用户名: 密码: 验证码:
基于功能化多孔聚碳酸酯膜的温度敏感型纳米通道研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能化的环境响应型纳米通道因其在智能分离、化学生物传感、药物控制释放等领域的重要作用及广阔的应用前景而受到日益广泛的关注。本文以多孔性的聚碳酸酯膜为研究对象,采用不同的修饰方法对其进行了功能化修饰,进而考察了所制备的各种功能化纳米通道复合膜的性质及其差异,具体开展了以下几个方面工作:
     1.采用化学沉积法镀金,制备了表面及通道内都沉积了金的纳米通道膜。通过化学交联的方法将聚N-异丙基丙烯酰胺(PNIPAm)修饰在这种金纳米通道膜上,构造了一种温度敏感纳米通道复合膜。借助全内反射荧光显微成像技术,考察了这种膜的温度敏感性和PNIPAm修饰密度差异对其渗透性的影响。结果表明,膜的渗透性随温度的变化因PNIPAm修饰密度差异而截然相反。修饰密度较低时,聚合物的伸展与收缩所引起的纳米通道尺寸变化占主导地位,环境温度高于临界溶液温度(LCST)时膜的渗透性比较大;而修饰密度较高时,则是膜的亲疏水效应在起主导作用,环境温度低于LCST时膜的渗透性比较大。以阿霉素为药物模型,考察了其在不同条件下的渗透性,结果与前述机理相符。说明这种温度敏感型纳米通道膜有望用于实际的药物控制释放体系,在生命活动模拟、纳米仿生等方面有着潜在的应用价值。
     2.采用磁控溅射法镀金,得到了仅单面覆盖金的纳米通道膜。将PNIPAm修饰在这种膜上,考察了不同修饰密度情况下的渗透性。结果表明,无论PNIPAm的修饰密度如何,都是环境温度高于LCST时纳米通道膜的渗透性大。这是因为这种膜的通道内没有修饰上PNIPAm,膜的渗透性不受聚合物的亲疏水性主导,而主要取决于表面纳米通道的暴露程度。这种新型的温敏纳米通道膜有望用于微阀门的制备、药物控释放等领域。
     3.借助静电吸附作用,采用真空抽滤的方法先将聚烯丙基胺盐酸盐(PAH)修饰在纳米通道膜上,然后修饰PNIPAm,获得了一种无需镀金的新型温度敏感纳米通道膜。利用扫描电镜、衰减全反射红外光谱及视频接触角仪对其修饰结果及其温敏性进行了表征,采用全内反射荧光显微成像技术考察了温度对渗透性的影响。结果表明,这是一种简便、经济的制备温敏型纳米通道膜的方法,这种方法制得的膜具有显著的温敏性和良好的可逆性。
Functional stimulus responsive nanopore membranes have attracted great attention because of their comprehensive applications including smart separation, chemo/bio sensing and controlled drug release. In this thesis, nanoporous polycarbonate membranes were functionally modified with different methods, and then the properties and differences of these functional temperature responsive membranes were investigated. The research works of this dissertation are summarized as follows:
     1. Nanopore membranes with gold along the porewalls and surface were prepared by chemic aggradation, and then poly(N-isopropylacrylamide) (PNIPAm) brushes were grafted onto these gold coated nanoporous track-etched polycarbonate membranes. The permeabilities of the resulting pore-filled membranes were determined by total internal reflection fluorescence microscopy. And the influence of different grafting yield of PNIPAm were also investigated. The results showed that, the change of permeability related to the temperature is distinct at different grafting yield. At low grafting yield, the response of permeability to environmental temperature is due to the change of effective membrane pore size induced by the conformation (expand or shrink) change of the grafted PNIPAm chains, so the permeability of thermoresponsive membranes was higher at temprature above the lower critical solution temperature (LCST); In contrast, at high grafting yield, the response of permeability to environmental temperature is due to the hydrophilic or hydrophobic change of the grafted PNIPAm chains.The permeability of thermoresponsive membranes was higher at temperature below the LCST. A drug permeation model was proposed using doxorubicin as a probe, and the results were consistent with the above. Therefore, this kind of controllable thermoresponsive membrane can be applied in practical controlled drug release, and may have a unique potential application in the field of life process simulation and so on.
     2. Nanopore membranes with single side gold coated were prepared by vacuum sputter coating, which is a relatively simple method. Temperature responsive nanopore membranes were prepared by modifying the resulting membranes with PNIPAm. The thermally switchable transport properties of the PNIPAm modified membranes with different grafting yield were also investigated. The results confirm that the permeability was higher at temperature above the LCST both at low and high grafting yield. Because the pore walls of these nanoporous membranes were not grafted with PNIP Am and the permeability was dominated by the surface pore coverage rather than the hydrophilic or hydrophobic property of polymer brushes. Therefore, this research developed a new type of temperature responsive nanopore membranes, which may be applied to micro-valves and controlled drug release.
     3. A novel kind of temperature responsive nanopore membranes without gold coating were obtained through modifying membranes with PNIPAm in terms of vacuum filtration. This method based on polyallylamine hydrochloride (PAH) electrostatic interaction with nanoporous track-etched polycarbonate membranes. Field emission scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and drop shape analyzer were used to characterize the chemical composition, surface morphologies and thermoresponsive properties of the modified membranes. In addition, the permeabilities of the resulting membranes were investigated by total internal reflection fluorescence microscopy. The results showed that this is an economical, simple and convenient method to construct temperature responsive nanopore membrane with notable thermoresponsive property and favorable reversibility.
引文
[1]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000,111-117
    [2]http://151.fosu.edu.cn/shengliweb/jc/one/images/28.jpg
    [3]Nether E, Sakmann B. Single channel currents recorded from membrane of denervated frog muscle fibers. Nature,1976,260(5554):799-802
    [4]兰同汉,刘向明,顾正等.离子通道门控机制研究进展.生物医学工程学杂志,2002,19(2):344-347
    [5]Neher E, Sakmann B. The nobel prize in physiology or medicine 1991. www.nobelprize.org,1991-10-07
    [6]Arispe N, Rojas E, Pollard H B. Alzheimer disease amyloid (3 protein forms calcium channels in bilayer membranes:blockade by tromethamine and aluminum. Proceedings of the National Academy of Sciences,1993,90(2): 567-571
    [7]Kawahara M, Arispe N, Kuroda Y, et al. Alzheimer's disease amyloid β-protein forms Zn2+-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophysical Journal,1997,73(1):67-75
    [8]Furukawa K, Abe Y, Akaike N. Amyloid β protein-induced irreversible current in rat cortical neurons. Neuroreport,1994,5(9):2016-2018
    [9]Qi J S, Qiao J T. Amyloid β-protein fragment 31-35 forms ion channels in membrane patches excised from rat hippocampal neurons.Neuroscience,2001, 105(4):845-852
    [10]Singer S J, Dewji N N. Evidence that Perutz's double-p-stranded subunit structure for β-amyloids also applies to their channelforming structures in membranes. Proceedings of the National Academy of Sciences,2006,103(5): 1546-1550
    [11]Zhao Q T, Zoysa, R S S, Wang D Q, et al. Real-time monitoring of peptide cleavage using a nanopore probe. Journal of the American Chemistry Society, 2009,131(18):6324-6325
    [12]Song L, Hobaugh M R, Shustak C, et al. Structure of staphylococcal- hemolysin, a heptameric transmembrane pore. Science,1996,274(5294):1859-1865
    [13]Deamer D W, Akeson M. Nanopores and nucleic acids prospects for ultra rapid sequencing. Trends Biotechnol,2000,18(4):147-151
    [14]Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences,1996,93(24):13770-13773
    [15]Akeson M, Branton D, Kasianowicz J J, et al. Microsecond timescale discrimination among polycytidylic acid and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal,1999,77(6): 3227-3233
    [16]Gu L Q, Braha O, Conlan S, et al. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature,1999,398(3729): 686-690
    [17]White R J, Ervin E N, Yang T, et al. Single ion-channel recordings using glass nanopore membranes. Journal of the American Chemistry Society,2007, 129(38):11766-11775
    [18]Raffy S, Teissie J. Control of lipid membrane stability by cholesterol content. Biophysical Journal,1999,76(4):2072-2080
    [19]Schmitt E K, Vrouenraets M, Steinem C. Channel activity of OmpF monitored in nano-BLMs. Biophysical Journal,2006,91(6):2163-2171
    [20]Maurer J A, White V E, Dougherty D A, et al. Reconstitution of ion channels in agarose-supported silicon orifices. Biosensors and Bioelectronics,2007,22(11): 2577-2584
    [21]Heitz B A, Xu J, Hall H K, et al. Enhanced long-term stability for single ion channel recordings using suspended poly(lipid) bilayers. Journal of the American Chemistry Society,2009,131(19):6662-6663
    [22]Ervin E N, White R J, White H S. Sensitivity and signal complexity as a function of the number of ion channels in a stochastic sensor. Analytical Chemistry,2009,81(2),533-537
    [23]Ervin E N., Kawano R, White R J., et al. Simultaneous alternating and direct current readout of protein ion channel blocking events using glass nanopore membranes. Analytical Chemistry.2008,80(6),2069-2076
    [24]Purnell R F, Schmidt J J. Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACSnano,2009,3(9):2533-2538
    [25]Osaki T, Suzuki H, Pioufle B L, et al. Multichannel simultaneous measurements of single-molecule translocation in α-hemolysin nanopore array. Analytical Chemistry,2009,81(24),9866-9870
    [26]Horne W S, Stout C D, Ghadiri M R. A heterocyclic peptide nanotube. Journal of the American Chemistry Society,2003,125(31):9372-9376
    [27]Crisma M, Toniolo C, Royo S, et al. A helical, aromatic, peptide nanotube. Organic Letters,2006,8(26):6091-6094
    [28]Bucak S, Cenker C, Nasir I, et al. Peptide nanotube nematic phase. Langmuir, 2009,25(8):4262-4265
    [29]Sherman W B, Seeman N C. Design of minimally strained nucleic acid nanotubes. Biophysical Journal,2006,90(12):4546-4557
    [30]Yemini M, Reches M, Gazit E, et al. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Analytical Chemistry,2005,77(16):5155-5159
    [31]Ghadiri M R, Granja J R, Milligan R A, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature,1993,366(6453): 324-327
    [32]Clark T D, Buehler L K, Ghadiri M R. Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels. Journal of the American Chemistry Society,1998,120(4):651-656
    [33]Seebach D, Matthews J L. β-peptides:a surprise at every turn. Chemical Communication,1997, (21):2015-2022
    [34]Banerjee I A, Yu L T, MacCuspie R I, et al. Thiolated peptide nanotube assembly as arrays on patterned Au substrates. Nano Letters,2004,4(12): 2437-2440
    [35]Dehez F, Tarek M, Chipot C. Energetics of ion transport in a peptide nanotube. Journal of Physical Chemistry B,2007,111(36):10633-10635
    [36]Shklovskya J, Bekera P, Amdurskya N, et al. Bioinspired peptide nanotubes: deposition technology and physical properties. Materials Science and Engineering B,2010,169(1-3):62-66
    [37]Yang D, Qu J, Li B, et al. Novel turns and helices in peptides of chiral-aminoxy acids. Journal of the American Chemical Society,1999,121(3): 589-590
    [38]Bong D T, Clark T D, Granja J R, et al. Self-assembling organic nanotubes. Angewandte Chemie International Edition,2001,40(6):988-1011
    [39]Van Dyke L S, Martin C R. Electrochemical investigations of electronically conductive polymers for controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir,1990,6(6):1123-1132
    [40]Martin C R. Nanomaterials a membrane based synthetic approach. Science, 1994,266(5193):1961-1966
    [41]Sukeerthi S, Contractor A Q. Molecular sensors and sensor arrays based on polyaniline microtubules. Analytical Chemistry,1999,71(11):2231-2236
    [42]http://www.chinatech.com.cn/aspx/institute/single.aspx?
    [43]http://www.gznano.cn/edu/content.asp?Id=012003110618244904
    [44]Steinhart M, Wendorff H J, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates. Science,2002,296(5575):1997-1998
    [45]Yang Q, Tian J, Hu M X, et al. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Langmuir 2007,23(12):6684-6690
    [46]Kovarik M L, Zhou K M, Jacobson S C. Effect of conical nanopore diameter on ion current rectification. Journal of Physical Chemistry B,2009,113(49): 15960-15966
    [47]Xie R, Zhang S B, Wang H D, et al. Temperature-dependent molecular-recognizable membranes based on poly(N-isopropylacrylamide) and β-cyclodextrin. Journal of Membrane Science,2009,326(2):618-626
    [48]Savariar E N, Krishanoorthy K, Thayumanavan S. Molecular discrimination inside polymer nanotubules. Nature nanotechnology,2008,3(2):112-117
    [49]Brumlik C J, Martin C R. Template synthesis of metal microtubules. Journal of the American Chemistry Society,1991,113(8):3174-3175
    [50]Nishizawa M, Menon V P. Metal nanotubule membranes with electro-chemically switchable ion-transport selectivity. Science,1995, 268(5211):700-702
    [51]Jirage K B, Hulteen J C, Martin C R. Nanotube-based molecular-filtration membranes. Science,1997,278(5338):655-658
    [52]Hulteen J C, Jirage K B, Martin C R. Introducing chemical transport selectivity into gold nanotubule membranes. Journal of the American Chemistry Society, 1998,120(26):6603-6604
    [53]Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney A S, et al. Atificial nanopores that mimic the transport selectivity of the nuclear pore compex. Nature,2009,457(7232):1023-1027
    [54]Li N C, Yu S F, Harrell C C, et al. Conical nanopore membranes preparation and transport properties. Analytical Chemistry,2004,76(7):2025-2030
    [55]Harrell C C, Kohli P, Siwy Z, et al. DNA-nanotube artificial ion channels. Journal of the American Chemistry Society,2004,126(48):15646-15647
    [56]Guo W, Xia H W, Xia F, et al. Current rectification in emperature-responsive single nanowires. A European Journal of Chemical Physics and Physical Chemistry.0000,0(0),1-7
    [57]Chung J H, Chen X Q, Zimney E J., et al. Fabrication of nanopores in a 100-nm thick Si3N4 Membrane. Journal of Nanoscience and Nanotechnology.2006,6(7): 2175-2181
    [58]Yan H,Xu B Q. Towards rapid DNA sequencing:detecting single-stranded DNA with a solid-state nanopore. Small,2006,2(3),310-312
    [59]Vlassiouk I, Apel P Y, Dmitriev S N., etal. Versatile ultrathin nanoporous silicon nitride membranes. Proceedings of the National Academy of Sciences, 2009,106(50):21039-21044
    [60]Striemer C C., Gaborski T R., McGrath J L., etal. Charge-and size-based separation of macromolecules using ultrathin silicon membranes. Nature,2007, 445(7129):749-753
    [61]Talaga D S, Li J L. Single-molecule protein unfolding in solid state nanopores. Journal of the American Chemistry Society,2009,131(26):9287-9297
    [62]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348): 56-58
    [63]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science,1996,273(5274):483-487
    [64]Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes. Science,1996,274(5293):1701-1703
    [65]Tans S J, Devoret M H, Dai H J, et al. Individual single-wall carbon nanotubes as quantum wires. Nature,1997,386(6624):474-477
    [66]Li J, Ng H T, Cassell A, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Letters,2003,3(5):597-602
    [67]Liu P F, Hu J H. Carbon nanotube powder micro-electrodes for nitrite detection. Sensors and Actuators B:Chemical,2002,84(2-3):194-199
    [68]Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science,2000,287(5453):622-625
    [69]Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature,2003,424(6945):171-174.
    [70]Viswanathan S, Radecka H, Radecki J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosensors and Bioelectronics,2009,24(9):2772-2777
    [71]Mahmoud K A, Luong J H T. Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode. Analytical Chemistry,2008,80(18):7056-7062
    [72]Zhang X K, Meng L J, Lu Q H, et al. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials,2009,30(30):6041-6047
    [73]Keller F, Hunter M S, Robinson D L. Structural features of oxide coating-on aluminum. Journal of The Electrochemical Society,1953,100(9):411-419
    [74]Lee S B, Mitchell D T, Trofin L, et al. Antibody-based bio-nanotube membranes for enationmeric drug separations. Science,2002,296(5576):2198-2200
    [75]Hou S F, Wang J H, Charles R M. Template-synthesized protein nanotubes, Nano Letters,2005,5(2):231-234
    [76]Hou S F, Wang J H, Charles R M. Template-synthesized DNA nanotubes, Journal of the American Chemistry Society,2005,127(24):8586-8587
    [77]Wu G S, Zhang L D, Cheng B C, et al. Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach. Journal of the American Chemistry Society,2004,126(19):5976-5977
    [78]Son S J, Reichel J, He B, et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. Journal of the American Chemistry Society,2005,127(20):7316-7317
    [79]Evans P R, Yi G, Schwarzacher W. Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in, anodic aluminum oxide membranes. Applied Physics Letters,2000,76(4):481-483
    [80]Zhang Y, Li G H, Wu Y C, et al. Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alu2 mina membranes. Advanced Materials, 2002,14(17):1227-1230
    [81]Sander M S, Gronsky R, Sands T, et al. Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chemistry of Materials,2003,15(1):335-339
    [82]Zhou Y K, Li H L. Sol-gel template synthesis of highly ordered LiCo0.5Mn0.5O2 nanowire arrays and their structural properties. Journal of Solid State Chemistry, 2002,165(2):247-253
    [83]Liu S M, Gan L M, Liu L H, et al. Synthesis of single-crystalline TiO2 nanotubes. Chemistry of Materials,2002,14(3):1391-1397
    [84]Zhang X Y, Zhang L D, Meng G W, et al. Synthesis of ordered single crystal silicon nanowire arrays. Advanced Materials,2001,13(16):1238-1241
    [85]Jeong S Y, Kim J Y, Yang H K, et al. Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy. Advanced Materials,2003,15(17): 1172-1176
    [86]Ai S F, Lu G, He Q, et al. Highly flexible polyelectrolyte nanotubes. Journal of the American Chemistry Society,2003,125(37):11140-11141
    [87]Shim J H, Kim J, Cha G S, et al. Glass nanopore-based ion-selective electrodes. Analytical Chemistry,2007,79(10):3568-3574
    [88]Yoshida M, Lahann J. Smart nanomaterials. ACS Nano,2008,2(6):1101-1107
    [89]Lue S J, Hsu J J, Chen C H, et al. Thermally on-off switching membranes of poly(N-isopropylacrylamide) immobilized in.track-etched polycarbonate films. Journal of Membrane Science,2007,301(1-2):142-150
    [90]Yameen B, Ali M, Neumann R, et al. Single conical nanopores displaying pH-tunable rectifying characteristics manipulating ionic transport with zwitterionic polymer brushes. Journal of the American Chemical Society,2009, 131(6):2070-2071
    [91]Kumar A S, Ye T, Takami T, et al. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Letters, 2008,8(6):1644-1648
    [92]Cannon D M, Kuo T C, Bohn P W, et al. Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Analytical Chemistry,2003,75(10):2224-2230
    [93]Buehler K L, Anderson J L. Solvent effects on the permeability of membrane-supported gels. Industrial and Engineering Chemistry Research,2002, 41(3):464-472
    [94]Choi Y-J, Yamaguchi T, Nakao S. A novel separation system using porous thermosensitive membranes. Industrial and Engineering Chemistry Research, 2000,39(7):2491-2495
    [95]Yang M, Chu L Y, Wang H D, et al. A thermoresponsive membrane for chiral resolution, Advanced Functional Materials,2008,18(4):652-663
    [96]Ying L, Kang E T, Neoh K G, et al. Drug permeation through temperature sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains. Journal of Membrane Science,2004, 243(1-2):253-262
    [97]Yang C C, Tian Y Q, Jen A K Y, et al. New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(19): 5495-5504
    [98]Caspi Y, Zbaida D, Cohen H, et al. Synthetic mimic of selective transport through the nuclear pore complex. Nano Letters,2008,8(11):3728-3734
    [99]Heskins M, Guillet J E. Solution properties of poly (N-isopropylacrylamide). Journal of Macromolecular Science,1968,2(8):1441-1455
    [100]Wu C, Zhou S. Thermodynamically stable globule state of a single poly(N-isopropylacrylamide) chain in water. Macromolecules,1995,28(15):5388-5390
    [101]Schild H G. Poly(N-isopropylacrylamide):experiment, theory and application. Progress in Polymer Science,1992,17(2):163-249
    [102]Yang B, Yang W T. Thermo-sensitive switching membranes regulated by pore-covering polymer brushes. Journal of Membrane Science,2003,218(1-2): 247-255
    [103]Vertommen M A M E, Cornelissen H J L, Dietz C H J T, et al. Pore-covered thermoresponsive membranes for repeated on-demand drug release. Journal of Membrane Science,2008,322(1):243-248
    [104]Lue S J, Hsu J J, Wei T C. Drug permeation modeling through the thermo-sensitive membranes of poly(N-isopropylacrylamide) brushes grafted onto micro-porous films. Journal of Membrane Science,2008,321(2):146-154
    [105]Wang W C, Tian X D, Feng Y P, etal. Thermally on-off switching membranes prepared by pore-filling poly(N-isopropylacrylamide) hydrogels. Industrial and Engineering Chemistry Research,2010,49(4),1684-1690
    [106]Meng T, Xie R, Chen Y C, et al. A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption. Journal of Membrane Science,2010,349(1-2): 258-267
    [107]Alem H, Duwez A S, Demoustier-Champagne S., et al. Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. Journal of Membrane Science,2008, 308(1-2):75-86
    [108]Alem H, Jonas A M., Demoustier-Champagne S. Poly(N-isopropylacrylamide) grafted into nanopores:thermo-responsive behaviour in the presence of different salts. Polymer Degradation and Stability, 2010,95(3):327-331
    [109]Wan L S, Yang Y F, Tian J, et al. Construction of comb-like poly(N-isopropyl-acrylamide) layers on microporous polypropylene membrane by surface-initiated atom transfer radical polymerization. Journal of Membrane Science,2009,327 (1-2):174-181
    [110]Hesampoura M, Huuhilo T, Makinen K, et al. Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes. Journal of Membrane Science,2008,310(1-2):85-92
    [111]羊小海,吴迎奔,王青等.基于聚合物修饰的温度敏感金纳米通道阵列膜.科学通报,2007,52(23):2729-2733
    [112]Ito T, Hioki T, Yamaguchi T, et al. Development of a molecular recognition ion gating membrane and estimation of its pore size control. Journal of the American Chemical Society,2002,124(26):7840-7846
    [113]Zhang L, Xu T, Lin Z. Controlled release of ionic drug through the positively charged temperature-responsive membranes. Journal of Membrane Science,2006,281(1-2):491-499
    [114]Caspi Y, Zbaida D, Cohen H, et al. Synthetic mimic of selective transport through the nuclear pore complex. Nano Letters,2008,8(11):3728-3734
    [115]Lee D, Nolte A J, Kunz A L, et al. pH-induced hysteretic gating of track-etched polycarbonate membranes:swelling/deswelling behavior of polyelectrolyte multilayers in confined geometry. Journal of the American Chemical Society,2006,128(26):8521-8529
    [116]Hou X, Liu Y J, Dong H, et al. A pH-gating ionic transport nanodevice: asymmetric chemical modification of single nanochannels. Advanced Materials, 2010, (22),1-4
    [117]Kalman E B, Vlassiouk I, Siwy Z S. Nanofluidic bipolar transistors. Advanced Materials,2008,20(2):293-297
    [118]Yameen B, Ali M, Neumann R, et al. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Letters,2009,9(7):2788-2793
    [119]Lee S B, Martin C R. pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. Analytical Chemistry,2001,73(4): 768-775
    [120]Siwy Z. Fulinski A. Fabrication of a synthetic nanopore ion pump. Physical Review Letters,2002,89(19): 198103(1-4)
    [121]Ali M, Ramirez P, Mafe S, et al. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano,2009,3(3):603-608
    [122]Fan R, Huh,S, Yan,R, et al. Gated proton transport in aligned mesoporous silica films. Nature Materials,2008,7(4):303-307
    [123]Li N C, Yu S F, Harrell C C, et al. Conical nanopore membranes preparation and transport properties. Analytical Chemistry,2004,76(7):2025-2030
    [124]Harrell C C, Kohli P, Siwy Z, et al. DNA-nanotube artificial ion channels. Journal of the American Chemical Society,2004,126(48):15646-15647
    [125]Lee S B, Martin C R. Electromodulated molecular transport in gold-nanotube membranes. Journal of the American Chemical Society,2002, 124(40):11850-11851
    [126]Harrell C C, Kohli P, Siwy Z, et al. DNA-nanotube artificial ion channels. Journal of the American Chemical Society,2004,126(48):15646-15647
    [127]Lathrop D K, Ervin E N,Barrall G A., et al. Monitoring the escape of DNA from a nanopore using an alternating current signal. Journal of the American Chemical Society,2010,132(6):1878-1885
    [128]Liu N G, Dunphy D R, Atanassov P, et al. Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Letters,2004,4(4):551-554
    [129]Han J B, Yan D P, Shi W Y, et al. Layer-by-layer ultrathin films of azobenzene-containing polymer/layered double hydroxides with reversible photoresponsive behavior. The Journal of Physical Chemistry B,2010,114(17): 5678-5685
    [130]Kumar S K, Hong J D. Photoresponsive ion gating function of an azobenzene polyelectrolyte multilayer spin-self-assembled on a nanoporous support. Langmuir,2008,24(8):4190-4193
    [131]Li X F, Fan P W, Tuo X L, et al. Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt. Thin Solid Films,2009,517(4):2055-2062
    [132]Li Q, Shang J K. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environmental Science and Technology,2009,43(23):8923-8929
    [133]Li Q, Shang J K. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Environmental Science and Technology,2010,44(9):3493-3499
    [134]Chen S L, Jiang Y G, Wang Z Q, et al. Light-controlled single-walled carbon nanotube dispersions in aqueous solution. Langmuir,2008,24(17): 9233-9236
    [135]Ji Q M, Iwaura R, Shimizu T. Regulation of silica nanotube diameters: sol-gel transcription using solvent-sensitive morphological change of peptidic lipid nanotubes as templates. Chemistry of Materials,2007,19(6):1329-1334
    [136]Pei X W, Yan Y H, Yan L Y, et al. A magnetically responsive material of single-walled carbon nanotubes functionalized with magnetic ionic liquid. Carbon,2010,48(9):2501-2505
    [137]Huang L, Peng F, Yu H, et al. The influence of ultrasound on the formation of TiO2 nanotube arrays. Materials Research Bulletin,2010,45(2):200-204
    [138]Ito Y, Ionic M, Chung D J, et al. Control of water permaetion by pH and ionic strength through a porous membrane having poly(carboxylic acid) surface grafted. Macromolecules,1992,25(26):7313-7316
    [139]Shan J, Nuopponen M, Jiang H, et al. Preparation of poly(N-isopropyl-acrylamide) monolayer-protected gold clusters:synthesis methods, core size, and thickness of monolayer. Macromolecules,2003,36(12):4526-4533
    [140]Kohli P, Harrell C C, Cao Z H, et al. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science,2004,305(5686): 984-986
    [141]Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Analytical Chemistry,1995,67(13):1920-1928

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700