用户名: 密码: 验证码:
震损钢筋混凝土框架结构抗震性能评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
破坏性地震在我国时有发生,这些地震均造成大量房屋建筑的损伤与破坏;同时,早期建设的震损结构也存在着过早劣化的现象,面临着维修加固甚至提前退役的境遇,因此对地震受损钢筋混凝土结构进行抗震性能评估有着重要的现实意义。本文以框架结构为研究对象,从地震作用取值、损伤模型确定、抗震性能评估方法研究三个方面对震损结构抗震性能评估展开了深入的研究。论文的主要研究工作和成果如下:
     ①建立了均匀泊松分布地震发生概率模型和非齐次泊松分布地震发生概率模型,用于表征是否考虑场地历史地震发生信息;基于地震发生概率模型,给出了不同地震风险中的结构应选用的抗震评估设防准则。考虑结构不同使用寿命及结构后续服役期内场地地震具有不同超越概率的影响,推导出各抗震评估准则下结构评估烈度在剩余使用寿命内的超越概率换算为设计基准期为50年时的相当超越概率的计算公式;推导出各评估准则下水平地震影响系数最大值、地面峰值加速度与评估烈度之间的换算关系;给出了结构在不同评估准则、不同剩余使用寿命下的震损结构抗震性能评估用地震地震作用取值调整系数。
     ②选取了47个钢筋混凝土压弯构件在低周往复加载损伤试验条件下获得的滞回曲线数据结果,根据Park-Ang损伤指数计算公式,计算出损伤构件不同损伤状态点对应的损伤指数值,并通过数据回归分析,得到了损伤构件刚度退化系数和强度退化系数与构件损伤指数值之间的拟合关系式,建立了考虑地震损伤的损伤构件恢复力模型,并在此基础上提出了考虑材料劣化的震损构件恢复力模型;同时,在考虑材料劣化的损伤构件恢复力骨架线时,针对混凝土和钢筋材料劣化本构关系与混凝土碳化深度有着密切关系的现状,引入贝叶斯更新方法对已有混凝土碳化深度预测模型的预测结果进行了重新估计,使得预测结果的准确性和客观性得到大幅提高。
     ③在既有结构基于性能的抗震评估方法研究中,静力弹塑性分析方法是一种重要的分析方法,本文基于模态弹塑性理论,结合动力时程分析方法和静力弹塑性分析方法的优点对传统Pushover分析方法中结构在地震作用下的顶点目标位移的确定方法以及考虑高阶振型影响的侧向力加载模式进行了改进,并详细给出了基于本文方法的建筑结构抗震性能评估流程。将改进方法应用于五层和十层完好框架结构以及十层地震受损钢筋混凝土框架结构的抗震性能评估中,计算结果表明:本文改进Pushover法能够有效模拟结构在地震作用下的真实反应,也能体现震损结构在后续地震作用过程中的非线性行为。
     ④考虑到地震易损性分析是结构基于性能的抗震评估中一个必不可少的研究内容,且传统三水准地震作用并不能合理描述现行抗震设计规范中划分的五个结构性能目标,特别是不能为轻微地震损伤结构的抗震性能评估提供依据。为了完善了基于性能的既有钢筋混凝土结构抗震性能评估体系,作者针对既有结构可能遭遇的地震风险水平特征,参考已有研究成果,在现有小震、中震和大震地震作用水平基础上,新引入了一个50年地震超越概率为40%的地震作用水平,定义为“中小震”,并建立了既有钢筋混凝土结构在不同地震作用水平下的抗震性能水平目标。
     ⑤建立了地震受损钢筋混凝土框架结构抗震性能评估方法的理论体系和基本流程,并以一栋10层钢筋混凝土框架结构为例,详细说明了震损结构抗震性能评估过程中损伤模型以及评估用地震作用取值的确定过程,并验算了结构不同损伤位置对各抗震性能评估方法可靠性和适用性的影响。
Destructive earthquakes occur occasionally in our country, and these earthquakeshave led to a large number of damaged engineering structures; meanwhile, the earlymassive concrete structures, especially the earthquake-damaged buildings, have thephenomenon of premature deterioration thatneed to be maintained or strengthened, andsome buildings even face the situation of early retirement. Therefore, it is significanceto evaluate the seismic performance ofearthquake-damaged reinforced concretestructures.This paper took RC frame structure as the object,and three research contentsfor the earthquake-damagedstructures, includingearthquake action calculation, damagemodel determine and seismie performance evaluation method were deply studied in thispaper.The main contents and resultsof thispaper as following:
     ①The Homogeneous Poisson distribution modelsand the Inhomogeneous Poissonprobabilistic models for earthquake occurrencewere established to characterizeif theconstruction site will consider the history earthquake informations.The seismicappraisal criteria of structures in different seismic risk were established based on theearthquake occurrenceprobabilistic models.Considering the different residual servicelives of structures and the different exceeding probability of earthquake in different sites,the calculation formulas of exceeding probability of assessment intensities were derived,while the exceeding probability based on the residual service life was converted to thewell-matched exceeding probability based on the design reference period (i.e.,50years);The values of small earthquake intensity and major earthquake intensity of three zoneswith different seismic hazard characteristics were studied in this paper, then theconversion among maximum horizontal earthquake influence coefficient, peak groundacceleration and seismic intensity were derived; the modification factors of seismicaction of buildings at the three zones with different seismic appraisal assessment criteriaand different residual service lives were provided in this paper.
     ②The hysteresis curve datas of47compression-flexure concrete columnswereselected in the study, and the damage index values corresponding to different damagestatus of each damaged concrete column were calculated usingthe Park-Ang damageindex calculation formula.Through regression analysis, the fitting relations betweenstiffness degradation coefficient(strength degradation coefficient)and damage index values of damaged members were obtained. The restoring force model of damagedmembers only considering seismic damage was established in this paper, and on thisbasis, restoring force model determining method of earthquake damaged membersconsidering the durability of material was given. Noticed the close relationship betweenconcrete carbonation depth and concrete material deterioration constitutive relationship,Bayesian Updating was incorporated to reevaluate the results obtained viawell-established models, and its accuracy and objectivity is enhanced extensively byBayesian updating.
     ③In the methods of seismic performance evaluation of existing structures,thestatic elastic-plastic analysis method is oneofimportant method. Based on the modalelastic-plastic theory, considering the advantagesof dynamic time history analysismethod and static elastic-plastic analysis method, the determination of targetdisplacements for buildings under the earthquake action and the load pattern ofpushover analysis considering higher mode effects were improved in this paper, andthen the detailseismic performanceevaluating processof the new improvedmethodpropose by the authorfor structures was given. Make the modified pushovermethod applying to the performance evaluation fortwoundamagedframestructures(five-story and ten-storyframe structure) and a seismic damageten-storyframestructure. The results show that the modified pushover method can efficiently simulatethe seicmic response of structure under earthquake action and also can embody thenonlinear behavior of the earthquake-damage structure during the subsequentearthquakes.
     ④Considering that seismic fragility analysis is an essential content of theperformance-based seismic assessment on existing structures,and the groups of structureperformance objective on three traditional levels of horizontal earthquake action can'treasonably describe the five seismic performance objectivesdefined by the current codeof seismic design, especiallycan't provide a basis for seismic performance assessment ofslight earthquake damaged structure. In order to perfect the performance-based seismicperformance assesment system of existing reinforced concrete structures, the authordefined a new earthquake action level with exceeding probability of40%in50yearsnamed medium-small earthquake aimed at the different seismic risk level characteristicswhich may be encountered for the existing structures. Based on the available actionlevel of small, mediumand strong earthquake, and established the seismic performanceobjectives corresponding to different earthquake action levels of exciting RC structures, in order to perfect the performance-based seismic performance assesment system ofexisting RC structures.
     ⑤A theory system and basic procedure of evaluating the seismic performance ofRC structures after earthquake was established. And then, a10-layers RC framestructure was taken to explain the damage model in seismic performance evaluationprocess, and how to confirm the assessment earthquake action of earthquake damagedstructures. And the influence of the different damage locations to the reliability andapplicability of different evaluation methods were checked.
引文
[1] GB50009-2012.建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.
    [2] GB50023-2009.建筑抗震鉴定标准[S].北京:中国建筑工业出版社,2009.
    [3]朱凯.基于性态既有建筑抗震性能评估方法研究与应用[D].南京:东南大学,2008.
    [4]周云,安宇.基于性态的抗震设计理论和方法的研究与发展[J].世界地震工程,2001,17(2):1~7.
    [5] GB50011-2010.建筑抗震设计规范[S].北京:建筑工业出版社,2010.
    [6]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,298(10):1~8.
    [7]曲哲,张令心.日本钢筋混凝土结构抗震加固技术现状与发展趋势[J].地震工程与工程振动,2013,33(04):61~74.
    [8]周平槐.日本既有钢筋混凝土建筑抗震鉴定方法[J].建筑结构,2012,42(8):151~156.
    [9]田福胜,高琳.日本建筑抗震标准的变迁和现行的抗震标准[J].建筑结构,2012,42(03):152~157.
    [10]白雪霜.现有钢筋混凝土框架结构抗震鉴定方法试验研究[D].北京:中国建筑科学研究院,2012.
    [11]叶列平,孙玉平,朱珊等.日本钢筋混凝土多层结构抗震评估方法[J].建筑结构,2010,40(08):110~116.
    [12] Council B S S. NEHRP Handbook for the Evaluation of the Existing Buildings. FEMA178:Washington, Etats–Unis,1992
    [13] Agency F E M. Handbook for the Seismic Evaluation of Buildings-A Prestandard: FederalEmergency Management Agency Washington, DC,1998
    [14] Structural E I. Seismic Evaluation of Existing Buildings[M] ASCE Publications,2003
    [15] Applied T C. Seismic evaluation and retrofit of concrete buildings,1996
    [16] Rojahn C, Scawthorn C. Rapid Visual Screening of Buildings for Potential Seismic Hazards:A Handbook[M] Applied Technology Council,2002
    [17] Rojahn C, Poland C D, Scawthorn C. Rapid Visual Screening of Buildings for PotentialSeismic Hazards: Supporting Documentation[M] Applied Technology Council,2002
    [18]冯立平,张敬书,金德保等.汶川地震后建筑抗震鉴定的进展[J].工程抗震与加固改造,2010,32(05):101~106.
    [19]张照福,高冬芹.建筑抗震鉴定加固的历史现状和展望[J].低温建筑技术,2009,31(04):71~73.
    [20]罗琨.中日欧现有建筑抗震性能评估方法比较研究[D].北京:北京交通大学,2011.
    [21]张敬书.建筑抗震鉴定与加固[M].北京:中国水利水电出版社,2006.
    [22]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报:自然科学版,2002,30(12):1429~1434.
    [23]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安:西安建筑科技大学,2002.
    [24] Moehle J P. Displacement-based design of RC structures subjected to earthquakes[J].Earthquake spectra,1992,8(3):403~428
    [25] Bertero V V, Anderson J C, Krawinkler H. Performance of steel building structures during theNorthridge earthquake[M] Earthquake Engineering Research Center, University of California,1994
    [26] Miranda E, Bertero V V. Evaluation of strength reduction factors for earthquake-resistantdesign[J]. Earthquake Spectra,1994,10(2):357~379
    [27] Atc A.40, Seismic evaluation and retrofit of concrete buildings[J]. Applied TechnologyCouncil,1996
    [28] Building Seismic Safety Council (BSSC).(1997).“NEHRP guidelines for the seismicrehabilitation of buildings.” Rep. FEMA-273(Guidelines) and Rep. FEMA-274(Commentary), Washington, D.C.
    [29] Vision C. Performance-based engineering of building[J]. Committee of the Structure EngineerAssociation of California. Oakland, Calf: Wiley Inc,1995
    [30]王朝波.既有多高层钢框架抗震鉴定指标体系及分析方法研究[D].上海:同济大学,2007.
    [31] Council B S S. Prestandard and commentary for the seismic rehabilitation of buildings[J].Report FEMA-356, Washington, DC,2000
    [32]王丰.基于性能的结构多维抗震设计方法研究[D].大连:大连理工大学,2007.
    [33] Krawinkler H, Miranda E. Performance-based earthquake engineering[J]. Earthquakeengineering: From engineering seismology to performance-based engineering,2004:1~9
    [34] Sasaki K, Freeman S A, Paret T F. Multi-mode pushover procedure (MMP)—a method toidentify the effect of higher modes in a pushover analysis[C]. Proceedings of the Sixth U.S.NCEE, Seattle, Washington,1998:
    [35] Moghadam A S. A pushover procedure for tall buildings[C]. In:Proc.12th EuropeanConference on Earthquake Engineering, London(United Kindom),2002:407~424
    [36] Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demandsfor buildings[J]. Earthquake Engineering&Structural Dynamics,2002,31(3):561~582
    [37] Jan T S, Liu M W, Kao Y C. An upper-bound pushover analysis procedure for estimating theseismic demands of high-rise buildings[J]. Engineering Structures,2004,26(1):117~128
    [38] Sun-Pil Kima Y C K. An alternative pushover analysis procedure to estimate seismicdisplacement demands[J]. Engineering Structures,2008,30(12):3793~3807
    [39] Poursha M, Khoshnoudian F, Moghadam A S. A consecutive modal pushover procedure forestimating the seismic demands of tall buildings[J]. Engineering Structures,2009,31(2):591~599
    [40] Sucuo lu H, Günay M S. Generalized force vectors for multi-mode pushover analysis[J].Earthquake Engineering&Structural Dynamics,2011,40(1):55~74
    [41] Bertero V V. Strength and deformation capacities of buildings under extreme environments[J].Structural engineering and structural mechanics,1977,53(1):29~79
    [42] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering&Structural Dynamics,2002,31(3):491~514
    [43] Venture S J, Committee G D, Venture S J. Recommended seismic design criteria for new steelmoment-frame buildings, Report No. FEMA350[M] Federal Emergency ManagementAgency,2000
    [44] Venture S J. Recommended Seismic Evaluation and Upgrade Criteria for Welded SteelMoment Frame Buildings, Report No. FEMA351[M] Federal Emergency ManagementAgency, Washington, DC,2000
    [45] Mofid M, Zarfam P, Fard B R. On the modal incremental dynamic analysis[J]. The StructuralDesign of Tall and Special Buildings,2005,14(4):315~329
    [46] Han S W, Chopra A K. Approximate incremental dynamic analysis using the modal pushoveranalysis procedure[J],2006,35(15):1853~1873
    [47] Montiel M A, Ruiz S E. Influence of structural capacity uncertainty on seismic reliability ofbuildings under narrow‐band motions[J]. Earthquake Engineering&Structural Dynamics,2007,36(13):1915~1934
    [48] Azarbakht A, Dol ek M. Prediction of the median IDA curve by employing a limited numberof ground motion records[J]. Earthquake Engineering&Structural Dynamics,2007,36(15):2401~2421
    [49] Vamvatsikos D, Cornell C A. Direct Estimation of Seismic Demand and Capacity ofMultidegree-of-Freedom Systems through Incremental Dynamic Analysis of Single Degree ofFreedom Approximation1[J]. Journal of Structural Engineering,2005,131(4):589~599
    [50]杨成,徐腾飞,李英民等.应用弹塑性反应谱对IDA方法的改进研究[J].地震工程与工程振动,2008,28(4):64~69.
    [51]杨成,潘毅,赵世春等.烈度指标函数对IDA曲线离散性的影响[J].工程力学,2010,27(S1):68~72.
    [52]白久林,欧进萍.基于IDA方法的钢筋混凝土结构失效模式优化[C].第19届全国结构工程学术会议,济南,2010:1~6
    [53]吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析[J].地震工程与工程振动,2012,32(5):19~25.
    [54] Park Y, Ang A H. Mechanistic seismic damage model for reinforced concrete[J]. Journal ofStructural Engineering,1985,111(4):722~739
    [55]黄义龙.既有损伤结构地震反应分析与抗震性能评估[D].上海:同济大学,2008.
    [56]江辉,朱晞.以性能指标为控制变量的强度折减因子[J].铁道学报,2008,30(6):88~95.
    [57]江辉,慎丹,刘夏润等.基于改进Park-Ang模型的RC桥墩地震动损伤及滞回耗能特性研究[J].振动与冲击,2012,(5):97~105.
    [58] Rodriguez G S, Cakmak A S. Evaluation of seismic damage indices for reinforced concretestructures[R].Technical report NCEER-90-0022. State University of New York at Buffalo:Department of Civil Engineering,1990,
    [59] Gu X L, Shen Z Y. Damage analysis of reinforced concrete structures under earthquakeseries[C]. Proceedings of The7th International Conference on Computing in Civil andBuilding Engineering, Seoul, Korea,1997:1019~1024
    [60]刘晶波,王文晖,赵冬冬等.循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J].地震工程学报,2013,35(1):21~28.
    [61]黄志华,吕西林,周颖等.高层混合结构地震整体损伤指标研究[J].同济大学学报(自然科学版),2010,38(02):170~177.
    [62] Park Y, Ang A H, Wen Y K. Seismic damage analysis of reinforced concrete buildings[J].Journal of Structural Engineering,1985,111(4):740~757
    [63]吴波,欧进萍.钢筋砼结构在主余震作用下的反应与损伤分析[J].建筑结构学报,1993,14(5):45~53.
    [64]曹秋迪.基于构件尺度的框架-核心筒结构地震损伤评价方法[D].哈尔滨:哈尔滨工业大学,2011.
    [65]欧进萍,何政,吴斌等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(01):21~30.
    [66]张俊芝,高兑现,李桂青.服役建筑结构可靠性评估的可变荷载取值研究[J].工业建筑,2000,30(12):58~61.
    [67]李英民,周小龙.基于可靠性理论的既有结构楼面活荷载取值研究[J].建筑结构,2014,44(11):104~109.
    [68]张超,翁大根.震损建筑抗震鉴定加固中地震作用取值研究[J].建筑结构学报,2013,34(2):61~68.
    [69]毋剑平,白雪霜,孙建华.不同设计使用年限下地震作用的确定方法[J].工程抗震,2003,25(2):36~39.
    [70]孙彬,牛荻涛,董振平.在役结构抗震评估地震作用取值研究[J].西安建筑科技大学学报(自然科学版),2003,35(4):312~316.
    [71]马玉宏,赵桂峰,谢礼立等.考虑地震环境下现役结构抗震加固设防地震动参数研究[J].四川建筑科学研究,2010,36(2):163~167.
    [72]雷拓,钱江,苏晓燕.现役结构抗震评估地震作用确定方法[J].沈阳建筑大学学报:自然科学版,2009,25(4):620~624.
    [73]谢礼立,马玉宏.基于抗震性态的设防标准研究[J].地震学报,2002,24(2):200~209.
    [74]陈朝晖,卢有杰,刘西拉.大地震发生概率的半马尔可夫模型[J].工程力学,1995,12(s1):1983~1988.
    [75]张启明.灰色马尔可夫预测模型及在地震预报中的应用[J].地震学刊,1994,(1):25~29.
    [76]洪峰,谢礼立.工程结构抗震设计中小震、中震和大震的确定方法[J].地震工程与工程振动,2000,20(2):1.
    [77]龚平.非齐次复合Poisson地震发生概率模型研究[J].地震,2000,20(3):73~81.
    [78]胡聿贤.地震危险性分析中的综合概率法[M].北京:地震出版社,1990.
    [79]胡聿贤.地震工程学[M].北京:地震出版社,2005.
    [80] Lomnitz C. Seismic risk and engineering decisions[M] Elsevier,2012
    [81] Yegulalp T M, Kuo J T. Statistical prediction of the occurrence of maximum magnitudeearthquakes[J]. Bulletin of the Seismological Society of America,1974,64(2):393~414
    [82]高小旺,刘佳,高炜.不同重要性建筑抗震设防目标和标准的探讨[J].建筑结构,2009,39(S1):537~541.
    [83]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13~22.
    [84] GB50223-2008.建筑工程抗震设防分类标准[S].北京:中国建筑工业出版社,2008.
    [85]马玉宏.基于性态的抗震设防标准研究[D].哈尔滨:中国地震局工程力学研究所,2000.
    [86] GB50068-2001.建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001.
    [87]丁伯阳,赵冬,李通坤.在役结构后役期的设防烈度探讨[J].地震学报,2005,27(6):677~681.
    [88]张鑫,李安起,赵考重.建筑结构鉴定与加固改造技术的进展[J].工程力学,2011,28(1):1~11.
    [89]周锡元,曾德民,高晓安.估计不同服役期结构的抗震设防水准的简单方法[J].建筑结构,2002,32(1):37~40.
    [90] Zhou X L, Li Y M. Study on ground motion parameters of seismic appraisal for existingstructures based on residual service life[J]. Advanced Materials Research,2012,368-373:2303~2308
    [91]李亚琦.中国地震危险性特征分区[D].哈尔滨:中国地震局工程力学研究所,1999.
    [92]刘恢先,卢荣俭,陈达生.修订我国地震烈度表的一个建议方案.中国科学院工程力学研究所报告集(四)[R].北京:科学出版社,1981,1~13.
    [93] Darragh R B. Earthquke engineering aspects of strong motion data from recent Californiaearthquakes[C],1994
    [94]牛狄涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [95] Tomosawa F. Japan's experiences and standards on the durability problems of reinforcedconcrete structures[J]. International Journal of Structural Engineering,2009,1(1):1~12
    [96]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J].工业建筑,1998,28(1):16~19.
    [97]潘洪科,牛季收,杨林德等.地下工程砼结构基于碳化作用的耐久性劣化模型[J].工程力学,2008,25(7):172~178.
    [98]罗小勇,邹洪波,施清亮.不同应力状态下混凝土碳化耐久性试验研究[J].自然灾害学报,2012,21(2):194~199.
    [99] Chang C, Chen J. Strength and elastic modulus of carbonated concrete[J]. ACI materialsjournal,2005,102(5)
    [100]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(03):47~52.
    [101]金伟良.混凝土结构耐久性[M].北京:科学出版社,2002.
    [102]曾华.多龄期钢筋混凝土构件力学性能的研究[D].哈尔滨工业大学,2008.
    [103]徐善华.混凝土结构退化模型与耐久性评估[D].西安建筑科技大学,2003.
    [104] du Béton C E. CEB-FIP Model Code1990: Design Code[M] FIB-Féd. Int. du Béton,1993
    [105]卯诗松.贝叶斯统计[M].北京:中国计划出版社,2000.
    [106]卫军,罗扣.基于贝叶斯方法的时变可靠度分析[J].华中科技大学学报:自然科学版,2007,35(2):1~3.
    [107]刘书奎,吴子燕,韩晖等.基于物理参数贝叶斯更新的桥梁剩余强度估计研究[J].工程力学,2011,28(8):126~132.
    [108]宁宝宽,王维纲.浅基础可靠性设计中的贝叶斯统计方法及应用[J].沈阳工业大学学报,2005,27(1):103~106.
    [109]吴本英,周锡武.基于贝叶斯方法的混凝土结构碳化深度预测研究[J].武汉理工大学学报,2011,33(3):103~107.
    [110]李英民,周小龙,谭潜.受力状态下混凝土材料劣化模型与可靠性分析[J].土木建筑与环境工程,2013,35(06):82~88.
    [111]丁伯阳,郑工钦,孔德玉.概率模型分析与混凝土碳化[J].浙江工业大学学报,2006,34(2):210~212,219.
    [112]屈文俊,陈道普.混凝土碳化的随机模型[J].同济大学学报(自然科学版),2007,35(5):577~581.
    [113]易伟建,刘翔.基于贝叶斯估计的结构固有频率不确定性分析[J].振动与冲击,2010,29(7):19~23.
    [114]张令茂,江文辉.混凝土自然碳化及其与人工加速碳化的相关性研究[J].西安冶金建筑学院学报,1990,22(3):207~214.
    [115]李杰.混凝土随机损伤力学的初步研究[J].同济大学学报,2004,32(10):1270~1277.
    [116]李杰,任晓丹.混凝土静力与动力损伤本构模型研究进展述评[J].力学进展,2010,40(03):284~297.
    [117] Bracci J M. Deterministic Model for Seismic Damage Evaluation on Reinforced ConcreteStructures[M] National Center for Earthquake Engineering Research,1989
    [118]. Dynamic damage constitutive model of concrete in uniaxial tension[J]
    [119]. Rate Dependent Damage Model for Concrete in Dynamics[J]
    [120] Yan D, Lin G. Experimental study on concrete under dynamic tensile loading[J]. Journal ofCivil Engineering Research and Practice,2006,3(1):1~8
    [121] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates andpressures: I. experimental characterization[J]. International Journal of Impact Engineering,2001,25(9):869~886
    [122]刘军.混凝土损伤本构模型研究及其数值实现[D].大连理工大学,2012.
    [123]李杰,吴建营.混凝土弹塑性损伤本构模型研究Ⅰ:基本公式[J].土木工程学报,2005,38(09):14~20.
    [124]吴建营,李杰.混凝土弹塑性损伤本构模型研究II数值计算和试验验证[J].土木工程学报,2005,38(9):21~27.
    [125]刘军,林皋.适用于混凝土结构非线性分析的损伤本构模型研究[J].土木工程学报,2012,45(6):50~57.
    [126] Yazdani S, Schreyer H L. Combined plasticity and damage mechanics model for plainconcrete[J]. Journal of engineering mechanics,1990,116(7):1435~1450
    [127] Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massiveconcrete structures[J]. International Journal of Solids and Structures,1998,35(14):1533~1558
    [128] Comi C, Perego U. Fracture energy based bi-dissipative damage model for concrete[J].International Journal of Solids and Structures,2001,38(36):6427~6454
    [129] Hatzigeorgiou G, Beskos D, Theodorakopoulos D, et al. A simple concrete damage model fordynamic FEM applications[J]. International Journal of Computational Engineering Science,2001,2(02):267~286
    [130]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [131]欧进萍,吴波.有损伤压弯构件的恢复力试验研究及其应用[J].建筑结构学报,1995,16(06):21~29.
    [132]王学民.锈蚀钢筋混凝土构件抗震性能试验与恢复力模型研究[D].西安建筑科技大学,2003.
    [133]欧进萍,何政,吴斌等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,(01):21~30.
    [134] Fib. Displacement-Based Seismic Design of Reinforced Concrete Buildings[M] InternationalFederation for Structural Concrete,2003
    [135]张宇,李宏男,李钢.考虑钢筋锈蚀的震损结构抗震性能评估[J].建筑科学与工程学报,2011,(04):97~105.
    [136]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析[J].地震工程与工程振动,2009,(06):33~39.
    [137] Fema F. Recommended seismic design criteria for new steel moment-framebuildings[R].FEMA-350, SAC Joint Venture Washington, DC,2000,
    [138]卜一,吕西林,周颖等.采用增量动力分析方法确定高层混合结构的性能水准[J].结构工程师,2009,25(2):77~84.
    [139]洪博,潘志宏.地震动记录选取对增量动力分析结果的影响[J].四川建筑科学研究,2012,(06):151~155.
    [140]马千里,叶列平,陆新征等.采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究[J].建筑结构学报,2008,29(2):132~140.
    [141] Mwafy A M, Elnashai A S. Static pushover versus dynamic collapse analysis of RCbuildings[J]. Engineering Structures,2001,23:407~424
    [142] Vamvatsikos D. Seismic performance, capacity and reliability of structures as seen throughincremental dynamic analysis:[D]. Stanford,CA: Stanford University,2002
    [143] Chopra A K. Dynamics of structures: Theory and applications to earthquake engineering[M]Prentice Hall,2001
    [144]江义.基于能量平衡的建筑结构非线性静力方法及分灾设计谱的研究[D].大连理工大学,2013.
    [145]邹中权.桥梁结构抗震性能概率性分析方法研究[D].长沙:中南大学,2010.
    [146]北京金土木软件技术有限公司. Pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社,2010.
    [147] Fema.273.NEHRP Commentary on the Guidelines for the Rehabilitation of Building,1996
    [148] Applied Technology Council (ATC).(2005).“Improvement of nonlinear static seismicanalysis procedures.” Rep. No. FEMA-440, Washington, D.C.
    [149] Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismicdeformation of inelastic structures_SDF systems[J]. Civil and Environmental Engineering,1999,53
    [150] Albanesi T, Nuti C, Vanzi I. A simplified procedure to assess the seismic response ofnonlinear structures[J]. Earthquake Spectra,2000,16(4):715~734
    [151] Moran M S, Jackson R D, Slater P N, et al. Evaluation of simplified procedures for retrieval ofland surface reflectance factors from satellite sensor output[J]. Remote Sensing ofEnvironment,1992,41(2):169~184
    [152]毛龙,蒋首超.考虑高阶振型影响的非自适应Pushover分析方法的研究进展[J].四川建筑科学研究,2012,38(03):210~215.
    [153]梁兴文.结构抗震性能设计理论与方法[M].北京:科学出版社,2011.
    [154]朱红武,王孔藩,唐寿高.模态损伤指标及其在结构损伤评估中的应用[J].同济大学学报(自然科学版),2004,32(12):1589~1592.
    [155]白久林,欧进萍.基于能量平衡的钢筋混凝土框架结构抗震塑性设计方法[J].建筑结构学报,2012,33(10):22~31.
    [156] Akiyama H. Earthquake resistant limit state design of buildings[M]. Tokyo: University ofTokyo Press,1985.11~44
    [157] Uang C, Bertero V V. Use of energy as a design criterion in earthquake-resistant design[M]Earthquake Engineering Research Center, University of California,1988
    [158]扶长生,张小勇.推覆分析的原理和实施[J].建筑结构,2012,42(11):1~10.
    [159] Azimi H, Galal K, Pekau O A. Incremental modified pushover analysis[J]. The StructuralDesign of Tall and Special Buildings,2009,18(8):839~859
    [160]杨刚.基于能量设计法的等效单自由度体系确定[D].重庆市:重庆大学,2007.
    [161] Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demandsfor buildings: theory and preliminary evaluation[R].Berkeley, CA: Pacific EarthquakeEngineering Research Center, University of California,2001,
    [162]肖明葵,白绍良,刘纲等.求弹塑性位移谱的一种简化方法[J].重庆大学学报(自然科学版),2002,25(07):99~103.
    [163]李英民,刘立平.工程结构的设计地震动[M].北京:科学出版社,2010.
    [164]李英民.工程地震动的模型化研究[D].重庆:重庆大学,1999.
    [165]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(06):33~37.
    [166]赵炜.掉层框架结构强震破坏模式研究[D].重庆大学,2012.
    [167] Jalayer F, Cornell C A. A technical framework for probability-based demand and capacityfactor design (DCFD) seismic formats[M] Pacific Earthquake Engineering Research Center,2004
    [168]吕大刚.结构抗震可靠度二种简化解析表达式的一致性证明[J].地震工程与工程振动,2009,29(05):59~65.
    [169]吴巧云.基于性能的钢筋混凝土框架结构抗震性能评估[D].华中科技大学,2011.
    [170]吕大刚,于晓辉,王光远.单地震动记录随机增量动力分析[J].工程力学,2010,27(S1):53~58.
    [171]门进杰,史庆轩,周琦.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报,2008,41(9):76~82.
    [172]张宇,李宏男,李钢.既有钢筋混凝土结构抗震设防目标与性能评估[J].建筑结构学报,2013,34(07):29~39.
    [173]蔡秋琦,高磊,王君杰.结构损伤指标研究综述[J].结构工程师,2010,26(4):144~153.
    [174]顾祥林,许勇,张伟平.既有建筑结构构件的安全性分析[J].建筑结构学报,2004,25(6):117~122.
    [175] Ghobarah A, El-Amoury T. Seismic rehabilitation of deficient exterior concrete frame joints[J].Journal of Composites for Construction,2005,9(5):408~416
    [176]朱红武,王孔藩,唐寿高.模态损伤指标及其在结构损伤评估中的应用[J].同济大学学报(自然科学版),2004,32(12):1589~1592.
    [177] Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damageidentification methods[J]. Shock and vibration digest,1998,30(2):91~105
    [178] Ghobarah A, Abou-Elfath H, Biddah A. Response-based damage assessment of structures[J].Earthquake Engineering and Structural Dynamics,1999,28(1):79~104
    [179]秋山宏著,叶列平,裴星洙译.基于能量平衡的建筑结构抗震设计[M].北京:清华大学出版社,2010.
    [180]王丰,李宏男.基于等效单自由度体系的结构滞回耗能估计[J].大连理工大学学报,2007,47(01):85~89.
    [181] Khashaee P. Energy-based seismic design and damage assessment for structures:[D]. SouthernMethodist University,2005
    [182] Prasanth T, Ghosh S, Collins K R. Estimation of hysteretic energy demand using concepts ofmodal pushover analysis[J]. Earthquake Engineering&Structural Dynamics,2008,37(6):975~990
    [183]韩军.建筑结构扭转地震反应分析及抗扭设计方法研究[D].重庆大学,2009.
    [184] Scott B D, Park R, Priestley M. Stress-strain behavior of concrete confined by overlappinghoops at low and high strain rates[C] ACI,1982
    [185] Taucer F, Spacone E, Filippou F C. A fiber beam-column element for seismic responseanalysis of reinforced concrete structures[M] Earthquake Engineering Research Center,College of Engineering, University of California,1991
    [186]张沛洲.多龄期钢筋混凝土结构抗震性能分析[D].大连理工大学,2012.
    [187] Yu X, Lu D, Song P, et al. Stochastic incremental dynamic analysis considering randomsystem properties[C],2008
    [188] Iwan W D. Estimating inelastic response spectra from elastic spectra[J]. EarthquakeEngineering&Structural Dynamics,1980,8(4):375~388
    [189] Pal S, Dasaka S S, Jain A K. Inelastic response spectra[J]. Computers&structures,1987,25(3):335~344
    [190] Aydino lu M N. An incremental response spectrum analysis procedure based on inelasticspectral displacements for multi-mode seismic performance evaluation[J]. Bulletin ofEarthquake Engineering,2003,1(1):3~36
    [191] Bozorgnia Y, Hachem M M, Campbell K W. Ground motion prediction equation “(attenuationrelationship”) for inelastic response spectra[J]. Earthquake Spectra,2010,26(1):1~23
    [192] Bojórquez E, Bojórquez J, Ruiz S E, et al. Prediction of inelastic response spectra usingartificial neural networks[J]. Mathematical Problems in Engineering,2012,2012
    [193] Mitchell D, Tremblay R, Karacabeyli E, et al. Seismic force modification factors for theproposed2005edition of the National Building Code of Canada[J]. Canadian Journal of CivilEngineering,2003,30(2):308~327
    [194] Lignos D G, Krawinkler H. Deterioration modeling of steel components in support of collapseprediction of steel moment frames under earthquake loading[J]. Journal of StructuralEngineering,2010,137(11):1291~1302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700