造变形以出露地表的活动断层为主,各分支构造长度较小,且应变集中在非常狭窄的范围内。而天山前陆地区的构造变形则以盲断层控制的活动褶皱为主,各分支构造可延伸很长距离,构造变形离散在很宽的变形带内。
     7)挤压造山带GPS速率与地质速率一致性的探讨
     在挤压造山带,GPS速率与长时间尺度内的地质速率是否一致,能代表多长时间尺度内的地质速率仍未得到很好的验证。通过对喜马拉雅、台湾、天山和帕米尔的对比,我们认为两速率是否一致受控于断层几何形态和力学性质。当造山带内断层倾角越大、包括断层越多,断层震间变形的尺度与上地壳厚度越接近时,两速率更趋于一致。
     本论文的主要进展和创新点包括:
     1)给出了PFT变形带内活动构造的空间展布,限定了各分支构造的变形特征和速率;
     2)限定了帕米尔东北缘的应变分配,揭示了帕米尔东缘和东北缘变形特征与西缘和北缘的不同,以及整个帕米尔与天山造山作用和向前陆地区扩展方式的异同;
     3)在野外首次发现了与经典褶皱陡坎不同的两种新的褶皱陡坎类型,并对其变形特征进行了总结,对其形成机制进行了探讨;
     4)首次提出了利用变形河流阶地限定背斜三维空间生长,尤其是侧向扩展的方法和模型;
     5)首次在国内发现了活动逆弯矩断层和正弯滑断层的实例,也是国际上仅有的几个研究实例之一,并对其变形特征、形成机制等进行了讨论;
     6)对碰撞造山带GPS速率与长时间尺度地质速率一致性的控制因素进行了探讨;
     7)在国内首次运用Monte Carlo模拟(详见附件)的方法对活动断层和活动褶皱的变形速率及其不确定性进行定量计算。
The Pamir is located in the northwestern corner of the Indo-Asian collision zone. During late-Cenozoic times,the northern margin of the Pamir has indented northward~300km, accommodated by south-dipping intracontinentalsubduction along the Main Pamir Thrust (MPT) and coupled the strike-slip on the western and eastern margins.Along the western margin, deformation has been persistently concentrated on the Pamir-Tadjik boundary faultDarvaz-Karakul Fault (DKF). In the Kyrgyz Alai Valley along the northern margin, the Pamir Frontal Thrust (PFT)has become inactive and deformation has stepped hindwards to the MPT. Along the estern margin, deformation hadbeen concentrated on the Pamir-Tarim boundary fault-Kashgar-Yecheng Transfer System (KYTS) since acitivtyinitiation (~25-20Ma); by late Miocene-Pliocene, strike-slip along the KYTS decreased dramatically from~11-15mm/a to~1.7-5.3mm/a, indicating the Pamir jointing together with the Tarim and subsequent northward motiontoward the Tian Shan. In response to tectonic setting transformation, regional straining was re-distributed. A series ofissues need to be addressed, such as the location, deformation characteristics, shortening rate accommodated of thedeformation frontier, the recent straining sptial distribution along eastern and northestern margin of the Pamir, thedifferences of straining distribution among the eastern, westen and northern margin, as well as the differences andsimilarities between the Tian Shan and the Pamir orogenic process. Keeping this motivation, this work investigatedactive deformation along northeastern margin of the Pamir. From this study, the following insights are attained:
     1) Spatial distribution of active structures along the NE margin of the Pamir.
     Along the NE margin of the Pamir, late-Cenozoic geologic deformation is concentrated on the MPT along thePamir’s mountain front, on the PFT along the deformation leading edge, and on the piggyback basin between them.The MPT, separating domains with contrasting geology and geomorphology, comprises several high-angle reversefaults involving the pre-Cenozoic basement, with slip initiating sometime between25-20Ma. Geologic mapping, rareearthquakes, geodetic GPS data and elastic half-space modeling indicate slip cessation along the MPT anddeformation has been transferred to the PFT along a detachment surface localized within Paleogene gypsum. ThePFT is a zone of active thrust faulting and folding. Active thrusts include the Biertuokuoyi Frontal Thrust, theMayikake Thrust and the Jilegeyoute Thrust in the Mayikake basin and the Tuomuluoan Thrust to the east of thebasin. Active folds include the Wulagen anticline, the Mingyaole anticline and the Mushi anticline.
     2) Deformation characteristics and rates of active thrusts in the PFT
     The Biertuokuoyi Frontal Thrust, located along southwestern of the Mayikake basin, is a high-angle (~70°)north-vergent fault. According to displacement of the terrace surface, which was abandoned in the Last GlacialMaximum stage (LGM terrace), dip-slip rate and shortening rate of the fault are2.1+1.0/-0.5mm/a and~2.0mm/a,respectively. The Mayikake thrust is located at northern part of the basin, and is a low-angle (~15°) south-vergentthrust. The Mayikake thrust is interpreted as a bending-moment thrust of the Wulagen anticline based on flexural-slipthrusting, flexural-slip normal faulting and terrace tilt on the hanging wall of the fault. According to the LGM terracedisplacement, dip-slip and shortening rate of the fault are estimated to be3.1+3.0/-1.6mm/a and~3.0mm/a,respectively. The Jilegeyoute Thrust on the northern margin of the basin is a south-vergent fault dipping~45°, withdip-slip rate and shortening rate of~0.25mm/a and~0.2mm/a, respectively. The Tuomuluoan Thrust, to the east ofthe Mayikake basin, is a low-angle north-vergent thrust. The Paleogene gypsum on the hanging wall thrusts over the Plio-Pleistocene conglomerate in the south limb of the Mingyaole anticline along a~16°fault plane, with a minimumshortening of~2.1km. Paleomagnitostratigraphy suggests that top boundary age of the Xiyu formation is~0.35Ma,therefore the dip-slip rate and shortening rate of the PFT are>~6.3mm/a.
     3) Deformation characteristics and rates of active folds in the PFT
     The Mingyaole anticline, initiating since~1.6Ma, is a detachement fold with average shortening rate of~1mm/a. A series of fold scarps are observed at the Kapaka water gap, Caijinchang of in the south limb andsouthwestern part of the anticline. Fold scarp is one type of geomorphic scarp resulting from kink band migrationfollowing underlying fault bending. For the detachment fold, although no fault bending is occurred, the kink bandmigration and limb rotation can also produce fold scarps, however there is no relevant report. Our study indicates thefold scarps at the Kapaka water gap and Caijinchang are resulted from kink band migration and the fold scarps atsouthwest part of the anticline are resulted from limb rotation, and both formed in detachment folding. Comparingthis new type of fold scarp with classical fold scarp shows lots of similarities and differences, and the fold scarpcategory needs to determine before using them to calculate incremental shorntening since the terrace abandonment.
     Folding deformation in three dimensions involves shortening, uplift and lateral propagation. Terrace surfaces,as a useful strain marker linking underlying structure to surface deformation, are increasingly applied to econvolveshortening and uplift of a fold. The syntectonic passively deformed terraces, however, can also reflect lateralpropagation, which is poorly investigated. The Mushi anticline, located at eastern part of the PFT, is a geometricallysimple fault tip fold, with total shortening of~700m and total uplift of~1300m. Flights of wide, continuous, andclearly deformed fluvial terraces are preserved over most of the northern half of the fold, providing a good chance toexploit how to use the deformed terrace to constrain the three-dimensional folding history. In analysis of terracesurface deformation, the Mushi anticline grows by progressive rotation of the limbs, with a late-Quaternaryshortening rate of1.5+1.4/-0.5mm/a and uplift rate of2.3+2.3/-0.9mm/a. Along strike of the fold, longitudinalprofiles of terraces also display tilting. A new model of lateral propagation of this work suggests that the eastwardlengthening of the Mushi anticline ceased since at least~134ka, and lateral propagation is dominated by rotation.
     4) Strain distribution on the NE margin
     Recent deformation on the NE margin of Chinese Pamir is concentrated on the PFT, a thrust activated in thelatest foreland-ward propagation sequence of the Pamir. In the Mayikake basin, shortening is accommodated by theBiertuokuoyi Frontal Thrust and the Mayikake Thrust, with a total rate of~5.0mm/a (~2.0mm/a and~3.0mm/a,respectively) since~18ka. To the east, the shortening rate of the Tuomuluoan Thrust is>6.3mm/a over the past~0.35Ma and the shortening rate of the Mingyaole anticline is~1mm/a since~1.6Ma, with a total rate of~7-8mm/a. The geologic rates of~5-8mm/a at two time scales are comparable to the geodetic rate of~6-9mm/a acrossthis same zone, indicating on the NE margin of the Pamir, deformation is concentrated on the PFT since~1-2Ma.This rate is comparable with the Holocene shortening rate of~5.3mm/a in the Kyrgyz Alai Valley and the averageshortening rate of~5.0mm/a since~4Ma in the Atushi-Kashi fold system in the foreland of the Southern Tian Shan.Therefore, the relative movement rate of the Pamir and the Tian Shan appear roughly uniform since~4Ma, in spite ofaccommodation by different deformation styles and an evolving spatial distribution.
     Different straining spatial distributions on different margins of the Pamir reflects different orogenic processes.Along E and NE margin, the slip cessation along the Pamir-Tarim boundary fault MPT-KYTS and subsequentnorthward migration of deformation frontier to the PFT-Kashi-Atushi fold system in the southern Tian Shan foreland indicate the Pamir jointing together with the Tarim and moving toward the Tian Shan as a whole. In contrast,deformation of the Pamir’s mirror image on the NW margin is persistently concentrated on the Pamir-Tadjikboundary fault DKF indicates strong relative motion between the Pamir and the Tadjik basin. In the Kyrgyz AlaiValley, the deformation frontier has stepped hindwards to the MPT, but persistently concentrated on the frontier of thePamir.
     5) Difference between the Pamir and the Tian Shan
     In the Pamir, deformation is concentrated on the outer margins. In the Tian Shan, to the north of the Pamir,however, deformation is distributed to a series of fault relavely steeply dipping through the brittle crust, implyingdifferent orogenic processes. Both the Pamir and the Tian Shan migrated forelandward implusivley to produce aseries of fold belts. Deforamtion in the Pamir foreland is dominated by thrusting, each strand has short length andactive deformation is concentrated in a narrow zone. In the southern Tian Shan foreland, however, deformation isdominated by folding, each strand can extend very long distance, and active deformation is distributed in a muchwider zone.
     Highlights in the thesis:
     1) The active bending-moment thrust and the flexural-slip normal fault are firstly reported with field evidence inChina.
     2) Two new fold scarp models, which are quite different from the classical fold scarp formed in fault bending,have been eatablished.
     3) The method using deformed fluvial terraces to constrain three-dimensional folding was firtly suggested and anew relative model was built.
     4) In China, the Monte Carlo modeling (see appendix material) was firstly used to constrain deformation rateuncertainty of active thrusts and active folds.
引文
陈汉林,张芬芬,程晓敢,等.2010.帕米尔东北缘地区构造变形特征与盆山构造[J].地质科学,45(1):102-112.
    陈杰,曲国胜,胡军,冯先岳.1997.帕米尔北缘弧形推覆构造带东段的基本特征与现代地震活动[J].地震地质,19(4):301-312.
    陈杰,卢演俦,丁国瑜.2001.塔里木西缘晚新生代造山过程的记录-磨拉石建造及生长地层和生长不整合[J].第四纪研究,21(6):528-539.
    陈杰,Scharer K M,Burbank D W,等.2005a.利用河流阶地限定活动褶皱的类型和生长机制:运动学模型[J].地震地质,27(4):513-529.
    陈杰,Scharer K M,Burbank D W,等.2005b.西南天山明尧勒背斜的第四纪滑脱褶皱作用[J].地震地质,27(4):530-547.
    陈杰,Heermance R,Burbank D W,等.2007.中国西南天山西域砾岩的磁性地层年代与地质意义[J].第四纪研究,27(4):576-587.
    陈杰,李涛,李文巧,等.2011.帕米尔构造结及邻区的晚新生代构造与现今变形[J].地震地质,33(2):241-259.
    冯先岳.1994.新疆乌恰地震破裂带[A].见:国家地震局地质研究所编.活动断裂研究(3).北京:地震出版社. pp.45-55.
    冯先岳.1997.新疆地震[M].新疆新疆科技卫生出版社. pp.33-34.
    康玉柱.1978.新疆塔里木盆地喀什坳陷地质构造特征及含油气远景评价报告[M].
    柯珊,罗照华,莫宣学,等.2008.帕米尔构造结塔什库尔干碱性杂岩同位素年代学研究[J].岩石学报,24(2):315-324.
    李涛,陈杰,肖伟鹏,等.2011a.利用变形河流阶地限定帕米尔北缘木什背斜的缩短、隆升和侧向扩展[J].地震地质,33(2):308-322.
    李涛,陈杰,肖伟鹏,等.2011b.西南天山前缘乌拉根背斜南翼逆断层的发现及其地质意义[J].地震地质,33(2):277-288.
    卢华复,王胜利,贾东,等.2002.天山中段南麓的第四纪褶皱作用[J].科学通报,47(21):1675-1679.
    罗照华,莫宣学,柯珊,等.2003.塔什库尔干碱性杂岩体形成时代及其地质意义[J].新疆地质,21(1):46-50.
    牛之俊,游新兆,杨少敏.2007.利用GPS分析天山现今地壳形变特征[J].大地测量与地球动力学,27(2):1-9.
    曲国胜,李亦纲,张宁,等.2004.塔里木西南缘(齐姆根弧)前陆构造及形成机理[J].地质论评,50(6):567-576.
    尚新璐,陈新卫,吴超,等.2004.塔里木盆地西部喀什地区的新生代冲断构造[J].地质科学,39(4):543-550.
    王琪,丁国瑜,乔学军,等.2000.天山现今地壳快速缩短与南北地块的相对运动[J].科学通报,45(14):1543-1547.
    肖安成,贾承造,杨树锋,等.中国南天山西部冲断褶皱系前缘区的运动学特征[J].沉积学报,2000,18(3):439-444.
    肖伟鹏,陈杰,李涛,等.2011.帕米尔北缘木什背斜第四纪滑脱褶皱作用与北翼逆断裂的生长[J].地震地质,23(3):289-307.
    谢毓寿,蔡美彪主编.1987.中国地震历史资料汇编(第三卷)[Z].北京:科学出版社.
    杨会丽,陈杰,冉勇康,等.2011.汶川8.0级地震小鱼洞地表破裂带古地震事件的光释光测年[J].地震地质,33(1):1-11.
    尹金辉,陈杰,郑勇刚,等.2001.卡兹克阿尔特断裂带活动特征[J].中国地震,17:221-230.
    张家声,单新建,李建华,等.2005.帕米尔地区现今大陆深俯冲-地震构造和动力学解释[J].岩石学报,21(4):1215-1227.
    Abdrakhmatov K Y, Aldazhanov S A, Hager B H, et al.1996. Relatively recent construction of the Tien Shan inferred from GPSmeasurements of present-day crustal deformation rates [J]. Nature,384,450-453.
    Amidon W H, Hynek S A.2010. Exhumational history of the north central Pamir [J]. Tectonics,29: TC5017. doi:10.1029/2009TC002589.
    Amos C B, Burbank D W, Nobes D C, et al.2007. Geomorphic constraints on listric thrust faulting: Implications for active deformation inthe Machenzie Basin, South Island, New Zealand [J]. Journal of Geophysical Research,112: B03S11, doi:10.1029/2006JB004291.
    Amos C B, Burbank D W, Read S.2010. Along-strike growth of the Ostler Fault, New Zealand: consequences for drainage deflection aboveactive thrusts [J]. Tectonics,29:TC4021, doi:10.1029/2009TC002613.
    Arnaud N O, Brunel M, Cantagrel J M, et al.,1993. High colling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China)revealed by40Ar/39Ar alkali feldspar thermochronology [J]. Tectonics,21:1335-1346.
    Arrowsmith J R, Strecker M R.1999. Seismotectonic range front segmentation and mountain belt growth in the Pamir-Alai region,Kyrgyzstan (India-Eurasia collision zone)[J]. Geological Society of America Bulletin,111:1665-1683.doi:10.1130/0016-7606(1999)111<1665:SRFSAM>23.CO:2.
    Avouac J P, Peltzer G.1993. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation alongthe Hotan-Qira Fault system [J]. Journal of Geophysical Research,98(21):773-807.
    Benedetti L, Tapponnier P, King G, et al.2000. Growth folding and active thrusting in the Montello region, Veneto, northern Italy [J].Journal of Geophysical Research,105(B1),739-766.
    Bernard S, Avouac J P, Dominguez S, et al.2007. Kinematics of fault-related folding derived from a sandbox experiment [J]. Journal ofGeophysical Research,112: B03S12, doi:10.1029/2005JB004149.
    Blisniuk P M, Strecker M R.1996. Kinematics of Holocene normal faulting in the Northern Pamir [J]. Eos (Transactions, AmericanGeophysical Union),77(46): F693.
    Brookfield M, Hashma A.2001. The geology and petroleum potential of the North Afghan platform and adjacent areas (northernAfghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan)[J]. Earth Sci Rev,55:41-71.
    Brown E T, Molnar P, Bourlés D L.2005. Comment on “Slip-rate measurements on the Karakorum Fault may imply secular variations infault motion”[J]. Science,309:1326b.
    Brunel M, Arnaud N, Tapponnier P, et al.1994. Kongur Shan normal fault: Type example of mountain building assisted by extension(Karakoram fault, eastern Pamir)[J]. Geology,22:707-710.
    Bullard, T.F., Lettis, W,1993. Quaternary fold deformation associated with blind thrust faulting, Los Angeles Basin, California [J]. Journalof Geophysical Research,98(B5),8349-8369.
    Bullen M, Burbank D, Garver J, et al,2001. Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for theinitiation of mountain building [J]. Geol. Soc. Am. Bull.,113,1544-1559.
    Burbank D,Anderson R.2011. Tectonic Geomorphology [A].110,Blackwll Science,Malden,Mass.
    Burtman V S, Molnar P.1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir [J]. SpecialPaper Geol Soc A.,281:76.
    Burtman V S.2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transitionzone for the Cretaceous and Palaeogene [J]. Tectonophysics,319:69-92.
    Casas-Sainz A M, Cortes A L, Maestro A.2002. Sequential limb rotation and kink-band migration recorded by growth strata, Almazan Basin,North Spain [J]. Sedimentary Geology,146(1-2):25-45.
    Cattin R, Avouac J.2000. Modeling mountain building and the seismic cycle in the Himalaya of Nepal [J], J. Geophys. Res.105,13389-13407.
    Chen J, Burbank D W, Scharer K M, et al.2002. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan:Rates of Pleistocene folding and thrusting [J]. Earth and Planetary Science Letters,195:113-130, doi:10.1016/S0012-821X(01)00579-9.
    Chen J, Heermance R, Burbank D W, et al.2007.Quantifi cation of growth and lateral propagation of the Kashi anticline, southwest ChineseTian Shan [J]. Journal of Geophysical Research,112, B03S16, doi:10.1029/2006JB004345.
    Chen Y, Cogné J, Courtillot V.1992. New Cretaceous paleomagnetic poles from Tarim Basin, Northwestern China [J]. Earth and PlanetaryScience Letters,114:17-38. doi:10.1016/0012-821X(92)90149-P.
    Chen Y G, Lai K Y, Lee Y H, et al.2007. Coseismic fold scarps and their kinematic behavior in the1999Chi-Chi earthquake Taiwan [J].Journal of Geophysical Research,112: B03S02, doi:10.1029/2006JB004388.
    Coutand I, Strecker M R, Arrowsmith J R,et al.2002. Late Cenozoic tectonic development of the intramontane Alai Valley,(Pamir–TienShan region, central Asia): an example of intracontinental deformation due to the Indo-Eurasia collision [J]. Tectonics.21.doi:10.1029/2002TC001358.
    Cowgill, E, Yin A, Harrison T M, etal.2003. Reconstruction of the Altyn Tagh fault based on U-Pb ion microprobe geochronology: Role ofback thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau [J]. Journal of Geophysical Research,108, B2346, doi:10.1029/2002JB002080.
    Cowgill, E.2010. Cenozoic right-slip faulting along the easternmargin of the Pamir salient, northwestern China [J]. Geol Soc Am Bull,122:145-161. doi:10.1130/B26520.1.
    Currie J B, Patnode H W, Trump R P.1962. Development of folds in sedimentary rocks [J]. Geological Society of America Bulletin,73:655-674.
    Da ron M, Avouac J P, Charreau J.2007. Modeling the shortening history of a fault tip fold using structural and geomorphic records ofdeformation [J]. Journal of Geophysical Research, doi:10.1029/2006JB004460.
    Dolan J F, Christofferson S A, Shaw J H.2003. Recognition of paleoearthquakes on the Puente Hills blind thrust fault, California [J].Science,300:115-118.
    Dominguez S, Avouac J, Michel R.2003. Horizontal coseismic deformation of the1999Chi-Chi earthquake measured from SPOT satelliteimages: implications for the seismic cycle along the western foothills of central Taiwan [J], J. Geophys. Res.108, ESE8-1–8-19,doi:10.1029/2001JB000951.
    Ducea M N, Lutkov V, Minaev V T, et al.2003. Building the Pamirs: the view from the underside [J]. Geology,31(10):849-852.doi:10.1130/G19707.1.
    Epard J L, Groshong R H.1993. Excess area and depth to detachment [J]. AAPG Bull.,77(8):1291-1302.
    Fan G, Ni J F, Wallace T C.1994. Active tectonics of the Pamirs and Karakoram [J]. J Geophys Res,99:7l3-7160.
    Ghose S, Mellors R J, Korjenkov A M, et al.1997. The MS=7.31992Suusamyr, Kyrgyzstan, earthquake in the Tien Shan:2. Aftershockfocal mechanisms and surface deformation, Bull. Seismol. Soc. Am.,87(1),23-38.
    Hamburger M W, Sarewitz D R, Pavlis T L, et al.1992. Structural and seismic evidence for intracontinental subduction in the Peter the FirstRange Central Asia [J]. Geol Soc Am Bull,104:397-408.
    Hardy S, Poblet J.1994. Geometric and numerical model of progressive limb rotation in detachment folds [J]. Geology,22(4):371-374.
    Heermance R V, Chen J, Burbank D W,et al.2008. Temporal constraints and pulsed Late Cenozoic deformation during the structuraldisruption of the active Kashi foreland, northwest China [J]. Tectonics,27(TC6012).doi:10.1029/2007TC002226.
    Heermance, R V, Chen J., Burbank, D.W. et al.2007. Chronology and tectonic controls of LateTertiary deposition in the southwestern TianShan foreland, NW China: Basin Research,19:599-632, doi:10.1111/j.1365-2117.2007.00339.x.
    Hu B.1992. Petroleum geology and prospects of the Tarim (Talimu) Basin, China. In: Halbouty, M.T.,(Ed.), Giant Oil and Gas Fields of theDecade1978–1988[J], AAPG Memoir,54, pp.493-510.
    Hubert-Ferrari A, Suppe J, Gonzalez-Mieres R, et al.2007. Mechanisms of active folding of the landscape (southern Tian Shan, China)[J].Journal of Geophysical Research, doi:10.1029/2006JB004362.
    Jackson J, Molnar P, Patton H, et al.1979. Seismotectonic aspects of the Markansu Valley, Tajikstan, earthquake of August11,1974[J]. JGeophys Res,84:8157-9187.
    Jones C H.2002. User-driven Integrated Software Lives:"PaleoMag" Paleomagnetics Analysis on the Macintosh [J]. Computers andGeosciences,28(10):1145-1151.
    Keller E A, Zepeda R L, Rockwell T K, et al.1998. Active tectonics at Wheeler Ridges, southern San Joaquin Valley, California [J].Geological Society of American Bulletin,110(3):298-310,doi:10.1130/0016-7606(1998)110<0298:ATAWRS>2.3.CO;2.
    Keller E A, Gurrola L, Tierney T E.1999. Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding[J]. Geology,27(6):515-518, doi:10.1130/0091-7613(1999)027<0515:GCTDDO>2.3.CO;2.
    Kirschvink J L.1980. The least-squares method line and plane and the analysis of palaeomagnetic data [J]. Geophys J R Astr Soc,62:699-718.
    Lavé J,Avouac J P.2000. Active folding of fluvial terraces across the Siwaliks Hills,Himalayas of central Nepal [J]. Journal of GeophysicalResearch,105(3):5735-5770.
    Lin A, Kano Ken-ichi, Guo J,et al.2008. Late Quaternary activity and dextral strike-slip movement on the Karakax Fault Zone, northwestTibet [J]. Tectonophysics,453:44-62.
    Lourens, L J, Hilgen F J, Laskar J, et al.2004. The Neogene period: In: Geological Time Scale (Ed. By F.M. Gradstein, J.G. Ogg and A.Smith)[A], p.409-440. Cambridge University Press, Cambridge.
    Lu Y C, Wang X L, Wintle A G.2007. A new chronology for dust accumulation in the last130,000yr for the Chinese Loess Plateau [J].Quaternary Research,(67):152-160.
    McFadden P, Jones D.1981. The fold test in paleomagnetism [J]. Geophys J R Astron Soc,67:53-58.
    McFadden P, McElhinny M.1990. Classification of the reversal test in paleomagnetism [J]. Geophys J Int,103:725-729.
    Mellors R J, Vernohn F L, Pavlis G L, et al.1997. The Ms=7.31992Suusamyr, Kyrgyzstan earthquake:1. Contraints on fault geometryand source parameters based on aftershocks and body wave modeling [J], Bull. Seismol. Soc. Am.,87,11-22.
    Miao J, Jia C, Dai J, et al.2005. The geometry and kinematics of the structural wedge in the frontal zone of the southwestern Tian Shan,Northwestern margin of the Tarim Basin [A]. In: Abstracts of international conference on theory and application of fault-related foldingin foreland basins. Beijing, China.55:107.
    Mohadjer S, Bendick R, Ischuk A, et al.2010. Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements[J]. Geophysical Research Letters,37, L04305, doi:10.1029/2009GL041737.
    Murphy M, Yin A, Kapp P, et al.2000. Southward propagation of the Karakoram Fault system, southwest Tibet: Timing and magnitude ofslip [J]. Geology,28(5):451-454.
    Mueller K, Talling P.1997. Geomorphic evidence for tear faults accommodating lateral propagation of an active fault bend fold, WheelerRidge, California [J]. J Struct Geol,19:397-411.
    Negredo A, Replumaz A, Villase or A, et al.2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kushregion [J]. Earth Planet Sci Lett,259:212-225.
    Pavlis T, Hamburger M, Pavlis G.1997. Erosional processes as a control on the structural evolution of an actively deforming fold and thrustbelt: an example from the Pamir–Tien Shan region, central Asia [J]. Tectonics,16:810-822.
    Peltzer G, Tapponnier P, Armijo R.1989. Magnitude of late Quaternary leftlateral displacement along the north edge of Tibet [J]. Science,246:1285-1289.
    Petit J, Jouzel J, Raynaud D, et al.1999. Cliamte and atmospheric history of the past4200,000years from the vostok ice cor, Antarctica [J].Nature,399:429-436. doi:10.1038/20859.
    Phillips R J, Searle M P.2007. Macrostructural and microstructural architecture of the Karakoram fault: Relationship between magmatismand strikes-lip faulting [J]. Tectonics,26, TC3017, doi:10.1029/2006TC001946.
    Raterman N, Cowgill E, Lin D.2007. Variable structural style along the Karakoram fault explained using triple-junction analysis ofintersecting faults [J]. Geosphere,3:71-85. doi:10.1130/GES00067.1.
    Ratschbacher L, Frisch W, Liu G, et al.1994. Distributed deformation in southern and western Tibet during and after the India-Asiancollision [J]. Jouranal of Geophysical Research,99(19):917-945. doi:10.1029/94JB00932.
    Reigber C., et al.2001. New space geodetic constraints on the distribution of deformation in central Asia [J], Earth Planet. Sci. Lett.,191,157-165, doi:10.1016/S0012-821X(01)00414-9.
    Robinson A, Yin A, Manning C, et al.2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of theCenozoic Kongur Shan extensional system, western China [J]. Geological Society of America Bulletin,116:953-973.
    Robinson A, Yin A, Manning C, et al.2007. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms atthe western end of the Himalayan-Tibetan orogen [J]. Geological Society of America Bulletin,119:882-896.
    Robinson A.2009a. Geologic offsets across the northern Karakorum fault: implications for its role and terrane correlations in the westernHimalayan–Tibetan orogen [J]. Earth Planet Sci Lett,279:123-130.
    Robinson A.2009b. Evidence against Quaternary slip on the northern Karakorum Fault suggests kinematic reorganization at the western endof the Himalayan-Tibetan orogen [J].Earth and Planetary Science Letters,286(1-2):158-170.
    Robinson A, Yin A, Lovera O.2010. The role of footwall deformation and denudation in controlling cooling age patterns of detachmentsystems: An application to the Kongur Shan extensional system in the Eastern Pamir, China [J]. Tectonophysics,496:28-43. doi:10.1016/j.tecto.1020.10.003.
    Rockwell T, Keller E, Clark M.1984. Chronology and rates of faulting of Ventura River terraces,California[J]. Geological Society ofAmerica Bulletin,95:1466-1474.
    Rockwell T, Keller E, Dembrof G.1988. Quaternary rate of folding of the Ventura Avenue anticline,western Transverse Ranges, southernCalifornia [J]. Geological Society of America Bulletin,100:850-858.
    Rood D H, Burbank D W, Finkel R C.2011. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone [J].Earth and Planetary Science Letters,301:457-468, doi:10.1016/j.epsl.2010.11.006.
    Ryerson F, Finkel R, Meriaux A, et al.1997. Rapid slip on the Altyn Tagh fault; Karakax Valley Segment, in Geological Society of America1997Abstracts with Programs [J]. Salt Lake City,143.
    Ryerson F, Peltzer G, Tapponnier P, et al.1999. Active slip-rates on the Altyn Tagh fault Karakax valley segment: Constraints from surfaceexposure dating [J]. Eos, Transactions, American Geophysical Union,80(46): F1008.
    Rumelhart P, Yin A, Cowgill E, et al.1999. Cenozoic vertical-axis rotation of the Altyn Tagh fault system [J].Geology,27:819–822. doi:10.1130/0091-7613(1999)027<0819:CVAROT>2.3.CO;2.
    Scharer K, Burbank D, Chen J, et al.2004. Detatchment folding in the Southwestern Tian Shan–Tarim foreland, China: Shortening estimatesand rates [J]. Journal of Structural Geology,26:2119-2137, doi:10.1016/j.jsg.2004.02.016.
    Scharer K, Burbank D, Chen J, et al.2006. Kinematic models of fl uvial terraces over active detachment folds: Constraints on the growthmechanism of the Kashi-Atushi fold system, Chinese Tian Shan [J]. Geological Society of America Bulletin,118:1006-1021,doi:10.1130/B25835.1.
    Schmalholz, M.(2004), The Amalgamation of the Pamirs and Their Subsequent Evolution in the Far Field of the India-Asia Collision [A]185pp., Univ. of Tübingen, Tübingen, Germany.
    Schwab M, Ratschbacher L, Siebel W, et al.2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan tothe southern Pamirs and their relation to Tibet [J].Tectonics,23: TC4002, doi:10.1029/2003TC001583.
    Segall P.2002. Integrating Geologic and Geodetic Estimates of Slip Rate on the San Andreas Fault System [J], Int. Geol. Rev.,44,62-82.
    Shaw J H, Shearer.1999. An elusive blind-thrust fault beneath metropolitan Los Angeles [J]. Science,283:1516-1518.
    Shaw J H, Plesch A, Dolan J F, et al.2002. Puente Hills blind-thrust system, Los Angeles, California [J]. Bulletin of the SeismologicalSociety of America,92(8):2946-2960.
    Shen Z, Wang M, Li Y, et al.2001. Crustal deformation along the Altyn Tagh Fault system, wesetern China, from GPS [J]. Jouranl ofGeophysical Research,106(12):30607-30621.
    Simoes M, Avouac J, Chen Y, et al.2007. Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan: shortening rate and age offolding inception [J]. Journal of Geophysical Research,112:B03S14, doi:10.1029/2005JB004198.
    Sobel E, Dumitru T.1997. Exhumation of the margins of the western Tarim basin during the Himalayan orogeny [J]. J Geophys Res,102:5043-5064.
    Sobel E, Chen J, Heermance R.2006. Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan:implications for Neogene shortening rate variations [J]. Earth Planet Sci Lett,247:70-81.
    Sobel E, Schoenbohm L, Chen J, et al.2011. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications forPamir orogenesis [J].Earth and Planetary Science Letters,304:369-378.
    Storti F, Poblet J.1997. Growth stratal architectures associated to decollment folds and fault-propagation folds: Inferences on fold kinematics[J]. Tectonophysics,282(1-4):353-373.
    Strecker M, Frisch W, Hamburger M, et al.1995. Quaternary deformation in the eastern Pamirs, Tadzhikistan and Kyrgyzstan [J]. Tectonics,14:1061-1079.
    Suppe J.1983. Geometry and kinematics of fault-bend folding [J]. American Journal of Science,283:684-721.
    Suppe J, Medwedef D.1990. Geometry and kinematics of fault-propagation folding [J]. Ecologae Geol Helv,83(3):409-454.
    Suppe J, Chou G, Hook S.1992. Rates of folding and faulting determined from growth strata, in Thrust Tectonics, edited by McClay K R [J].105-121, CRC Press, Boca Raton,Fla.
    Tapponnier P, Molnar P.1977. Active faulting and tectonics in China [J]. J Geophys Res,82:2905-2930.
    Thomas J, Chauvin A, Gapais D, et al.1994. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia)[J].Journal of Geophysical Research,99(15):141-15,160. doi:10.1029/94JB00901.
    Thomas J, Cobbold P, Wright A, et al.1996. Cenozoic tectonics of the Tadzhik depression, Central Asia [A]. In Yin A, and Harrison T M,eds. The Tectonic Evolution of Asia: New York, Cambridge University Press,191-207.
    Thompson S, Weldon R, Rubin C, et al.2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia [J]. Journalof Geophysical Research,107(B9),2203, doi:10.1029/2001JB000596.
    Valli F, Leloup P, Paquette J, et al.2008. New U/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum Fault [J].Tectonics,27, doi:10.1029/2007TC002184.
    Windley B, Allen M, Zhang C, et al.1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia [J].Geology,18:128-131.
    Yang S, Li J, Wang Q.2008. The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observation [J]. Science inChina Series D,51:1064-1080.
    Yeats R, Clark M, Keller E, et al.1981. Active fault hazard in southern California: ground rupture versus seismic shaking [J]. GeologicalSociety of America Bulletin,92:189-196.
    Yin A, Nie S, Craig P, et al.1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan [J]. Tectonics,17:1-17,doi:10.1029/97TC03140.
    Yin A, Yang Z, Butler R, et al.2000. Correction: Cenozoic verticalaxis rotation of the Altyn Tagh fault system [J]. Geology,28:480. doi:10.1130/0091-7613(2000)28<480:CVROTA>2.0.CO;2.
    Yin A, Robinson A, Manning C.2001. Oroclinal bending and slab break-off causing coeval east-west extension and east-west contraction inthe Pamir–Nanga Parbat syntaxis in the past10m.y.[J]. Eos (Transactions, American Geophysical Union),82(47): F1124.
    Yin A, Rumelhart P, Butler R, et al.2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoicsedimentation [J]. Geological Society of America Bulletin,114:1257-1295.
    Zubovich A, Wang X, Scherba Y, et al.2010.GPS velocity field of the Tien Shan and surrouding region [J].Tectonics,29: TC6014.doi:10.1029/2010TC002772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700