用户名: 密码: 验证码:
可见光和近红外光敏感的邻硝基苄基类药物释放体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代生物医学技术的快速发展,人类对药物的需求与日俱增。而开发一种新药不但需要耗费大量的人力物力,而且时间也很漫长,一般需要几年甚至几十年。因此,在现有药物基础上通过改变药物释放方式等方法来开发传统药物的潜力是一种可以替代的途径。其中,可控药物释放体系因为具有利于提高药效、降低药物在生物体内的毒副作用等原因,现已成为生物医药领域的重要研究方向之一。
     光通过与物体之间的非物理性接触,可以实现时间和空间上的二维可控。因此,光控药物释放体系的设计与制备引起了科学家们的广泛关注。现有光敏基团在应用中存在一系列亟待解决的问题,例如光解效率较低以及只能用紫外光激发等问题。本文在传统的邻硝基苄基光敏基团的基础上设计合成了一类新型的、具有较大共轭体系的邻硝基苄基作为新的光可降解基团。其最大的紫外-可见吸收峰的位置红移了20nm。因此,可以在可见光激发快速、高效地释放抗癌药物苯丁酸氮芥,释放过程可以通过光来进行调节。另外,该光敏基团具有20GM的双光子吸收截面,可以通过近红外光激光激发,同样可以释放出前药分子。我们对这一类具有可见光和近红外光敏感的临硝基苄基类前药分子光化学与光物理性质做了详细的研究。
     此外,我们还设计和制备了邻硝基苄基和聚乙二醇改性的光敏壳聚糖纳米粒子药物释放体系,在可见光照射下改性的壳聚糖纳米粒子可以释放出疏水药物模型,染料尼罗红。
With the rapid development of modern biomedical technologies, more and more new drugs are needed. However, to develop a new drug is not very easy, it needs not only a lot of manpower and materials resources, but also time which usually takes years or even decades. So, it is a new route to use the traditional drugs by changing the drug's delivery systems. In these ways, the controlled drug release systems played important roles in the biomedical areas because of their abilities in improving drug efficacies and reducing the side effects in vivo.
     Through the non-physical contact mode with objects, light can achieve a two-dimensional interaction with objects in time and space. And the design and preparations of different kinds of photo-regulated drug delivery systems have attracted much attention recently. However, there are a lot of drawbacks to be solved in the using photo-sensitive groups in biomedicine, such as the low photocleavage efficiency and UV-responsive only. In this thesis, we designed and synthesized a new class of o-nitrobenzyl ether by enhancing the conjugation system and it maximum peak in UV-vis absorption red-shifted 20nm. And the anti-cancer drug, chlorambucil can be released upon irradiation by visible light. In addition, the photosensitive groups have a two-photon cross section of 20 GM at 800 nm, and the prodrugs could also be photoreleased by near infrared laser. We have studied the photochemical and photophysics properties of these visible and near-infrared light sensitive o-nitrobenzyl prodrugs.
     In the end, we have also designed and prepared chitosan nanoparticles drug delivery system with the same o-nitrobenzyl photosensitive group and polyethylene glycol modifications. The gained chitosan derivatives nanoparticles released hydrophobic drug model, Nile red, upon visible light irradiation.
引文
[1]J. Kost and R. Langer.Responsive polymeric delivery systems.Advanced drug delivery reviews.2001,46(1-3):125-148.
    [2]B. P. Timko, T. Dvir and D. S. Kohane.Remotely Triggerable Drug Delivery Systems. Advanced Materials.2010,22(44):4925-4943.
    [3]R. Langer, H. Brem and D. Tapper.Biocompatibility of polymeric delivery systems for macromolecules.Journal of Biomedical Materials Research.1981,15(2):267-277.
    [4]T. Hoare, J. Santamaria, G. F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer and D. S. Kohane.A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery. Nano Letters.2009,9(10):3651-3657.
    [5]R. Langer, D. S. T. Hsieh, W. Rhine and J. Folkman.Control of release kinetics of macromolecules from polymers.Journal of Membrane Science.1980,7(3):333-350.
    [6]C. E. Carraher and C. G. Gebelein.Biological Activities of Polymers.ACS Symposium Series.1982,186(186):308.
    [7]J. C. Sy, G. Seshadri, S. C. Yang, M. Brown, T. Oh, S. Dikalov, N. Murthy and M. E. Davis.Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction.Nat Mater.2008,7(11):863-868.
    [8]E. Choleris, S. R. Little, J. A. Mong, S. V. Puram, R. Langer and D. W. Pfaff.Microparticle-based delivery of oxytocin receptor antisense DNA in the medial amygdala blocks social recognition in female mice.Proceedings of the National Academy of Sciences.2007,104(11):4670-4675.
    [9]Daniel S. Kohane, Gregory L. Holmes, Y. Chau, D. Zurakowski, R. Langer and Byung H. Cha.Effectiveness of Muscimol-containing Microparticles against Pilocarpine-induced Focal Seizures.Epilepsia.2002,43(12):1462-1468.
    [10]J. B. Ciolino, T. R. Hoare, N. G. Iwata, I. Behlau, C. H. Dohlman, R. Langer and D. S. Kohane.A Drug-Eluting Contact Lens.Investigative ophthalmology & visual science.2009, 50(7):3346-3352.
    [11]Y. Yeo and D. S. Kohane.Polymers in the prevention of peritoneal adhesions.European Journal of Pharmaceutics and Biopharmaceutics.2008,68(1):57-66.
    [12]M. A. Moses, H. Brem and R. Langer.Advancing the field of drug delivery:Taking aim at cancer.Cancer Cell.2003,4(5):337-341.
    [13]S. Dhar, F. X. Gu, R. Langer, O. C. Farokhzad and S. J. Lippard.Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles.Proceedings of the National Academy of Sciences.2008,105(45):17356-17361.
    [14]E. Ruvinov, J. Leor and S. Cohen.The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model.Biomaterials.2010,31(16):4573-4582.
    [15]E. R. Edelman, L. Brown and R. Langer.Quantification of insulin release from implantable polymer-based delivery systems and augmentation of therapeutic effect with simultaneous release of somatostatin.Journal of Pharmaceutical Sciences.1996,85(12): 1271-1275.
    [16]D. S. Kohane, S. E. Smith, D. N. Louis, G. Colombo, P. Ghoroghchian, N. G. M. Hunfeld, C. B. Berde and R. Langer.Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres.Pain.2003,104(1-2):415-421.
    [17]S. H.G.Poly(N-isopropylacrylamide):experiment, theory and application.Progress in Polymer Science.1992,17(2):163-249.
    [18]M. Keerl, V. Smirnovas, R. Winter and W. Richtering.Copolymer Microgels from Mono-and Disubstituted Acrylamides:Phase Behavior and Hydrogen Bonds.Macromolecules. 2008,41(18):6830-6836.
    [19]Q. Wang, Y. Zhao, Y. Yang, H. Xu and X. Yang.Thermosensitive phase behavior and drug release of in situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels.Colloid & Polymer Science.2007,285(5):515-521.
    [20]M. Das, H. Zhang and E. Kumacheva.MICROGELS:Old Materials with New Applications.Annual Review of Materials Research.2006,36(1):117-142.
    [21]S. Mornet, S. Vasseur, F. Grasset and E. Duguet.Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry.2004,14(14):2161-2175.
    [22]R. Qiao, C. Yang and M. Gao.Superparamagnetic iron oxide nanoparticles:from preparations to in vivo MRI applications.Journal of Materials Chemistry.2009,19 (35):6274-6293.
    [23]D. Thorek, A. Chen, J. Czupryna and A. Tsourkas.Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging.Annals of Biomedical Engineering.2006,34(1): 23-38.
    [24]L. Zhang, S. Qiao, Y. Jin, H. Yang, S. Budihartono, F. Stahr, Z. Yan, X. Wang, Z. Hao and G. Q. Lu.Fabrication and Size-Selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure.Advanced Functional Materials.2008,18(20):3203-3212.
    [25]M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. WaldOFner, R. Scholz, S. Deger, P. Wust, S. A. Loening and A. Jordan.Clinical hyperthermia of prostate cancer using magnetic nanoparticles:Presentation of a new interstitial technique.International Journal of Hyperthermia.2005,21(7):637-647.
    [26]A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch and R. Felix.Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia.Journal of Magnetism and Magnetic Materials.2001,225(1-2):118-126.
    [27]A. K. Gupta, R. R. Naregalkar, V. D. Vaidya and M. Gupta.Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine.2007,2(1):23-39.
    [28]Y. Zhang, N. Kohler and M. Zhang.Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials.2002,23(7):1553-1561.
    [29]A. K. Gupta and M. Gupta.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials.2005,26(18):3995-4021.
    [30]P. M. George, D. A. LaVan, J. A. Burdick, C. Y. Chen, E. Liang and R. Langer. Electrically Controlled Drug Delivery from Biotin-Doped Conductive Polypyrrole. Advanced Materials.2006,18(5):577-581.
    [31]A. Schroeder, J. Kost and Y. Barenholz.Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.Chemistry and Physics of Lipids.2009,162(1-2):1-16.
    [32]J. Kost. K. Leong and R. Langer.Ultrasound-enhanced polymer degradation and release of incorporated substances.Proceedings of the National Academy of Sciences.1989,86(20): 7663-7666.
    [33]M. Ogura, S. Paliwal and S. Mitragotri.Low-frequency sonophoresis:Current status and future prospects.Advanced drug delivery reviews.2008,60(10):1218-1223.
    [34]F. Katherine W.Driving delivery vehicles with ultrasound.Advanced drug delivery reviews.2008,60(10):1097-1102.
    [35]J. Wu and W. L. Nyborg.Ultrasound, cavitation bubbles and their interaction with cells.Advanced drug delivery reviews.2008,60(10):1103-1116.
    [36]t. H. Gail.Therapeutic applications of ultrasound.Progress in Biophysics and Molecular Biology.93(1-3):111-129.
    [37]A. L. Klibanov, T. I. Shevchenko, B. I. Raju, R. Seip and C. T. Chin.Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: A tool for targeted drug delivery.Journal of Controlled Release.2010,148(1):13-17.
    [38]C. Alvarez-Lorenzo, L. Bromberg and A. Concheiro.Light-sensitive Intelligent Drug Delivery Systems.Photochemistry and Photobiology.2009,85(4):848-860.
    [39]C.-M. Chung, Y.-S. Roh, S.-Y. Cho and J.-G. Kim.Crack Healing in Polymeric Materials via Photochemical [2+2] Cycloaddition.Chemistry of Materials.2004,16(21):3982-3984.
    [40]D. Y. Wu, S. Meure and D. Solomon. Self-healing polymeric materials:A review of recent developments.Progress in Polymer Science.2008,33(5):479-522.
    [41]A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust, M. Hayes, S. A. Vail and C.-D. Park.Photo-, Thermally, and pH-Responsive Microgels.Langmuir.2006,23(1):224-229.
    [42]M. Kameda, K. Sumaru, T. Kanamori and T. Shinbo.Photoresponse gas permeability of azobenzene-functionalized glassy polymer films.Journal of applied polymer science.2003, 88(8):2068-2072.
    [43]R. Rosario, D. Gust, M. Hayes, F. Jahnke, J. Springer and A. A. Garcia. Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces.Langmuir.2002,18 (21):8062-8069.
    [44]K. Sumaru, K. Ohi, T. Takagi, T. Kanamori and T. Shinbo.Photoresponsive Properties of Poly(N-isopropylacrylamide) Hydrogel Partly Modified with Spirobenzopyran.Langmuir. 2006,22(9):4353-4356.
    [45]J. Jiang, X. Tong, D. Morris and Y. Zhao.Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles.Macromolecules.2006,39(13):4633-4640.
    [46]C. P. McCoy, C. Rooney, C. R. Edwards, D. S. Jones and S. P. Gorman.Light-Triggered Molecule-Scale Drug Dosing Devices.Journal of the American Chemical Society.2007, 129(31):9572-9573.
    [47]J. Klohs, A. Wunder and K. Licha.Near-infrared fluorescent probes for imaging vascular pathophysiology.Basic Research in Cardiology.2008,103(2):144-151.
    [48]P. Juzenas, A. Juzeniene, O. Kaalhus, V. Iani and J. Moan.Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo.Photochemical & Photobiological Sciences.2002,1(10):745-748.
    [49]R. Weissleder and V. Ntziachristos.Shedding light onto live molecular targets.Nat Med.2003,9(1):123-128.
    [50]T. Nagasaki and S. Shinkai.The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell.Journal of Inclusion Phenomena and Macrocyclic Chemistry.2007.58(3):205-219.
    [51]N. Mochizuki-Oda, Y. Kataoka, Y. Cui, H. Yamada, M. Heya and K. Awazu.Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue.Neuroscience Letters.2002,323(3):207-210.
    [52]R. H. Bisby, C. Mead and C. G. Morgan.Wavelength-Programmed Solute Release from Photosensitive Liposomes.Biochemical and Biophysical Research Communications.2000, 276(1):169-173.
    [53]Y. Zhao.Rational design of light-controllable polymer micelles.The Chemical Record.2007,7(5):286-294.
    [54]J. Jiang, X. Tong and Y. Zhao.A new design for light-breakable polymer micelles Journal of the American Chemical Society.2005,127(23):8290-8291.
    [55]F. Tian, Y. Yu, C. Wang and S. Yang.Consecutive Morphological Transitions in Nanoaggregates Assembled from Amphiphilic Random Copolymer via Water-Driven Micellization and Light-Triggered Dissociation.Macromolecules.2008,41(10):3385-3388.
    [56]G. Wang, X. Tong and Y. Zhao.Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates.Macromolecules.2004, 37(24):8911-8917.
    [57]Y.-L. Zhao and J. F. Stoddart.Azobenzene-Based Light-Responsive Hydrogel System.Langmuir.2009,25(15):8442-8446.
    [58]M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang and Y. Xia.Gold nanocages covered by smart polymers for controlled release with near-infrared light.Nat Mater.2009,8(12):935-939.
    [59]A. B. S. Bakhtiari, D. Hsiao, G. Jin, B. D. Gates and N. R. Branda.An Efficient Method Based on the Photothermal Effect for the Release of Molecules from Metal Nanoparticle Surfaces.Angewandte Chemie International Edition.2009,48(23):4166-4169.
    [60]S. S. Agasti, A. Chompoosor, C.-C. You, P. Ghosh, C. K. Kim and V. M. Rotello.Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles.Journal of the American Chemical Society.2009,131(16):5728-5729.
    [61]G. Bonacucina, M. Cespi, M. Misici-Falzi and G. F. Palmieri.Colloidal soft matter as drug delivery system. Journal of Pharmaceutical Sciences.2009,98(1):1-42.
    [62]P. Shum, J.-M. Kim and D. H. Thompson.Phototriggering of liposomal drug delivery systems.Advanced drug delivery reviews.2001,53(3):273-284.
    [63]A. Yavlovich, A. Singh, R. Blumenthal and A. Puri.A novel class of photo-triggerable liposomes containing DPPC:DC8,9PC as vehicles for delivery of doxorubcin to cells.Biochimica et Biophysica Acta (BBA) - Biomembranes.2011,1808(1):117-126.
    [64]K. Schaper, S. A. Madani Mobarekeh, P. Doro and D. Maydt.The a,5-Dicarboxy-2-nitrobenzyl Caging Group, a Tool for Biophysical Applications with Improved Hydrophilicity:Synthesis, Photochemical Properties and Biological Characterization.Photochemistry and Photobiology.2010,86(6):1247-1254.
    [65]Y. Li, X. Jia, M. Gao, H. He, G. Kuang and Y. Wei.Photoresponsive nanocarriers based on PAMAM dendrimers with a o - nitrobenzyl shell.Journal of Polymer Science Part A: Polymer Chemistry.2010,48(3):551-557.
    [66]M. A. Kostiainen, D. K. Smith and O. Ikkala.Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Charge - Switching Multivalency.Angewandte Chemie International Edition.2007,46(40):7600-7604.
    [67]B. Duncan, C. Kim and V. M. Rotello.Gold nanoparticle platforms as drug and biomacromolecule delivery systems.Journal of Controlled Release.2010,148(1):122-127.
    [68]S. Sundararajan, S. Sengupta, M. E. Ibele and A. Sen.Drop-Off of Colloidal Cargo Transported by Catalytic Pt-Au Nanomotors via Photochemical Stimuli.Small.2010, 6(14):1479-1482.
    [69]G. Han, C. C. You, B. Kim, R. S. Turingan, N. S. Forbes, C. T. Martin and V. M. Rotello.Light-Regulated Release of DNA and Its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles.Angewandte Chemie.2006,118(19):3237-3241.
    [70]L. L. Yu, C. Lv, L. Z. Wu, C. H. Tung, W. L. Lv, Z. J. Li and X. J. Tang.Photosensitive Cross - linked Block Copolymers with Controllable Release.Photochemistry and Photobiology.2011,3 (87):646-652.
    [71]A. Shigenaga, D. Tsuji, N. Nishioka, S. Tsuda, K. Itoh and A. Otaka.Synthesis of a Stimulus-Responsive Processing Device and Its Application to a Nucleocytoplasmic Shuttle Peptide.ChemBioChem.2007,8(16):1929-1931.
    [72]T. Dvir, M. R. Banghart, B. P. Timko, R. Langer and D. S. Kohane.Photo-targeted nanoparticles.Nano Letters.2009,10(1):250-254.
    [73]I. Tomatsu, K. Peng and A. Kros.Photoresponsive hydrogels for biomedical applications.Advanced drug delivery reviews.2011,63(14-15):1257-1266.
    [74]D. Klinger and K. Landfester.Photo-sensitive PMMA microgels:light-triggered swelling and degradation.Soft Matter.2011,7(4):1426-1440.
    [75]A. K. Singh and P. K. Khade.3-Nitro-2-naphthalenemethanol:a photocleavable protecting group for carboxylic acids.Tetrahedron.2005,61(42):10007-10012.
    [76]A. M. Piggott and P. Karuso.Synthesis of a new hydrophilic o-nitrobenzyl photocleavable linker suitable for use in chemical proteomics.Tetrahedron Letters.2005,46(47):8241-8244.
    [77]N. Gorochovceva and R. Makuska. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers.European Polymer Journal.2004,40(4): 685-691.
    [78]N. Gorochovceva, A. Naderi, A. Dedinaite and R. Makuska.Chitosan-N-poly(ethylene glycol) brush copolymers:Synthesis and adsorption on silica surface. European Polymer Journal.2005,41(11):2653-2662.
    [79]J. H. Park, G. Saravanakumar, K. Kim and I. C. Kwon.Targeted delivery of low molecular drugs using chitosan and its derivatives.Advanced drug delivery reviews.2010,62(1):28-41.
    [80]P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato and M. J. Alonso.Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers.Journal of applied polymer science.1997,63(1):125-132.
    [81]P. Giunchedi, I. Genta, B. Conti, R. A. A. Muzzarelli and U. Conte.Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres.Biomaterials.l998,19(1-3):157-161.
    [82]G. Borchard, H. L. Luepen, A. G. de Boer, J. C. Verhoef, C.-M. Lehr and H. E. Junginger.The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. Ⅲ: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro Journal of Controlled Release.1996,39(2-3):131-138.
    [83]K. A. Janes, P. Calvo and M. J. Alonso.Polysaccharide colloidal particles as delivery systems for macromolecules.Advanced drug delivery reviews.2001,47(1):83-97.
    [84]S. W. Richardson, H. J. Kolbe and R. Duncan.Potential of low molecular mass chitosan as a DNA delivery system:biocompatibility, body distribution and ability to complex and protect DNA.International Journal of Pharmaceutics.1999,178(2):231-243.
    [85]S. M. Moghimi, A. C. Hunter and J. C. Murray.Long-Circulating and Target-Specific Nanoparticles: Theory to Practice.Pharmacological Reviews.2001,53(2):283-318.
    [86]R. Gref, Y. Minamitake, M. Peracchia, V. Trubetskoy, V. Torchilin and R. Langer.Biodegradable long-circulating polymeric nanospheres.Science.1994,263(5153): 1600-1603.
    [87]J.-H. Kim, Y.-S. Kim, K. Park, S. Lee, H. Y. Nam, K. H. Min, H. G. Jo, J. H. Park, K. Choi, S. Y. Jeong, R.-W. Park, I.-S. Kim, K. Kim and I. C. Kwon.Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice.Journal of Controlled Release.2008,127(1):41-49.
    [88]J.-H. Kim, Y.-S. Kim, S. Kim, J. H. Park, K. Kim, K. Choi, H. Chung, S. Y. Jeong, R.-W. Park, I.-S. Kim and I. C. Kwon.Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel.Journal of Controlled Release.2006,111(1-2):228-234.
    [89]K. H. Min, K. Park, Y.-S. Kim, S. M. Bae, S. Lee, H. G. Jo, R.-W. Park, I.-S. Kim, S. Y. Jeong, K. Kim and I. C. Kwon.Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. Journal of Controlled Release.2008,127(3):208-218.
    [90]H.-Y. Hwang, I.-S. Kim, I. C. Kwon and Y.-H. Kim.Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.Journal of Controlled Release.2008,128(1):23-31.
    [91]Y.-Q. Ye, F.-L. Yang, F.-Q. Hu, Y.-Z. Du, H. Yuan and H.-Y. Yu.Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin.International Journal of Pharmaceutics.2008,352(1-2):294-301.
    [92]T. Ngawhirunpat, N. Wonglertnirant, P. Opanasopit, U. Ruktanonchai, R. Yoksan, K. Wasanasuk and S. Chirachanchai.Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin.Colloids and Surfaces B: Biointerfaces.2009,74(1):253-259.
    [93]G. B. Jiang, D. Quan, K. Liao and H. Wang.Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery.Molecular pharmaceutics.2006,3(2):152-160.
    [94]K. Kim, S. Kwon, J. H. Park, H. Chung, S. Y. Jeong, I. C. Kwon and I.-S. Kim.Physicochemical Characterizations of Self-Assembled Nanoparticles of Glycol Chitosan-Deoxycholic Acid Conjugates.Biomacromolecules.2005,6(2):1154-1158.
    [95]K. Y. Lee, J. H. Kim, I. C. Kwon and S. Y. Jeong.Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin.Colloid & Polymer Science.2000, 278(12):1216-1219.
    [96]J. Zhang, X. G. Chen, Y. Y. Li and C. S. Liu.Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin.Nanomedicine: Nanotechnology, Biology and Medicine.2007,3(4):258-265.
    [97]M. Shamis, H. N. Lode and D. Shabat.Bioactivation of Self-Immolative Dendritic Prodrugs by Catalytic Antibody 38C2.Journal of the American Chemical Society.2004, 126(6):1726-1731.
    [98]A. Gopin, S. Ebner, B. Attali and D. Shabat.Enzymatic Activation of Second-Generation Dendritic Prodrugs:Conjugation of Self-Immolative Dendrimers with Poly(ethylene glycol) via Click Chemistry.Bioconjugate Chemistry.2006,17(6):1432-1440.
    [99]J. M. Brown and W. R. Wilson.Exploiting tumour hypoxia in cancer treatment.Nat Rev Cancer.2004,4(6):437-447.
    [100]Y. Shen, E. Jin, B. Zhang, C. J. Murphy, M. Sui, J. Zhao, J. Wang, J. Tang, M. Fan and E. Van Kirk.Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery.Journal of the American Chemical Society.2010,132(12): 4259-4265.
    [101]L. F. Tietze, M. Neumann, T. Mollers, R. Fischer, K. H. Glusenkamp, M. F. Rajewsky and E. Jahde.Proton-mediated liberation of aldophosphamide from a nontoxic prodrug:a strategy for tumor-selective activation of cytocidal drugs. Cancer research. 1989,49(15):4179-4184.
    [102]Z. Zhang, H. Hatta, T. Ito and S. Nishimoto.Synthesis and photochemical properties of photoactivated antitumor prodrugs releasing 5-fluorouracil.Org. Biomol. Chem.2005,3(4): 592-596.
    [103]S. Ibsen, E. Zahavy, W. Wrasdilo, M. Berns, M. Chan and S. Esener.A Novel Doxorubicin Prodrug with Controllable Photolysis Activation for Cancer Chemotherapy. Pharmaceutical Research.2010,27(9):1848-1860.
    [104]M. Y. Jiang and D. Dolphin.Site-Specific Prodrug Release Using Visible Light.Journal of the American Chemical Society.2008,130(13):4236-4237.
    [105]M. Skwarczynski, M. Noguchi, S. Hirota, Y. Sohma, T. Kimura, Y. Hayashi and Y. Kiso.Development of first photoresponsive prodrug of paclitaxel.Bioorganic & medicinal chemistry letters.2006,16(17):4492-4496.
    [106]M. Noguchi, M. Skwarczynski, H. Prakash, S. Hirota, T. Kimura, Y. Hayashi and Y. Kiso.Development of novel water-soluble photocleavable protective group and its application for design of photoresponsive paclitaxel prodrugs.Bioorganic & medicinal chemistry.2008, 16(10):5389-5397.
    [107]S. Abbruzzetti, S. Sottini, C. Viappiani and J. E. T. Corrie.Kinetics of Proton Release after Flash Photolysis of 1-(2-Nitrophenyl)ethyl Sulfate (Caged Sulfate) in Aqueous Solution.Journal of the American Chemical Society.2005,127(27):9865-9874.
    [108]R. Reinhard and B. F. Schmidt.Nitrobenzyl-based photosensitive phosphoramide mustards:Synthesis and photochemical properties of potential prodrugs for cancer therapy.The Journal of Organic Chemistry.1998,63(8):2434-2441.
    [109]Q. Cheng, M. G. Steinmetz and V. Jayaraman.Photolysis of y-(a-Carboxy-2-nitrobenzyl)-1-glutamic Acid Investigated in the Microsecond Time Scale by Time-Resolved FTIR.Journal of the American Chemical Society.2002,124(26):7676-7677.
    [110]A. Schwarz, S. Stander, M. Berneburg, M. Bohm, D. Kulms, H. Van Steeg, K. Grosse-Heitmeyer, J. Krutmann and T. Schwarz.Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair.Nature cell biology.2002,4(1):26-31.
    [111]I. Aujard, C. Benbrahim, M. Gouget, O. Ruel, J. B. Baudin, P. Neveu and L. Jullien.o-Nitrobenzyl Photolabile Protecting Groups with Red - Shifted Absorption:Syntheses and Uncaging Cross-Sections for One - and Two-Photon Excitation.Chemistry-A European Journal.2006,12(26):6865-6879.
    [112]S. Gug, S. Charon, A. Specht, K. Alarcon, D. Ogden, B. Zietz, J. Leonard, S. Haacke, F. Bolze, J.-F. Nicoud and M. Goeldner.Photolabile Glutamate Protecting Group with High One-and Two-Photon Uncaging Efficiencies.ChemBioChem.2008.9(8):1303-1307.
    [113]T. M. Allen and P. R. Cullis.Drug Delivery Systems:Entering the Mainstream.Science. 2004,303(5665):1818-1822.
    [114]C. Alexander and K. M. Shakesheff.Responsive Polymers at the Biology/Materials Science Interface.Advanced Materials.2006,18(24):3321-3328.
    [115]S. Chen, Y. Li, C. Guo, J. Wang, J. Ma, X. Liang, L.-R. Yang and H.-Z. Liu. Temperature-Responsive Magnetite/PEO-PPO-PEO Block Copolymer Nanoparticles for Controlled Drug Targeting Delivery.Langmuir.2007,23(25):12669-12676.
    [116]S. D. Kong, A. Luong, G. Manorek, S. B. Howell and J. Yang.Acidic Hydrolysis of N-Ethoxybenzylimidazoles (NEBIs):Potential Applications as pH-Sensitive Linkers for Drug Delivery.Bioconjugate Chemistry.2007,18(2):293-296.
    [117]J. Jung, I.-H. Lee, E. Lee, J. Park and S. Jon.pH-Sensitive Polymer Nanospheres for Use as a Potential Drug Delivery Vehicle.Biomacromolecules.2007,8(11):3401-3407.
    [118]M. J. Heffernan and N. Murthy.Polyketal Nanoparticles:A New pH-Sensitive Biodegradable Drug Delivery Vehicle.Bioconjugate Chemistry.2005,16(6):1340-1342.
    [119]S. Miyazaki, A. Nakayama, M. Oda, M. Takada and D. Attwood.Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery.Biological & pharmaceutical bulletin.1994,17(5):745.
    [120]T. J. Aspden, J. D. T. Mason, N. S. Jones, J. Lowe,(?). Skaugrud and L. Illum.Chitosan as a nasal delivery system:The effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. Journal of Pharmaceutical Sciences.1997, 86(4):509-513.
    [121]L. Illum, N. F. Farraj and S. S. Davis.Chitosan as a novel nasal delivery system for peptide drugs.Pharmaceutical Research.1994,11 (8):1186-1189.
    [122]H. Tozaki, J. Komoike, C. Tada, T. Maruyama, A. Terabe, T. Suzuki, A. Yamamoto and S. Muranishi.Chitosan capsules for colon-specific drug delivery:Improvement of insulin absorption from the rat colon.Journal of Pharmaceutical Sciences.1997,86(9):1016-1021.
    [123]R. Bodmeier, H. Chen and O. Paeratakul.A novel approach to the oral delivery of micro-or nanoparticles.Pharmaceutical Research.1989,6(5):413-417.
    [124]W. O. N. Y. LEE, E. U. N. Y. I. MOON, J. LEE, C. H. A. CHOI, S. C. NAM, K. B. A. E. PARK, J. E. I. M. A. N. RYU, Y H. O. CHUNG, S. J. YOON and D. U. G. K. LEE.Toxicities of 166Holmium-chitosan in mice.Arzneimittel-Forschung.1998,48(3):300-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700