用户名: 密码: 验证码:
用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药载体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的迅猛发展,以往单一学科及其技术难以解决的关键科学问题经多学科交叉及技术的使用获得突破。本文运用生物科学、材料科学、纳米科学及药剂学等学科的理论和方法,研究可显著改善蛋白质多肽类药物及DNA、siRNA功效的新型给药载体及其作用机理。
     蛋白质多肽、核酸等生物大分子药物药理活性强、特异性高,在肿瘤、糖尿病、感染性疾病等重大疾病的治疗中显示出巨大潜力,但其临床应用主要为注射剂型,多数药物半衰期短,长期用药患者顺应性差。而非注射给药特别是口服给药时,此类亲水性生物大分子药物不易被亲脂性的生物膜摄取,易被体内各种酶降解导致活性降低或失活,生物利用度低。利用给药系统(Drug Delivery System, DDS)可提高生物大分子药物的体内外稳定性、促进药物吸收、改善药物体内作用功效。其中水凝胶给药载体还可控制药物释放,具有生物黏附、生物相容和生物可降解等特性;纳米给药载体还可增溶难溶性药物,缓控释药物和靶向给药。
     同时具有抑制蛋白酶活性、促进药物渗透及黏膜黏附等性质的多功能聚合物给药载体可显著提高蛋白质多肽类药物的口服吸收,能有效突破胞外屏障(吞噬系统、核酸酶)和胞内屏障(细胞膜、内涵体、溶酶体、核膜)的多功能非病毒基因载体有望持续、高效地将基因导入靶细胞和靶组织。据此,设计并研究新型互穿网络聚合物超多孔水凝胶(SPH-IPN),以胰岛素为模型药物,研究SPH-IPN促进蛋白质多肽类药物的口服吸收及作用机理;依据壳聚糖季胺盐(TMC)与巯基化聚合物黏膜黏附及促渗特点,设计一种新型壳聚糖多功能衍生物—巯基化壳聚糖季胺盐(TMC-Cys),以胰岛素和pEGFP分别作为模型蛋白质药物和模型基因,研究其自组装纳米载体促进蛋白质药物口服吸收、基因转染及其作用机理:对TMC-Cys纳米载体进行甘露糖配体修饰,以TNF-αsiRNA为靶基因,研究甘露糖修饰的TMC-Cys (MTC)纳米载体对小肠M细胞、巨噬细胞的主动靶向作用及增加siRNA口服给药功效与作用机理。
     以丙烯酸(AA)和丙烯酰胺(AM)为单体,过硫酸铵(APS)/N,N,N',N'-四甲基乙二胺(TEMED)为引发体系,NaHCO3为起泡剂,N,N'-亚甲基-双丙烯酰胺(Bis)为交联剂,溶液聚合制得聚(丙烯酸-丙烯酰胺)(P(AA-co-AM))超多孔水凝胶;采用分步互穿网络聚合物技术,聚合时加入O-羧甲基壳聚糖(O-CMC),胶凝后以戊二醛(GA)交联O-CMC,制得SPH-IPN。傅立叶变换红外光谱(FTIR)、核磁共振(13C NMR)、差示扫描量热分析(DSC)等研究表明SPH-IPN中含有P(AA-co-AM)和交联的O-CMC;扫描电镜(SEM)、光镜、共聚焦激光扫描显微镜(CLSM)观察表明SPH-IPN含有大量相互连接、直径100-300μm的孔隙,O-CMC围绕孔隙边缘分布。SPH-IPN孔隙率大于80%,水中可快速溶胀,平衡溶胀比30-80,SPH-IPN的溶胀比随O-CMC含量增加、交联度增加、交联时间延长而降低。引入互穿网络聚合物(IPN)结构可显著提高SPH-IPN的压缩模量和拉伸模量;压缩模量和拉伸模量均随O-CMC含量增加而显著提高;压缩模量随O-CMC交联度增加、交联时间延长而显著提高。
     考察pH、离子强度和温度对SPH-IPN溶胀行为的影响;以胰岛素为模型药物,研究SPH-IPN的载药量、载胰岛素SPH-IPN在不同介质中的体外释放行为、载药前后胰岛素的稳定性及聚合物-药物相互作用;研究SPH-IPN中水的状态及保水性。
     研究表明,SPH-IPN的溶胀具有离子强度、pH和温度敏感性。离子强度≥0.01mol·L-1时,SPH-IPN的溶胀比随离子强度增大而减小;离子强度<0.001mol·L-1时,溶胀不受影响。pH≤3.0时SPH-IPN几乎不溶胀;3.0≤pH≤6.2时随pH升高溶胀速率加快,溶胀比增大;pH≥6.2时溶胀充分,溶胀行为无显著改变;SPH-IPN对脉冲式pH改变可快速响应,呈现可逆的溶胀-去溶胀行为。温度升高可促进SPH-IPN的溶胀。SPH-IPN对胰岛素吸附载药的载药量为4%-7%,显著高于传统超多孔水凝胶(CSPH);载药量随O-CMC含量增加而略有降低。胰岛素体外释放对离子强度、pH和温度敏感。圆二色谱分析和生物活性检测结果表明载药前后胰岛素的构象和生物活性无显著变化。SPH-IPN对胰岛素的实际载药率显著高于理论载药率,pH 7.4 PBS介质中药物可快速、完全释放,空白SPH-IPN和释药后SPH-IPN的FTIR图谱相似,表明SPH-IPN与胰岛素间存在较强的物理相互作用,不存在化学共价连接。溶胀的SPH-IPN中可冻结水占主要部分;SPH-IPN与水分子形成氢键的作用随O-CMC含量和胰岛素载药量增加而减弱。外加压力与37℃孵育时,SPH-IPN保水性较好,保水性随O-CMC含量增加而提高。
     考察载胰岛素SPH-IPN正常大鼠口服给药和回肠给药的生物利用度,以及糖尿病模型大鼠口服给药降血糖效果;从黏膜黏附、蛋白酶抑制、渗透促进、小肠滞留等方面探讨SPH-IPN促胰岛素肠道吸收机理;考察聚合物结构完整性对SPH-IPN抑酶、促渗、小肠滞留及胰岛素口服吸收的影响。
     正常大鼠口服载胰岛素完整的SPH-IPN (I-SPH-IPN)后药物吸收和降血糖效果显著,血糖最低降至初始值的65%,相对皮下注射的口服生物利用度为5.0%,药理生物利用度为6.3%;口服载胰岛素粉碎的SPH-IPN (P-SPH-IPN)后药物吸收和降血糖效果均不明显;回肠给予载胰岛素I-SPH-IPN和P-SPH-IPN时,药物吸收和降血糖效果显著,血糖最低降至初始值的30%,二者效果相当,均优于口服给药;糖尿病模型大鼠口服载胰岛素I-SPH-IPN后降血糖效果显著。SPH-IPN可通过非特异性作用和机械作用黏附至小肠黏膜,黏附力随O-CMC含量增加而增大。SPH-IPN可通过捕获蛋白酶溶液和络合Ca2+抑制肠腔蛋白酶(胰蛋白酶、糜蛋白酶)活性,且SPH-IPN络合二价金属离子的能力随O-CMC含量增加而增强,抑酶作用相应增强。I-SPH-IPN和P-SPH-IPN的体外抑酶作用相当,I-SPH-IPN可减少药物在肠腔中的释放,增加黏液层和黏膜中的释放,从而降低肠腔蛋白酶对药物的降解,I-SPH-IPN对胰岛素的保护作用强于P-SPH-IPN。SPH-IPN通过机械作用可逆打开小肠上皮细胞间紧密连接,促进胰岛素的胞间转运;加入I-SPH-IPN和P-SPH-IPN, Caco-2细胞单层的跨膜电阻最低分别降至初始值的25%和50%,FITC-胰岛素在Caco-2细胞单层中的转运量分别提高至未加聚合物的4.9和1.9倍,离体小肠中的Papp分别提高至4.2和1.8倍,表明I-SPH-IPN打开上皮细胞间紧密连接和促胰岛素渗透的能力强于P-SPH-IPN。I-SPH-IPN通过机械作用固定于大鼠小肠壁,小肠滞留时间超过8h;P-SPH-IPN在小肠中易分散,无法通过机械作用固定于肠壁,滞留时间短于4h。
     考察SPH-IPN的细胞毒性、基因(遗传)毒性、小肠组织相容性、口服急性、亚急性毒性和血液相容性,从整体动物、组织、细胞和分子水平评价SPH-IPN的安全性;HPLC测定SPH-IPN中单体和交联剂的残留量,为生物相容性评价提供依据。
     FDA/PI双染色、LDH、中性红、蛋白质含量测定试验结果表明RBL-2H3和Caco-2细胞与SPH-IPN及其浸提液(10、1、0.1 mg·mL-1)短时程(24h)接触后,胞外LDH释放量、胞内中性红摄入量、蛋白质含量均无显著变化,细胞活力无显著影响;MTT试验结果表明二种细胞与SPH-IPN及其浸提液长时程(7d)接触后,细胞增殖率无显著影响,SPH-IPN细胞毒性低。DNA Ladder、流式细胞仪检测、单细胞凝胶电泳和小鼠骨髓微核试验结果表明SPH-IPN不会引起RBL-2H3和Caco-2细胞凋亡、DNA断裂和小鼠骨髓微核发生,基因毒性低。SPH-IPN不会引起大鼠小肠黏膜组织损伤,组织相容性良好。SPH-IPN浸提液小鼠灌胃给药最大耐受剂量为1000 mg·kg-1;亚急性毒性试验中连续28天每天一次灌胃给予SPH-IPN浸提液(500、200、100mg·kg-1),小鼠体重增长正常,血液学和血清生化指标正常,肝、肾、脾重量正常,组织切片中未见炎症、坏死、水肿等病理现象,肝、肾、脾中ACP、ALKP、GPT、GOT和LPO含量正常,表明SPH-IPN口服安全性好。SPH-IPN的溶血率低于5%,动态凝血率低于硅化玻璃,血小板黏附率低,具有一定的抗凝血效果,血液相容性良好。SPH-IPN中AA、AM和GA的残留量分别为1.4±0.6、2.0±0.2、<0.2 ppm,符合其限量规定。
     壳聚糖经季胺化和巯基化修饰制备TMC-Cys,表征理化性质:聚电解质(PEC)法制备TMC-Cys/胰岛素自组装纳米粒(TMC-Cys NP)并表征理化性质;考察TMC-Cys NP正常大鼠口服给药和回肠给药的降血糖效果,研究TMC-Cys NP促胰岛素口服吸收机理。
     壳聚糖(Mw 30、200、500 kDa)与甲烷反应合成季胺化度分别为15%和30%的TMC,TMC与Cys经EDAC/NHS催化的缩合反应合成TMC-Cys。400-500μmol·g-1 Cys共价连接至TMC,其中约35%为游离巯基,其余为二硫键;游离巯基在中性条件下可氧化形成二硫键。FTIR和13C NMR表明TMC与Cys以酰胺键连接,DSC和TGA结果表明季胺化和巯基化修饰可改变壳聚糖的结晶度,降低其热稳定性。TMC-Cys的抑菌作用与TMC相近,清除自由基作用强于TMC,季胺化度较高时抑菌作用较强,清除自由基能力减弱。荷正电的TMC-Cys与荷负电的胰岛素经静电作用自组装形成TMC-Cys NP,纳米粒呈球形,分散度良好,粒径为100-170 nm,Zeta电势为+12-+18 mV,胰岛素包封率达90%。纳米粒粒径、Zeta电势和包封率受胰岛素溶液pH、TMC-Cys/胰岛素质量比和离子强度影响;胰岛素体外释放受壳聚糖分子量、季胺化度、释放介质离子强度和离子类型影响。TMC-Cys NP的小肠黏膜黏附力和黏蛋白黏附率较TMC NP分别提高2.1-4.7倍和1.5-2.2倍,黏蛋白黏附率随壳聚糖分子量或季胺化度升高而增加。DSC分析表明TMC-Cys通过与黏蛋白间形成二硫键提高黏附力。与TMC NP相比,TMC-Cys NP胰岛素的离体小肠Papp提高1.7-26倍,Caco-2细胞摄取量提高1.7-3.0倍,Peyer's结摄取量提高1.7-5.0倍,其中TMC-Cys(200,30) NP的促渗作用最强。大鼠口服和回肠给药时,TMC-Cys NP的降血糖效果优于TMC NP,血糖最低分别降至初始值的65%和30%。Caco-2细胞MTT试验和大鼠回肠LDH试验结果表明TMC-Cys NP细胞毒性低,安全性良好。
     以增强型绿荧光蛋白表达质粒(pEGFP)为模式质粒,PEC法制备TMC-Cys/pEGFP自组装纳米复合物(TMC-Cys NC)并表征理化性质;考察TMC-Cys NC在HEK293细胞和小鼠胫前肌中的体内外转染效率,研究其转染机制。
     TMC-Cys NC呈球形,分散度良好,粒径为150-400 nm,Zeta电势为+14-+20mV;凝胶阻滞试验结果表明TMC-Cys可通过静电作用缩合pDNA; TMC-Cys NC可有效保护pDNA免受核酶降解。TMC-Cys NC的细胞黏附率较TMC NC显著提高;TMC-Cys NC的HEK293细胞摄取率分别提高至TMC NC和Lipofectamine2000的1.4-3.0倍和1.6-4.4倍;4℃时TMC-Cys NC的摄取量为37℃时的25%,叠氮钠和氯丙嗪处理分别使摄取量减少40%和70%,表明TMC-Cys NC主要经能量依赖的网格蛋白介导的细胞内吞途径进胞;松胞素D和染料木素对TMC-Cys NC的摄取无显著影响,表明进胞机理与细胞骨架的重构和窖蛋白介导的通路无关。TMC-Cys NC的释放行为呈现谷胱甘肽(GSH)浓度依赖性,胞外GSH浓度下缓慢释放pEGFP,胞内GSH浓度下快速释放pEGFP并转运进核,细胞核中pEGFP的含量为TMC NC组的3.7倍。TMC-Cys NC在HEK293细胞中的转染效率提高至TMC NC的1.4-3.2倍,其中TMC-Cys(100,30) NC的转染效率最高(约35%),为Lipofectamine2000的1.5倍。TMC-Cys(100,30) NC的体内转染效率分别提高至TMC NC和Lipofectamine2000的2.3倍和4.1倍。
     制备MTC及其纳米粒,研究纳米粒的理化性质;以TNF-a siRNA为靶基因,研究MTC纳米粒对小肠M细胞、巨噬细胞的主动靶向作用和提高siRNA口服给药功效及其作用机理。
     TMC (200、500 kDa)经甘露糖修饰和巯基化修饰制得甘露糖修饰度约20%的MTC;捕获法、吸附法和自组装法分别制备载siRNA MTC纳米粒(en-MTC-TPP NP、ad-MTC-TPP NP和MTC-SANP),纳米粒为球形或亚球形,分散良好,粒径为130-230 nm,Zeta电势为正值,siRNA包封率为70-80%,纳米粒可显著提高siRNA的血清稳定性;纳米粒粒径随壳聚糖分子量增大而增大:ad-MTC-TPP NP和MTC-SANP受离子强度影响较大,siRNA包封率随离子强度升高而显著降低,但en-MTC-TPP NP受离子强度影响较小。与载NC siRNA的巯基化壳聚糖季胺盐纳米粒(en-TC-TPP NP)相比,en-MTC-TPP NP的Caco-2细胞和Raw 264.7细胞黏附力显著提高,siRNA在Raw 264.7细胞中的摄取量提高2.0-24倍,Peyer's结摄取量提高19-24倍,体外M细胞模型和Caco-2细胞单层转运量提高1.2-2.1倍,离体小肠转运量提高6.9-11.0倍,且M细胞模型中的转运量显著高于Caco-2细胞单层中的转运量,含Peyer's结离体小肠的转运量高于不含Peyer's结离体小肠的转运量,表明甘露糖配体修饰载体可通过特异性配体-受体结合作用显著提高纳米粒对M细胞和巨噬细胞的主动靶向作用,从而促进siRNA的小肠摄取和转运。以TNF-αsiRNA为靶基因,en-MTC-TPP NP在Raw 264.7细胞中的干扰效率显著强于en-TC-TPP NP和Lipofectamine2000;相同干扰效率(70%)时,en-MTC-TPP NP的siRNA剂量较Lipofectamine2000降低200倍。en-MTC-TPP NP在Raw 264.7细胞和Caco-2细胞中基本无毒性,表明纳米粒在发挥基因沉默作用时不会造成细胞毒性。小鼠口服en-MTC-TPP NP可显著降低血清TNF-α含量。
With the rapid development of science and technology, multi-interdisciplinary cooperation and technological application have demonstrated an effective artifice in overcoming the difficulties that have long been laid unsolved by an individual subject or technique. The current thesis provides a systemic investigation on the development of novel delivery carriers for significantly improving the effectiveness of protein, peptide, DNA, and siRNA, and elucidation of the underlying mechanisms, taking full advantages of the theories and experimental strategies in biological sciences, material sciences, nano sciences, and pharmaceutical sciences.
     Protein, peptide and nucleic acid drugs have been exploited which possess potent pharmacological activity as well as high specificity, and have shown great potentials in the treatment of diseases such as cancer, diabetes, and infectious diseases. However, their clinical applications are mostly restricted to injection formulations, which lead to short half-life and undesired patient compliance. When parenterally delivered, especially orally delivered, these hydrophilic biomacromolecules are barely absorbed by the lipophilic biological membranes, and are readily degraded by various enzymes, resulting in poor bioavailability. Therefore, development of drug delivery systems (DDS) is attracting more attention, which aims at improving in vivo drug stability, promoting drug absorption, and enhancing in vivo drug efficacy. Hydrogel delivery carriers are distinguished for its bioadhesion, biocompatibility, biodegradability, and a manner for controlled drug release. Nanoparticulate delivery carriers show distinct beneficial attributes, including solubilization of insoluble drugs, controlled and sustained drug release and targeted drug delivery. The characteristics of delivery systems are largely dependent on the polymeric carriers used.
     Consequently, multi-functional carriers that exhibited mucoadhesion, enzymatic inhibition, and absorption enhancement would be an efficient strategy in facilitating oral absorption of protein and peptide drugs. In addition, multi-functional non-viral gene carriers to allow overcoming of the extracellular barrier (phagocyte system and nuclease) and intracellular barrier (cell membrane, endosome, lysosome, nucleus membrane) could deliver the genes into target cells and tissues in an efficient, sustained, and targeted manner. The current investigation aims at constructing novel superporous hydrogels containing interpenetrating polymer networks (SPH-IPN), investigating efficacy of SPH-IPN as oral delivery vehicles for protein drugs with insulin as a model drug, and elucidation the absorption mechanisms. Besides, thiolated trimethyl chitosan (TMC-Cys) as a novel multifunctional chitosan derivative was synthesized to combine the advantages of TMC and thiolated polymers. With insulin and pEGFP as model protein drug and model pDNA, TMC-Cys was subjected to formation of TMC-Cys/insulin nanoparticles (TMC-Cys NP) and TMC-Cys/pEGFP nanocomplexes (TMC-Cys NC) through self-assembly, which were evaluated as oral delivery vehicles for protein drugs and gene delivery carriers, respectively. Besides, the mechanisms underlying the drug absorption enhancement and gene transfection elevation were elucidated. TMC-Cys nanocarriers were further modified with mannose, and the resultant mannose-modified TMC-Cys (MTC) nanocarriers were investigated for its active targeting towards intestinal M cells as well as macrophages with TNF-a siRNA as the target gene. Besides, RNAi efficacy was evaluated via oral delivery along with elucidation of the underlying mechanisms.
     Superporous hydrogels of P(AA-co-AM) was synthesized through solution copolymerization of acrylic acid (AA) and acrylamide (AM) with APS/TEMED as initiators, NaHCO3 as foaming agent, and Bis as cross-linker. O-CMC was allowed to be well distributed in SPH along with the polymerization reaction, and was further cross-linked by glutaraldehyde (GA) after SPH was synthesized, thus achieving the SPH-IPN. The structures of the SPH-IPNs were characterized with FTIR,13C NMR, and DSC. SEM, CLSM and light images revealed that the SPH-IPNs possessed both the IPN network and large numbers of pores with diameters of 100-300μm, and the cross-linked O-CMC molecules were located on the peripheries of these pores. SPH-IPN quickly swelled in water with equilibrium swelling ratio of 30-80, and an increase in O-CMC content, GA amount and cross-linking time led to slower swelling behavior. Due to the cross-linked O-CMC network, compression and tensile modulus of SPH-IPN were greatly improved, and an increase in O-CMC content, GA amount and cross-linking time was favorable for enhanced mechanical strength.
     Swelling behaviors of SPH-IPN were measured at different pH, ionic strength, and temperature. With insulin as a model drug, loading capacity of the SPH-IPN was determined. Release profiles were also evaluated at different pH, ionic strength, and temperature. Stability of insulin following drug loading and polymer-drug interactions were also investigated. State of water in SPH-IPN and water retention capacities were examined.
     Swelling of SPH-IPN was sensitive towards of pH, ionic strength, and temperature. An increase in the ionic strength within the range of 0.001-1M yields a significant decrease in the swelling ratio, while it brought about an insignificant difference in the swelling behavior of the polymer when the ionic strength was no higher than 0.001M. A drastic increase in the swelling was observed within the pH range of 3.0-6.2, whereas at pH> 6.2 or pH< 3.0, the change in the swelling behavior was slight. SPH-IPN could rapidly respond to pulsatile alternation of pH values between 1.2 and 7.4, thereby exhibiting fast swelling and de-swelling. An increase in temperature could further facilitate swelling of SPH-IPN. Insulin loading capacity of SPH-IPN was 4%-7%, which was notably higher than CSPH, and an increase in O-CMC content yielded slightly deceased loading capacity. Insulin release also exhibited sensitivity towards pH, ionic strength, and temperature. After drug loading and release, the circular dichroism (CD) spectra revealed that conformation of insulin had no significant alteration and bioactivity of insulin was well preserved according to hypoglycaemic effect in mice. Great discrepancies were noted between the theoretical and experimental loading levels of SPH-IPN for insulin, and fast and complete drug release was observed in pH 7.4 PBS. Besides, FTIR spectra of blank SPH-IPN and washed SPH-IPN after drug release were similar, which suggested strong physical interactions rather than chemical linkage between the polymer and the drug. Freezing water was the majority of the imbibed water in the swollen SPH-IPN, and the ability of SPH-IPN to form hydrogen bonding with water molecules was weakened as the O-CMC content and insulin loading amount increased. SPH-IPN showed desired water retention capacities against compression and exposure at 37℃, which further improved as the amount of O-CMC network increased.
     Pharmacokinetics and pharmacokinetics were investigated following oral and ileal administration of insulin-loaded SPH-IPN in normal rats, and the hypoglycemic effect of insulin-loaded SPH-IPN was also monitored in diabetic rats following oral delivery. Mucoadhesion, enzymatic inhibition, insulin permeation enhancing effect, and intestinal retention of SPH-IPN were evaluated to provide an insight into the intestinal absorption mechanisms of insulin in the presence of SPH-IPN. Besides, the effect of polymer integrity on the enzymatic inhibition, permeation enhancement, intestinal retention, and oral absorption of insulin was investigated.
     Oral administration of insulin-loaded integral SPH-IPN (I-SPH-IPN) led to marked insulin absorption and hypoglycemic effect in normal rats with F and PA of 5.0% and 6.3%, respectively. In comparison, minimal insulin absorption and unappreciable hypoglycemic effect were observed following powdered SPH-IPN (P-SPH-IPN) delivery. When ileally administered, both I-SPH-IPN and P-SPH-IPN yielded a faster and more potent insulin absorption and blood glucose depression, with the minimal blood glucose level of 30% of initial values. Notable hypoglycemic effect was also observed following oral administration of insulin-loaded I-SPH-IPN in diabetic rats. SPH-IPN could adhere to the intestinal mucosa through non-specific binding and mechanical fixation, and an increase in O-CMC yielded a higher muadhesion capacity. SPH-IPN exhibited potent enzymatic inhibitory effect towards luminal proteolytic enzymes (trypsin andα-chymotrypsin) via enzyme entrapment and Ca2+ binding. A higher O-CMC content correlated to enhanced Ca2+ binding capacities, which accounted for enhanced enzymatic inhibitory effect. Although I-SPH-IPN and P-SPH-IPN possessed equivalent enzymatic inhibition capacity in vitro, I-SPH-IPN outperformed P-SPH-IPN in protecting insulin from proteolytic hydrolysis under the in vivo conditions, because I-SPH-IPN released more insulin in the mucus layer rather than in the intestinal lumen and thereby prevented degradation by luminally secreted proteases. SPH-IPN facilitated paracellular transport of insulin through reversible opening of epithelial tight junctions as a result of mechanical pressure, and I-SPH-IPN exhibited potent permeation enhancing effect than P-SPH-IPN in that I-SPH-IPN and P-SPH-IPN led to a depression in TEER values of Caco-2 cell monlayers to 25% and 50% of initial values, an increase in FITC-insulin transport in Caco-2 cell monlayers by 4.9 and 1.9 folds, and an enhancement in FITC-insulin transport in excised rat ileum by 4.2 and 1.8 folds, respectively. Through mechanical fixation onto the gut wall, I-SPH-IPN showed a prolonged intestinal retention of more than 8 h, while P-SPH-IPN was cleared from the intestinal within 4 h due to failure in mechanical fixation.
     Biocompatibility of SPH-IPN was explored at molecular, cellular, tissue, and animal levels in terms of cytotoxicity, genetoxicity, tissue toxicity, oral acute and sub-acute toxicity, and blood compatibility. Residual monomers and cross-linkers in SPH-IPN were quantified by HPLC to provide evidences for biocompatibility assessment.
     Results of FDA/PI double staining assay, LDH assay, neutral red assay, and protein assay in RBL-2H3 and Caco-2 cells revealed lack of cytotoxicity of SPH-IPN and SPH-IPN extract (10,1,0.1 mg·mL-1) following short-time exposure (24 h), and MTT assay further evidenced that SPH-IPN did not interfere with cell proliferation following long-time treatment (7 d). DNA ladder assay, cytometry assay and comet assay in the above two cell lines and in vivo micronucleus (MN) assay in mice showed that SPH-IPN did not induce cell apoptosis, DNA breakage, and MN formation, suggesting lack of genotoxicity. SPH-IPN did not induce impairment to the intestinal mucous, indicating good tissue compatibility. Oral administration of SPH-IPN extract (1000 mg·kg-1) resulted in unappreciable acute toxicity, and in the 28-day sub-acute toxicity study (500,200,100 mg·kg-1), body weight of I-SPH-IPN extract treated mice gradually increased with no appreciable difference to control animals, weights of mouse livers, kidneys, and spleens were found to be normal, and in the histological examination no necrosis, inflammation, edema or other pathological signs were detected. With regard to the hematological parameters and biochemical assays, no statistically significant difference was observed against control. LPO, GOP, GPT, ACP, and AKLP activities in mouse livers, kidneys, and spleens showed no abnormality, either. Hemolysis ratio of SPH-IPN was lower than 5%, the dynamic blood clotting ratio was lower than silicated glass, and platelet adsorption ratio was low, suggesting its desired anticoagulant capacities. Residual amount of AA, AM and GA in SPH-IPN was quantified to be 1.4±0.6,2.0±0.2, and<0.2 ppm, which was within the safety range.
     TMC-Cys was synthesized through trimethylation of chitosan and thiolation of TMC, and TMC-Cys NP was prepared using the PEC method. It was thereafter evaluated as an oral delivery vehicle for protein drugs, and the mechanisms of oral absorption of insulin was elucidated.
     Chitosan (30、200、500 kDa) was allowed to react with CH3I to achieve TMC with quaterization degree (DQ) of 15% and 30%, and TMC was subsequently modified with Cys via amide bond formation between the residual primary amino groups on TMC and carboxyl groups on Cys as mediated by EDAC/NHS. About 400-500 mmol·g-1 of sulphydryl was immobilized on TMC-Cys, with approximately one-third remaining the free thiol groups while two thirds being oxidized to the disulfide. FTIR and 13C NMR confirmed covalent conjugation between TMC and Cys via amide bonding, while DSC and TGA evidenced reduced crystallinity and decreased thermal stability of the polymer following trimethylation and thiolation. TMC-Cys exhibited comparable antimicrobial effect to TMC while stronger scavenging effect against free radicals. TMC-Cys NP was prepared through electrostatic interactions between oppositely charged TMC-Cys and insulin, which demonstrated particle size of 100-170 nm, Zeta potential of+12-+18 mV, and high encapsulation efficiency of 90%. Particle size, Zeta potential, and insulin encapsulation efficiency were largely dependent on pH of the insulin solution, TMC-Cys/insulin weight ratio, and ionic strength. Besides, chitosan Mw, DQ of TMC, ionic strength and ion types of the dissolution medium also exerted appreciable effect on in vitro release profiles of insulin. TMC-Cys NP showed a 2.1-4.7-fold and a 1.5-2.2-fold increase in intestinal mucoadhesion and mucin adsorption compared to TMC NP, and higher Mw or DQ was favorable for mucin adsorption. DSC measurement evidenced disulfide formation between TMC-Cys and mucin. Compared to TMC NP, TMC-Cys NP induced increased insulin transport through rat intestine by 1.7-2.6 folds, promoted Caco-2 cell internalization by 1.7-3.0 folds, and augmented uptake in Peyer's patches by 1.7-5.0 folds, respectively, among which TMC-Cys(200,30) NP exhibited the optimal permeation enhancing effect. Such results were further confirmed by in vivo experiment. MTT assay in Caco-2 cells and LDH assay in rat intestine revealed lack of toxicity of TMC-Cys NP.
     With pEGFP as model pDNA, TMC-Cys NC was prepared using the PEC method and subjected to measurement of size and Zeta potential, and morphology observation using SEM and AFM. In vitro and in vivo transfection efficiency of TMC-Cys NC were monitored in HEK293 cells and mouse posterior tibialis muscles, respectively, and the transfection mechanisms were elucidated. TMC-Cys showed potent condensation capacity towards pDNA as evidenced by EB exclusion and gel retardation assays, and the resultant TMC-Cys NC demonstrated diameters of 150-400 nm and Zeta potentials of+14-+20 mV. TMC-Cys NC could also prevent degradation of pDNA by nucleases. Cell binding and mucin adsorption of TMC-Cys NC were enhanced 2.4-3.0 and 1.2-1.7 folds, respectively, compared to TMC NC, and cellular uptake of TMC-Cys NC was enhanced 1.4-3.0 fold and 1.6-4.4 fold compared to TMC NC and Lipofectamine2000. Lowering the temperature from 37 to 4℃substantially reduced uptake of TMC-Cys(100,30) NC by approximately 75%, and pretreatment of sodium azide or chlorpromazine yielded a depression in the complex internalization by approximately 30% and 70%, respectively, suggesting that an energy-dependent clathrin-mediated endocytic process was involved in the complex uptake. Comparatively, cytochalasin D and genistein exerted unappreciable effect on the cellular uptake of nanocomplexes, which indicated that complex uptake was not associated with cytoskeleton recognization and the caveolin-mediated pathway. pEGFP was slowly released from TMC-Cys NC at extracellular GSH concentrations, while was quickly released at the intracellular concentration and transported to the nuclei, leading to a 3.7-fold enhancement in nuclear accumulation of pEGFP compared to TMC NC. Besides, the relative amount of nuclear pEGFP increased with incubated time, which reached a plateau of 40% at 4 h. Consequently, TMC-Cys NC showed a 1.4 to 3.2-fold increase in the transfection efficiency in HEK293 cells as compared to TMC NC and the optimal TMC-Cys(100,30) NC showed a 1.5-fold enhancement than Lipofectamine2000. Such results were further confirmed by in vivo transfection with a 2.3-fold and 4.1-fold higher transfection efficiency of TMC-Cys(100,30) NC than TMC(100,30) NC and Lipofectamine2000, respectively.
     MTC was synthesized and MTC nanoparticles were prepared and characterized. With TNF-a siRNA as a target gene, MTC nanoparticles were evaluated for their capacity of actively targeting towards intestinal M cells and macrophages, improving oral RNAi effect and the underlying mechanisms.
     MTC with mannose modification degree of about 20% was synthesized through modification of TMC (Mw 200,500 kDa) with mannopyranosylphenylisothiocyanate and subsequent thiolation with cysteine. siRNA loaded MTC nanoparticles were prepared via the entrapment method, adsorption method, and self-assembly method. The nanoparticles were spherical or sub-spherical in shape, demonstrating diameters of 130-230 nm, positive Zeta potentials, and siRNA encapsulation efficiency of 70-80%. Serum stability of siRNA was significantly enhanced following nanoparticle encapsulation. Higher chitosan MW led to larger particle sizes; dilution led to augmentation of particle size and polydispersity of MTC-SA NP, and an increase in ionic strength resulted in notably decreased encapsulation efficiency of ad-MTC-TPP NP and MTC-SA NP. Comparatively, en-MTC-TPP NP was superior in resistance towards ionic strength. As compared to en-TC-TPP NP, en-MTC-TPP NP exhibited significantly higher cell binding capacity towards Caco-2 cells and Raw 264.7 cells, enhanced uptake level in Raw264.7 cells by 2.0-2.4 folds, increased Peyer's patch uptake by 1.9-2.4 folds, augmented Caco-2 cell monolayer transport of 1.2-2.1 folds, and elevated intestinal transport by 6.9-11.0 folds. Besides, transport in co-cultures of Caco-2 cell monolayers was higher than that in mono-cultures, and transport in excised rat intestine with Peyer's patches was higher than that in rat intestine without Peyer's patches, what suggested that mannose modification remarkably promoted active targeting of nanoparticles towards M cells and macrophages and thereby facilitating siRNA uptake and intestinal transport. With TNF-a siRNA as the target gene, en-MTC-TPP NP demonstrated potent silencing capacity in Raw 264.7 cells than en-TC-TPP NP and Lipofectamine2000, wherein en-MTC-TPP NP showed comparable silencing effect to Lipofectamine2000 at a reduced siRNA dose of 200 folds. en-MTC-TPP NP exhibited minimal cytoxicity in Raw264.7 cells and Caco-2 cells, suggesting lack of toxicity of the nanoparticles when exerting potent gene silencing effect. Oral delivery of en-MTC-TPP NP resulted in notable inhition of LPS-induced serum TNF-αproduction.
引文
[1]Gao XJ, Zhang XE, Wu ZM, Zhang XJ, Wang Z, Li CX. Synthesis and physicochemical characterization of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery[J]. J Control Release, 2009,140(2):141-147.
    [2]Kompella UB, Lee VHL. Delivery systems for penetration enhancement of peptide and protein drugs:design considerations [J]. Adv Drug Deliver Rev,2001, 46(1-3):211-245.
    [3]Law B. Tung CH. Proteolysis:a biological process adapted in drug delivery, therapy, and imaging [J]. Bioconjugate Chem,2009,20(9):1683-1695.
    [4]Del Curto MD, Maroni A, Foppoli A, Zema L, Gazzaniga A, Sangalli ME. Preparation and evaluation of an oral delivery system for time-dependent colon release of insulin and selected protease inhibitor and absorption enhancer compounds [J]. J Pharm Sci,2009,98(12):4661-4669.
    [5]Whitehead K, Karr N, Mitragotri S. Discovery of synergistic permeation enhancers for oral drug delivery [J]. J Control Release,2008,128(2):128-133.
    [6]Mercier GT, Nehete PN, Passeri MF, Nehete BN, Weaver EA, Templeton NS, Schluns K, Buchl SS, Sastry KJ, Barry MA. Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules [J]. Vaccine,2007,25(52): 8687-8701.
    [7]Kamei N, Morishita M, Chiba H, Kavimandan NJ, Peppas NA, Takayama K. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin [J]. J Control Release,2009,134(2):98-102.
    [8]Dasgupta S, Bandyopadhyay A, Bose S. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin [J]. Acta Biomater,2009,5(8):3112-3121.
    [9]Werle M, Takeuchi H. Chitosan-aprotinin coated liposomes for oral peptide delivery:development, characterisation and in vivo evaluation [J]. Int J Pharm,2009, 370(1-2):26-32.
    [10]Liguori L, Marques B, Villegas-Mendez A, Rothe R, Lenormand JL. Liposomes-mediated delivery of pro-apoptotic therapeutic membrane proteins [J]. J Control Release,2008,126(3):217-227.
    [11]Lai JY, Fang R, Wang LQ, Tu KH, Zhao CS, Qian XQ, Zhan SL. Enzyme-based hydrogels Ccontaining dextran as drug delivery carriers:preparation, characterization, and protein release [J]. J Appl Polym Sci,2009,113(6):3944-3953.
    [12]Williams AC, Barry BW. Penetration enhancers [J]. Adv Drug Deliver Rev,2004, 56(5):603-618.
    [13]Law B, Tung CH. Proteolysis:A biological process adapted in drug delivery, therapy, and imaging [J]. Bioconjug Chem,2009,20(9):1683-1695.
    [14]Bernkop-Schnurch A, Kast CE. Chemically modified chitosans as enzyme inhibitors [J]. Adv Drug Deliver Rev,2001,52(2):127-137.
    [15]Thanou M, Verhoef JC. Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives [J]. Adv Drug Deliver Rev,2001,52(2):117-126.
    [16]Bernkop-Schnurch A, Kast CE, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules:thiomer/GSH systems [J]. J Control Release, 2003,93(2):95-103.
    [17]Di Colo G, Zambito Y, Zaino C. Polymeric enhancers of mucosal epithelia permeability:Synthesis, transepithelial penetration-enhancing properties, mechanism of action, safety issues [J]. J Pharm Sci,2008,97(5):1652-1680.
    [18]Nemoto E, Takahashi H, Kobayashi D, Ueda H, Morimoto Y. Effects of poly-L-arginine on the permeation of hydrophilic compounds through surface ocular tissues [J]. Biol Pharm Bull,2006,29(1):155-160.
    [19]Morimoto K, Chono S, Kosai T, Seki T, Tabata Y. Design of cationic microspheres based on aminated gelatin for controlled release of peptide and protein drugs [J]. Drug Deliv,2008,15(2):113-117.
    [20]Bernkop-Schnurch A, Guggi D, Pinter Y. Thiolated chitosans:development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system [J]. J Control Release,2004,94(1):177-186.
    [21]Krauland AH, Guggi D, Bernkop-Schnurch A. Oral insulin delivery:the potential of thiolated chitosan-insulin tablets on non-diabetic rats [J]. J Control Release,2004, 95(3):547-555.
    [22]Check E. Gene therapy trials to restart following cancer risk review[J]. Nature, 2005,434(7030):127-127.
    [23]顾健人,曹雪涛.基因治疗[M].北京:科技出版社,2000,1-3.
    [24]Lu Y. Madu Chikezie O. Viral-based gene delivery and regulated gene expression for targeted cancer therapy [J]. Expert Opin Drug Deliv,2010,7(1):19-35.
    [25]Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors [J]. Adv Genet,2009,67:29-60.
    [26]Hu WW. Lang MW, Krebsbach PH. Development of adenovirus immobilization strategies for in situ gene therapy [J]. J Gene Med,2008,10(10):1102-1112.
    [27]Pathak A, Patnaik S, Gupta KC Recent trends in non-viral vector-mediated gene delivery [J]. Biotech J,2009,4(11):1559-1572.
    [28]Park JS, Na K, Woo DG,Yang HN, Kim JM, Kim JH, Chung HM; Park KH. Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells [J]. Biomaterials,2010,31(1):124-132.
    [29]Liu YH, Cao XH, Peng DF, Xu WY. Polycationic graft copolymers of poly(N-vinylpyrrolidone) as non-viral vectors for gene transfection [J]. Cent Eur J Chem,2009,7(3):532-541.
    [30]del Pozo-Rodriguez A, Pujals S, Delgado D, Solinis MA, Gascon AR, Giralt E, Pedraz JL. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors [J]. J Control Release,2009,133(1):52-59.
    [31]Ghonaim HM, Li S, Blagbrough IS. Very long chain N-4,N-9-diacyl spermines: non-viral lipopolyamine vectors for efficient plasmid DNA and siRNA delivery [J]. Pharm Res,2009,26(1):19-31.
    [32]Winn SR, Chen JC, Gong X, Bartholomew SV, Shreenivas S, Ozaki W. Non-viral-mediated gene therapy approaches for bone repair [J]. Orthod Craniofac Res,2005,8(3):183-190.
    [33]Holladay C, Keeney M, Greiser U, Murphy M, O'Brien T, Pandit A. A matrix reservoir for improved control of non-viral gene delivery[J]. J Control Release,2009, 136(3):220-225.
    [34]Ruponen M, Arkko S, Urtti A, Reinisalo M, Ranta VP. Intracellular DNA release and elimination correlate poorly with transgene expression after non-viral transfection. J Control Release,2009,136(3):226-231.
    [35]Glover DJ, Leyton DL, Moseley GW, Jans DA. The efficiency of nuclear plasmid DNA delivery is a critical determinant of transgene expression at the single cell level [J]. J Gene Med,2010,12(1):77-85.
    [36]Brown MD, Gray AI, Tetley L, Santovena A. Rene J, Schatzlein AG, Uchegbu IF. In vitro and in vivo gene transfer with poly(amino acid) vesicles [J]. J Control Release, 2003,93(2):193-211.
    [37]Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes [J]. Gene Ther,1997,4(8):823-832.
    [38]Lee SE, Sasaki DY, Perroud TD, Yoo D, Patel KD, Lee LP. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA [J]. J Am Chem Soc,2009,131(39):14066-14074.
    [39]Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP, He HX, Minko T. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery [J]. J Control Release,2009,140(3):284-293.
    [40]Strand SP, Lelu S, Reitan NK, de Lange DC, Artursson P, Varum KM. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking [J]. Biomaterials,2010,31(5):975-987.
    [41]Thakor D, Spigelman I, Tabata Y, Nishimura I. Subcutaneous peripheral injection of cationized gelatin/DNA polyplexes as a platform for non-viral gene transfer to sensory neurons [J]. Mol Ther,2007,15(12):2124-2131.
    [42]Kim J, Lee SH, Choe J, Park TG. Intracellular small interfering RNA delivery using genetically engineered double-stranded RNA binding protein domain [J]. J Gene Med,2009,11(9):804-812.
    [43]Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors:cytotoxicity and transfection efficiency [J]. J Control Release,2005,103(3): 143-153.
    [44]Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA [J]. Adv Drug Del Rev,2010,62(1):12-27.
    [45]Chan P, Kurisawa M, Chung JE, Yang YY. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery [J]. Biomaterials,2007,28(3):540-549.
    [46]Jiang HL, Kwon JT, Kim YK, Kim EM, Arote R, Jeong HJ, Nah JW, Choi YJ, Akaike T, Cho MH, Cho CS. Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting [J]. Gene Ther,2007,14(19):1389-1398.
    [47]基纳姆·帕克,陈军,黑森·帕克.具有快速溶胀、高机械强度和超吸收特性的水凝胶复合物和超多孔水凝胶复合物[P]. PCT:98806514.2,1998.
    [48]Chen J, Park K. Synthesis and characterization of superporous hydrogel composites [J]. J Control Release,2000,65(1-2):73-82.
    [49]Dorkoosh FA, Brussee J. Verhoef JC, Borchard G, Rafie-Tehrani M, Junginger HE. Preparation and NMR characterization of superprous hydrogels (SPH) and SPH composites [J].2000,41(23):8213-8220.
    [50]Tang C, Yin CH, Pei YY, Zhang M, Wu LF. New superporous hydrogels composites based on aqueous Carbopols(?) solution (SPHCcs):synthesis, characterization and in vitro bioadhesive force studies [J]. Eur Polym J,2005,41(3): 557-562.
    [51]Dorkoosh FA, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo:assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall [J]. Eur J Pharm Biopharm,2002,53(2):161-166.
    [52]Dorkoosh FA, verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE. Development and characterization of a novel peroral peptide drug delivery system [J]. J Control Release,2001,71(3):307-318.
    [53]Dorkoosh FA, Stokkel MPM, Blok D, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Feasibility study on the retention of superporous hydrogel composite polymer in the intestinal tract of man using scintigraphy [J]. J Control Release,2004, 99(2):199-206.
    [54]Polnok A, Verhoef JC, Borchard G, Sarisuta N, Junginger HE. In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels [J]. Int J Pharm,2004,269(2):303-310.
    [55]Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee-Tehrani M, Borchard Q Junginger HE. Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin [J]. Eur J Pharm Sci,2002,15(5):433-439.
    [56]Dorkoosh FA, Verhoef JC, Borchard Q Rafiee-Tehrani M, Verheijden JHM, Junginger HE. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers [J]. Int J Pharm,2002,247(1-2):47-55.
    [57]Dorkoosh FA, Verhoef JC, Verheijden JHM, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers [J]. Pharm Res,2002,19(10): 1532-1536.
    [58]Ornidian H. Rocca JG, Park K. Advances in superporous hydrogels [J]. J Control Release,2005,102(1):3-12.
    [59]Yang SC, Park KN, Rocca JG. Semi-interpenetrating polymer network superporous hydrogels based on poly(3-sulfopropyl acrylate, potassium salt) and poly(vinyl alcohol):Synthesis and characterization [J]. J Bioact Compat Polym,2004, 19(2):81-100.
    [60]Kim D, Park K. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks [J]. Polymer,2004,45(1):189-196.
    [61]Panyam J, Labhasetwar V Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J]. Adv Drug Deliv Rev,2003,55(3):329-347.
    [62]Hamidi M, Azadil A, Rafiee P. Hydrogel nanoparticles in drug delivery [J]. Adv Drug Deliv Rev,2008,60(15):1638-1649.
    [63]Liu Z, Jiao Y,Wang Y. Polysaccharides-based nanoparticles as drug delivery systems [J]. Adv Drug Deliv Rev,2008,60(15):1650-1662.
    [64]Helle A, Hirsjarvi S, Peltonen L, Hirvonen J, Wiedmer SK, Hyotylainen T. Novel, dynamic on-line analytical separation system for dissolution of drugs from poly(lactic acid) nanoparticles [J]. J Pharm Biomed Anal,2010,51(1):125-130.
    [65]Son S, Kim WJ. Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery [J]. Biomaterials,2010,31(1):133-143.
    [66]Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, Jerome C, Marchand-Brynaert J, Feron O, Preat V. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel [J]. J Control Release,2009, 140(2):166-173.
    [67]Loskutov AI, Uryupina OY, Vysotskii VV, Roldughin VI. Surface faceting of gold nanoparticles and adsorption of organic macromolecules [J]. Colloid J,2009, 71(5):668-671.
    [68]Siqueira Q Bras J, Dufresne A. New process of chemical grafting of cellulose nanoparticles with a long chain Iisocyanate [J]. Langmuir,2010,26(1):402-411.
    [69]Chen FM, Ma ZW, Dong GY, Wu ZF. Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery [J]. Acta Pharmacol Sin,2009,30(4):485-493.
    [70]Atyabi F, Moghaddam FA, Dinarvand R, Zohuriaan-Mehr MJ, Ponchel G. Thiolated chitosan coated poly hydroxyethyl methacrylate nanoparticles:synthesis and characterization [J]. Carbohydr Polym,2008,74(1):59-67.
    [71]Yu JX, Rance GA, Khlobystov AN. Electrostatic interactions for directed assembly of nanostructured materials:composites of titanium dioxide nanotubes with gold nanoparticles [J]. J Mater Chem,2009,19(47):8928-8935.
    [72]Elfinger M, Pfeifer C, Uezguen S, Golas MM, Sander B, Maucksch C, Stark H, Aneja MK, Rudolph C. Self-assembly of ternary insulin-polyethylenimine (PEI)-DNA nanoparticles for enhanced gene delivery and expression in alveolar epithelial cells [J]. Biomacromolecuels,2009,10(10):2912-2920.
    [73]Radi H, Mansoor A. Chitosan-based gastrointestinal delivery systems [J]. J Control Release,2003,89(2):151-165.
    [74]Mourya VK, Inamdar N. Chitosan-modifications and applications:opportunities galore [J]. React Funct Polym,2008,68(6):1013-1051.
    [75]Zambito Y, Uccello-Barretta G, Zaino C, Balzano F, Di Colo G. Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan [J]. Eur J Pharm Sci,2006,29(5):460-469.
    [76]Mao S, Bakowsky U, Jintapattanakit A, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives an insulin [J]. J Pharm Sci,2006,95(5): 1035-1048.
    [77]Mao Z, Ma L, Jiang Y, Yan M, Gao C, Shen JN. N,N,N-Trimethylchitosan chloride as a gene vector:synthesis and application [J]. Macromol Biosci,2007,7(6): 855-863.
    [78]Sadeghi AMM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger HE. Permeation enhancer effect of chitosan and chitosan derivatives:Comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells [J]. Eur J Pharm Biopharm,2008,70(1):270-278.
    [79]Bernkop-Schnurch A, Hornof M, Guggi D. Thiolated chitosans [J]. Eur J Pharm Biopharm,2004,57(1):9-17.
    [80]Amiji M. Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications [J]. Carbohydr Polym,1997, 32(3-4):193-199.
    [81]Sajeesh S, Sharma CP. Interpolymer complex microparticles based on polymethacrylic acid-chitosan for oral insulin delivery [J]. J Appl Polym Sci,2006, 99(2):506-512.
    [82]Mao S. Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells [J]. Pharm Res,2005,22(12):2058-2068.
    [83]Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers:establishment of structure-activity relationships in vitro [J]. J Control Release,2008,125(2):145-154.
    [1]Dorkoosh FA, Verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE. Development and characterization of a novel peroral peptide drug delivery system [J]. J Control Release,2001,71(3):307-318.
    [2]Karlgard CCS, Wong NS, Jones LW, Moresoli C. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials [J]. Int J Pharm,2003,257(1):141-151,
    [3]Uchida R, Sato T, Tanigawa H, Uno K. Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens [J]. J Control Release,2003,92(3):259-264.
    [4]Kempen DHR, Lu L, Hefferan TE, Creemers LB, Maran A, Classic KL, Dhert WJA, Yaszemski MJ. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering [J]. Biomaterials,2008,29(22): 3245-3252.
    [5]Eddington DT, Beebe DJ. Flow control with hydrogels [J]. Adv Drug Del Rev, 2004,56(2):199-210.
    [6]Huynh DP, Nguyen MK, Pi BS, Kim MS, Chae SY, Kang CL, Bong SK, Kim SW, Lee DS. Functionalized injectable hydrogels for controlled insulin delivery [J]. Biomaterials,2008,29(16):2527-2534.
    [7]He CL, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery [J]. J Control Release,2008,127(3):189-207.
    [8]DeLong SA, Gobin AS, West JL. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration [J]. J Control Release,2005,109(1-3): 139-148.
    [9]Djefal-Kerrar A, Gais S, Ouallouche K, Khodja AN, Mahlous M, Hacene H. Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel:application to the degradation of polycyclic aromatic hydrocarbons [J]. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms,2007,265(1):370-374.
    [10]基纳姆·帕克,陈军,黑森.帕克.具有快速溶胀、高机械强度和超吸收特性的水凝胶复合物和超多孔水凝胶复合物[P].PCT:98806514.2,1998-05-08
    [11]Chen J, Park H, Park K. Synthesis of superporous hydrogels:hydrogels with fast swelling and superabsorbent properties [J]. J Biomed Mater Res,1999,44(1):53-62.
    [12]Gemeinhart RA, Park H. Park K. Effect of compression on fast swelling of poly(acrylamide-co-acrylic acid) superporous hydrogels [J]. J Biomed Mater Res, 2001,55(1):54-62.
    [13]Gemeinhart RA, Chen J, Park H, Park K. pH-sensitivity of fast responsive superporous hydrogels [J]. J Biomater Sci-Polym Ed,2000,11(12):1371-1380.
    [14]Gemeinhart RA, Park H, Park K. Pore structure of superporous hydrogels [J]. Polym Adv Technol,2000,11(8-12):617-625.
    [15]Chen J, Park K. Synthesis and characterization of superporous hydrogel composites [J]. J Control Release,2000,65(1-2):73-82.
    [16]Dorkoosh FA, Brussee J, Verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE. Preparation and NMR characterization of superporous hydrogels (SPH) and SPH composites [J]. Polymer,2000,41(23):8213-8220.
    [17]Tang C, Yin CH, Pei YY, Zhang M, Wu LF. New superporous hydrogels composites based on aqueous Carbopol(?) solution (SPHCcs):synthesis, characterization and in vitro bioadhesive force studies [J]. Eur Polym J,2005,41(3): 557-562.
    [18]Tang C, Yin LC, Yu J, Yin CH, Pei YY. Swelling behavior and biocompatibility of Carbopol-containing superporous hydrogel composites [J]. J Appli Polym Sci,2007, 104(5):2785-2791.
    [19]Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin [J]. Eur J Pharm Sci,2002,15(5):433-439.
    [20]Dorkoosh FA, Verhoef JC, Borchard G, Rafiee-Tehrani M, Verheijden JHM, Junginger HE. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers [J]. Int J Pharm,2002,247(1-2):47-55.
    [21]Dorkoosh FA, Verhoef JC, Verheijden JHM, Rafiee-Tehrani JHM, Borchard G, Junginger HE. Peroral absorption of Octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers [J]. Pharm Res,2002,19(10): 1532-1536.
    [22]Dorkoosh FA, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo:assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall [J]. Eur J Pharm Biopharm, 2002,53(2):161-166.
    [23]Dorkoosh FA, Setyaningsih D, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Effects of superporous hydrogels on paracellular drug permeability and cytotoxicity studies in Caco-2 cell monolayers [J]. Int J Pharm,2002,241(1):35-45.
    [24]Polnok A, Verhoef JC, Borchard G, Sarisuta N, Junginger HE. In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels [J]. Int J Pharm,2004,269(2):303-310.
    [25]Dorkoosh FA, Broekhuizen CAN, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Transport of Octreotide and evaluation of mechanism of opening the paracellular tight junctions using superporous hydrogel polymers in Caco-2 cell monolayers [J]. J Pharm Sci,2004,93(3):743-752.
    [26]Kim D, Park K. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks [J]. Polymer,2004,45(1):189-196.
    [27]Hou XP, Siow KS. Novel interpenetrating polymer network electrolytes [J]. Polymer,2001,42(9):4181-4188.
    [28]Sperling LH. Interpenetrating polymeric networks and related materials [M]. New York:Plenum Press,1981.
    [29]Oku N, Yamazaki Y, Matsuura M, Sugiyama M, Hasegawa M, Nango M. A novel non-viral gene transfer system, polycation liposomes [J]. Adv Drug Del Rev, 2001,52(3):209-218.
    [30]王银松,李英霞,宋妮.不同分子量N-琥珀酰壳聚糖的制备及其与K562肿瘤细胞间亲和性的初步探讨[J].高分子学报,2004,6(3):378-382.
    [31]Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ. Synthesis of fast-swelling superabsorbent hydrogels:effect of crosslinker type and concentration on porosity and absorption rate [J]. Eur Polym J,2003,39(7):1341-1348.
    [32]Hartley FD, Cross MM, Lord FW. In Advances in Polyurethane Technology [M]. London:Elsevier,1970.
    [33]赵爱杰,原续波,常津.O-羧甲基壳聚糖的制备及应用研究进展[J].高分子通报, 2004,4:59-63.
    [34]黄治本,顾其胜.新型交联剂京尼平在生物医学中的应用与发展[J].上海生物医学工程, 2003,24(1):21-25.
    [35]Deyao K, Tao P, Goosen MFA, Min JM, He YY. pH-sensitivity of hydrogels based on complex-forming chitosan polyether interpenetrating polymer network [J]. J Appl Polym Sci,1993,48(2):343-354.
    [36]Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological interactions between polysaccharides and divalent cations:egg-box models. FEBS Lett,1973, 32(2):195-198.
    [37]Sun LP, Du YM, Fan LH, Chen X, Yang JH. Preparation, characterization and antimicrobial activity of quatemized carboxymethyl chitosan and application as pulp-cap [J]. Polymer,2006,47(6):1796-1804.
    [38]Kittur FS, Prashanth KVH, Sankar KU, Tharanathan RN. Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry [J]. Carbohydr Polym,2002,49(2):185-193.
    [39]Wu GM, Lin SJ, Yang CC. Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes [J]. J Membrane Sci,2006,275(1-2): 127-133.
    [40]Tanaka T. Collapse of gels and the critical endpoint [J]. Phys Rev Lett, 1978, 40(12):820-823.
    [41]Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release [J]. Carbohydr Polym,2000, 41(4):389-396.
    [42]Aly AS. Self-dissolving chitosan. Ⅰ. Preparation, characterization and evaluation for drug delivery system [J]. Angew Makromol Chem,1998,259:13-18.
    [1]Zhou HY Chen XG, Kong M, Liu CS, Cha DS, Kennedy JF. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system [J]. Carbohydr Polym,2008, 73(2):265-273.
    [2]Tang Q, Wu J, Lin J. A multifunctional hydrogel with high conductivity, pH-responsive, thermo-responsive and release properties from polyacrylate/polyaniline hybrid [J]. Carbohydr Polym,2008,73(2):315-321.
    [3]Sun XF, Wang SG Liu XW, Gong WX, Bao N, Ma Y. The effects of pH and ionic strength on fulvic acid uptake by chitosan hydrogel beads [J]. Colloid Surf A-Physicochem Eng Asp,2008,324(1-3):28-34.
    [4]Andreopoulos FM, Persaud I. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds [J]. Biomaterials,2006,27(11):2468-2476.
    [5]Nagata M, Yamamoto Y. Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels [J]. React Funct Polym,2008.68(5):915-921.
    [6]Juntanon K, Niamlang S, Rujiravanit R, Rujiravanit R, Sirivat A. Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel [J]. Int J Pharm,2008,356(1-2):1-11.
    [7]Liu TY, Hu SH, Liu KH, Liu DM, Chen SY. Study on controlled drug permeation of magnetic-sensitive ferrogels:effect of Fe3O4 and PVA [J]. J Control Release,2008, 126(3):228-236.
    [8]Spengler JF, Coakley WT. Ultrasonic trap to monitor morphology and stability of developing microparticle aggregates [J]. Langmuir,2003,19(9):3635-3642.
    [9]Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J. Synthesis and characterization of a d-glucose sensitive hydrogel based on CM-dextran and concanavalin A [J]. React Funct Polym,2006,66(7):757-767.
    [10]Tamilvanan S, Venkateshan N, Ludwig A. The potential of lipid-and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections [J]. J Control Release,2008,128(1):2-22.
    [11]Loughlin RG, Tunney MM, Donnelly RF, Murphy DF, Jenkins M, McCarron PA. Modulation of gel formation and drug-release characteristics of lidocaine-loaded poly(vinyl alcohol)-tetraborate hydrogel systems using scavenger polyol sugars [J]. Eur J Pharm Biopharm,2008,69(3):1135-1146.
    [12]Huynh DP, Nguyen MK, Pi BS, Kim MS, Chae SY, Kang CL, Bong SK, Kim SW, Lee DS. Functionalized injectable hydrogels for controlled insulin delivery [J]. Biomaterials,2008,29(16):2527-2534.
    [13]Wen X, Wang T, Wang ZY Li L. Zhao CS. Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix [J]. Int J Biol Macromol,2008,42(3): 256-263.
    [14]Jose G, Frederick HC. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives [J]. Biochemistry,1974,13(22):4566-4574.
    [15]Liu Y, Huglin MB. Observations by DSC on bound water structure in some physically crosslinked hydrogels [J]. Polym Int,1995,37(1):63-67.
    [16]Chandy MC, Pillai RVN. Water sorption and water binding properties of crosslinked polyacrylamides:effect of macromolecular structure and crosslinking [J]. Polym Int,1995,37(1):39-45.
    [17]Flory PJ. Principles of polymer chemistry [M]. Ithaca, NY:Cornell University Press,1953.
    [18]Lin HL, Sritham E, Lim S, Cui YD, Gunasekaran S. Synthesis and characterization of pH-and salt-sensitive hydrogel based on chemically modified poultry feather protein isolate [J]. J Appl Polym Sci,2010,116(1):602-609.
    [19]Zhang RS, Tang MG, Bowyer A, Eisenthal R, Hubblea J. A novel pH-and ionic-strength-sensitive carboxy methyl dextran hydrogel [J]. Biomaterials,2005, 26(22):4677-4683.
    [20]Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties [J]. Eur Polym J,2004,40(7): 1399-1407.
    [21]Yoo MK, Sung YK, Lee YM, Cho CS. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel [J]. Polymer,2000,41(15):5713-5719.
    [22]Hoffman AS. Hydrogels for biomedical applications [J]. Adv Drug Deliver Rev, 2002,54(1):3-12.
    [23]Grassmann O, Lobmann P. Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups [J]. Biomaterials,2004,25(2):277-282.
    [24]Ju HK, Kim SY, Lee YM. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide) [J]. Polymer,2001,42(16):6851-6857.
    [25]Dergunov SA, Nam IK, Doldina MK, Nurkeeva ZS, Shaikhutdinov EM. Swelling behavior of chitosan-polyHEA hydrogels in anionic surfactant solutions and their thermo-sensitivity [J]. Colloid Surf A-Physicochem Eng Asp,2004,238(1-3): 13-18.
    [26]Zhao Y, Su HJ, Fang L, Tan TW. Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature-and pH-responsiveness properties [J]. Polymer,2005, 46(14):5368-5376.
    [27]Song SZ, Kim SH, Cardinal JR, Kim SW. Progestin permeation through polymer membranes Ⅴ:Progesterone release from monolithic hydrogel devices [J]. J Pharm Sci,1981,70(2):216-219.
    [28]Cui F, He C, He M, Tang C, Yin L, Qian F, Yin C. Preparation and evaluation of chitosanethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin [J]. J Med Mater Res A,2009,89A(4):1063-1071.
    [29]Leonard M, Rastello De Boisseson M, Hubert P, Dalencon F, Dellacherie E. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties [J]. J Control Release,2004,98(3):395-405.
    [30]Kumar A, Lahiri SS, Singh H. Development of PEGDMA:MAA based hydrogel microparticles for oral insulin delivery[J]. Int J Pharm,2006,323(1-2):117-124.
    [31]Dorkoosh FA, Verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE. Development and characterization of a novel peroral peptide drug delivery system [J]. J Control Release,2001,71(3):307-318.
    [32]Silva CM, Ribeiro AJ, Ferreira D, Veiga F. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation [J]. Eur J Pharm Sci,2006,29(2): 148-159.
    [33]Darrington RT, Anderson BD. Effects of insulin concentration and self-association on the partitioning of itsA-21 cyclic anhydride intermediate to desamido insulin and covalent dimer [J]. Pharm Res,1995,12(7):1077-1084.
    [34]Brange J, Havelund S, Hougaard P. Chemical stability of insulin 2. Formulation of higher molecular weight transformation products during storage of pharmaceutical preparations [J]. Acta Pharm Nord,1992,9(6):727-734.
    [35]Bai JPF. Subcellular distribution of proteolytic activities degrading bioactive peptide and analogues in the rat small intestinal and colonic enterocytes [J]. J Pharm Pharmacol,1994,46(88):671-675.
    [36]Brange J, Hallund O, Sorensen E. Chemical stability of insulin 5. Isolation, characterization and identification of insulin transformation products [J]. Acta Pharm Nord,1992.4(4):223-232.
    [37]Liu FY. Kildsig DO. Mitra AK. Insulin aggregation in aqueous media and its effect on alpha-chymotrypsin-mediated proteolytic degradation [J]. Pharm Res,1991, 8(7):925-929.
    [38]Kenneth DH. A study of poly(ethylene glycol)-insulin conjugates [D]. USA, The Universitv of Utah.2001.
    [39]Mercola DA. Morris JWS, Arquilla ER, Bromer WW. The ultraviolet circular dichroism of bovine insulin and desoctapeptide insulin [J]. Biochim Biophys Acta, 1967,133(2):224-232.
    [40]Hinds K, Koh JJ, Joss L, Liu F, Baudys M, Kim SW. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates [J]. Bioconjug Chem, 2000,11(2):195-201.
    [41]Mark AE, Jeffrey PD. The self-association of zinc-free bovine insulin-4 model patterns and their significance [J]. Biol Chem Hoppe-Seyler,1990,371(12): 1165-1174.
    [42]Pocker Y, Biswas SB. Conformational dynamics of insulin in solution. Circular dichroic studies [J]. Biochemistry,1980,19(22):5043-5049.
    [43]Wu JY, Liu SQ, Heng PWS, Yang YY. Evaluating proteins release from, and their interactions with thermosensitive poly (N-isopropylacrylamide) hydrogels [J]. J Control Release,2005,102(2):361-372.
    [44]Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral delivery systems based on superporous hydrogel polymers: Release characterisistics for the peptide Drugs buserelin, octreotide, and insulin [J]. Eur J Pharm Sci,2002,15(5):433-439.
    [45]Quinn FX, Kampff E, Smyth G, MaBrierty VJ. Water in hydrogels.1. A study of water in poly (N-vinyl-2-pyrrolidone/methyl methacrylate) copolymer [J]. Macromolecules,1988,21(11):3191.
    [46]Liu Y, Huglin MB. Observations by DSC on bound water structure in some physically crosslinked hydrogels [J]. Polym Int,1995,37(1):63-67.
    [47]Tranoudis I, Efron N. Water properties of soft contact lens materials [J]. Contact Lens Anterior Eye,2004,27(4):193-208.
    [48]Chandy MC, Rajasekharan-Pillai VN. Water sorption and water binding properties of crosslinked polyacrylamides:effect of macromolecular structure and crosslinking [J]. Polym Int,1995,37(1):39-45.
    [49]杨丹,刘毅,何兰珍.甲壳素交联改性制备超级保水凝胶[J].石油化工2003,32(2):133-1 38.
    [50]Abd El-Rehim HA, Hegazy EA, Abd El-Mohdy HL. Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation [J]. J Appl Polym Sci.2006,101(6): 3955-3962.
    [1]Ikesue K, Kopeckova P, Kopecek J. Degradation of proteins by guinea pig intestinal enzymes [J]. Int J Pharm,1993,95(1-3):171-179.
    [2]Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems [J]. J Control Release,2003,89(2):151-165.
    [3]Dorkoosh FA, verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE. Development and characterization of a novel peroral peptide drug delivery system [J]. J Control Release,2001,71(3):307-318.
    [4]Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin [J]. Eur J Pharm Sci,2002,15(5):433-439.
    [5]Dorkoosh FA, Verhoef JC, Borchard G., Rafiee-Tehrani M, Verheijden JHM, Junginger HE. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers [J]. Int J Pharm,2002,247(1-2):47-55.
    [6]Dorkoosh FA, Verhoef JC, Verheijden JHM, Rafiee-Tehrani M, Borchard G, Junginger HE. Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers [J]. Pharm Res,2002,19(10): 1532-1536.
    [7]Polnok A, Verhoef JC, Borchard G, Sarisuta N, Junginger HE. In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels [J]. Int J Pharm,2004,269(2):303-310.
    [8]Dorkoosh FA, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Evaluation of superporous hydrogel (SPH) and SPH composites in porcine intestine ex vivo:assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall [J]. Eur J Pharm Biopharm,2002,53(2):161-166.
    [9]Dorkoosh FA, Setyaningsih D, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Effects of superporous hydrogels on paracellular drug permeability and cytotoxicity studies in Caco-2 cell monolayers [J]. Int J Pharm,2002,241(1):35-45.
    [10]Ornidian H, Rocca JG, Park K. Advances in superporous hydrogels [J]. J Control Release,2005,102(1):3-12.
    [11]Tang C, Yin CH, Pei YY, Zhang M, Wu LF. New superporous hydrogels composites based on aqueous Carbopol(?) solution (SPHCcs):synthesis, characterization and in vitro bioadhesive force studies [J]. Eur Polym J,2005,41(3): 557-562.
    [12]Wu J, Wei W. Wang LY, Su ZQ Ma GH. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system [J]. Biomaterials,2007,28(13):2220-2232.
    [13]Yamagata T, Morishita M, Kavimandan NJ, Nakamura K, Fukuoka Y, Takayama K, Peppas NA. Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids [J]. J Control Release,2006,112(3): 343-349.
    [14]GB/T 19203-2003复混料中钙、镁、硫含量的测定.
    [15]徐辉.胰岛素海藻酸钠纳米粒的制备及其呼吸道给药研究[D].杭州:浙江大学,2005:29-30.
    [16]Peppas NA. Devices based on intelligent biopolymers for oral protein delivery [J]. Int J Pharm,2004,277(1-2):11-17.
    [17]Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity [J]. J Pharm Sci,1992,81(1):1-10.
    [18]Bernkop-Schnurch A, Kast CE. Chemically modified chitosans as enzyme inhibitors [J]. Adv Drug Deliv Rev,2001; 52(2):127-137.
    [19]Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems [J]. J Control Release,2003,89(2):151-165.
    [20]Bernkop-Schnurch A. Chitosan and its derivatives:potential excipients for peroral peptide delivery systems [J]. Int J Pharm,2000,194(1):1-13.
    [21]Zhao X, Kato K, Fukumoto Y, Nakamae K. Synthesis of bioadhesive hydrogels from chitin derivatives [J]. Int J Adhes Adhes,2001,21(3):227-232.
    [22]Luessen HL, de Leeuw BJ, Langemeyer MW, de Boer AQ Verhoef JC, Junginger HE. Mucoadhesive polymers in peroral peptide drug delivery. Ⅵ. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo [J]. Pharm Res,1996,13(11):1668-1672.
    [23]Forstner JF. Intestinal mucins in health and disease [J]. Digestion,1978,17(3): 234-263.
    [24]Forth W, Rummel W. Pharmacology of intestinal absorption:Gastrointestinal absorption of drugs, International encyclopedia of pharmacology and therapeutics [M]. Section 39B,1995, Vol 1:1-70.
    [25]Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small-intestine [J]. Gut,1986,27(8):886-892.
    [26]Wilding IR, Coupe AJ, Davis SS. The role of gamma-scintigraphy in oral drug delivery [J]. Adv Drug Deliver Rev,2001,46(1-3):103-124.
    [27]Kamba M, Seta Y, Kusai A, Ikeda M, Nishimura K. A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract [J]. Int J Pharm. 2000,208(1-2):61-70.
    [28]Luessen HL, Bohner V, Perard D, Langguth P, Verhoef JC, deBoer AG, Merkle HP, Junginger HE. Mucoadhesive polymers in peroral peptide drug delivery. Ⅴ. Effect of poly(acrylates) on the enzymatic degradation of peptide drugs by intestinal brush border membrane vesicles [J]. Int J Pharm,1996,141(1-2):39-52.
    [29]Bai JPF. Subcellular distribution of proteolytic activities degrading bioactive peptide and analogues in the rat small intestinal and colonic enterocytes [J]. J Pharm Pharmacol,1994,46(8):671-675.
    [30]Peppas NA. Devices based on intelligent biopolymers for oral protein delivery [J]. Int J Pharm,2004,277(1-2):11-17.
    [31]Walker GF, Ledger R, Tucker IG. Carbomer inhibits tryptic proteolysis of luteinizing hormone-releasing hormone and N-a-benzoyl-L-arginine ethyl ester by binding the enzyme [J]. Pharm Res,1999,16(7):1074-1080.
    [32]Luessen HL, Verhoef JC, Borchard G, Lehr CM, de Boer AG, Junginger HE. Mucoadhesive polymers in peroral peptide drug delivery:Ⅱ. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin [J]. Pharm Res,1995,12(9):1293-1298.
    [33]Lee VHL, Traver RD, Taub ME. Enzymatic barriers to peptide and protein drug delivery [M]. Lee V.H.L. (Ed), Peptide and Protein Drug Delivery, Marcel Dekker, New York,1991, pp.3303.
    [34]Wu J, Liu S, Heng PW, Yang Y. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels [J]. J Control Release,2005,102(2):361-372.
    [35]Liang P, Zhao Y, Shen Q, Wang D, Xu D. The effect of carboxymethyl chitosan on the precipitation of calcium carbonate [J]. J Cryst Growth,2004,261(4):571-576.
    [36]Sun S, Wang A. Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(II) as template ion [J]. React Func Polym,2006, 66(8):819-826.
    [37]Sun S, Wang L, Wang A. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions [J]. J Hazard Mater,2006, 136(3):930-937.
    [38]Sun S, Wang A. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan [J]. J Hazard Mater,2006,131(1-3):103-111.
    [39]Gordon JI. Intestinal epithelial differentiation [J]. J Cell Biol,1989,108(4): 1187-1194.
    [40]Daughetry AL, Mrsny RJ. Regulation of the intestinal epithelial paracellular barrier [J]. Pharm Sci Technol Today,1999,2(7):281-287.
    [41]Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery [J]. BBA-Biomembranes,2009, 1788(4):892-910.
    [42]Borchard G, Luessen HL, deBoer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. Ⅲ:Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro [J]. J Control Release,1996,39(2-3):131-138.
    [43]Ho NFH, Park JY, Ni PF, Higuchi WI. Animals model for oral drug delivery in man [M]. Crouthamel W, Sarapu AC, Academy of pharmaceutical sciences, Washington DC,1983,27-106.
    [44]Trier JS, Madara JL. Physiology of the gastrointestinal tract [M]. Johnson LR, Raven Press, New York,1981,925-962.
    [45]Lee VHL. Trends in peptide and protein drug delivery [J]. BioPharm,1991,4(3): 22-25.
    [1]Kejlova K. Hydrophilic polymers-biocompatibility testing in vitro [J]. Toxicol in Vitro,2005,19(7):957-962.
    [2]奚廷斐.医疗器械生物学评价[J].中国医疗器械信息,1999,5(3):4-9.
    [3]International Organization of Standardization Biological Evaluation of Medical Devices [S], Geneva, Switzerland,1992.
    [4]Watari F, Yokoyama A, Omori M, Hirai T, Kondo H, Uo M, Kawasaki T. Biocompatibility of materials and development to functionally graded implant for bio-medical application [J]. Compos Sci Technol,2004,64(6):893-908.
    [5]Varga J, Janovak L, Varga E, Eros G, Dekany I, Kemeny L. Acrylamide, Acrylic Acid and N-Isopropylacrylamide Hydrogels as Osmotic Tissue Expanders [J]. Skin Pharmacol Phys,2009:22(6):305-312.
    [6]Lim CK, Halim AS, Lau HY, Ujang Z, Hazri A. In vitro cytotoxicology model of oligo-chitosan and N,O-carboxymethyl chitosan using primary normal human epidermal keratinocyte cultures [J]. J Appl Biomat Biomech,2007,5(2):82-87.
    [7]Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites:in vitro studies [J].Biomaterials,2002,23(6):1471-1478.
    [8]Herrmann M, Lorenz H, Voll R, Grunke M, Woith W, Kalden J. A rapid and simple method for the isolation of apoptotic DNA fragments [J]. Nucl Acid Res,1994, 22(24):5506-5507.
    [9]Collins AR, Duthie SJ, Dobson VL. Direct enzymatic detection of endogenous oxidative base damage in human lymphocyte DNA [J]. Carcinogenesis,1993,14(9): 1733-1735.
    [10]Clarice TL, Patricia MR, Nara RT, Nanci CDO, Bernardo E. River water genotoxicity evaluation using micronucleus assay in fish erythrocytes [J]. Ecotox Environ Saf,2007,66(3):391-401.
    [11]Buege JA, Aust SD. Microsomal lipid peroxidation [J]. Method Enzymol,1984, 105(3):302-310.
    [12]Shanghai Medical Laboratories. Clinical Biomedical Examination [M]. Shanghai Science and Technology publishing company, vol.1, Academic Press, Shanghai, China,1979, pp.333-336.
    [13]Shanghai Medical Laboratories. Clinical Biomedical Examination [M]. Shanghai Science and Technology publishing company, vol.1, Academic Press, Shanghai, China,1979, pp.354-357.
    [14]Menet MC, Gueylard D, Fievet MH, Thuillier A. Fast specific separation and sensitive quantification of bactericidal and sporicidal aldehydes by high-performance liquid chromatography:example of glutaraldehyde determination [J]. J Chromatography B,1996,692(1):79-86.
    [15]Kirkpatrick CJ, Bittinger F, Wagner M, Kohler H, van Kooten TG, Klein CL, Otto M. Current trends in biocompatibility testing [J]. Proc Instn Mech Engrs 1998, 212(H2):75-84.
    [16]Marois Y, Guidoin R, Roy R, Vidovsky T, Jakubiec B, SigotLuizard MF, Braybrook J, Mehri Y, Laroche G, King M. Selecting valid in vitro biocompatibility tests that predict the in vivo healing response of synthetic vascular prostheses [J]. Biomatenals,1996,17(19):1835-1842.
    [17]Srivastava S, Gorham SD, Courtney JM. Screening of in vitro cytotoxicity by the adhesive film test [J]. Biomaterials,1990,11(2):133-137.
    [18]Forbes B. Human airway epithelial cell lines for in vitro drug transport and metabolism studies [J]. Pharm Sci Tech Today,2000,3(1):18-27.
    [19]Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J. Methods of in vitro toxicology [J]. Food Chem Toxicol,2002,40(2-3):193-236.
    [20]Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays [J]. Int J Pharm,2005,288(2):369-376.
    [21]Liu Y, Xiao ZS, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films [J]. Biomaterials,2005,26(23): 4737-4746.
    [22]Kendig DM, Tarloff JB. Inactivation of lactate dehydrogenase by several chemicals:Implications for in vitro toxicology studies [J]. Toxicol in Vitro,2007, 21(1):1250-132.
    [23]Koizumi T, Shirakura H, Kumagai H, Tatsumoto H, Suzuki KT. Mechanism of cadmium-induced cytotoxicity in rat hepatocytes:cadmiuminduced active oxygen-related permeability changes of the plasma membrane [J]. Toxicology,1996, 114(2):125-134.
    [24]George F, John AT. In vitro cytotoxicity assays:comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride [J]. Toxicol Lett,2006,160(2):171-177.
    [25]Wang RS, McDaniel L, Manjanatha M, Shelton S, Mei N. Mutagenic toxicity of acrylamide and glycidamide in germ cells of mice [J]. Toxicol Lett,2009,189(Sp. Iss. SI):S137-S138.
    [26]Custodio J, Palmeira C, Moreno A, Wallace K. Acrylic acid induces the glutathione-independent mitochondrial permeability transition in vitro [J]. Toxicol Sci, 1998,43(1):19-27.
    [27]Hsiue GH, Chang RW, Wang CH, Lee SH. Development of in situ thermosensitive drug vehicles for glaucoma therapy [J]. Biomaterials,2003,24(13): 2423-2430.
    [28]Jevprasesphant R, Penny J, Attwood D, McKeown NB. D'Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers [J]. Int J Pharm,2003,252(1-2):263-266.
    [29]Wyllie AH. Glucocorticoid-induced apoptosis is associated with endogenous endonucleus activation [J]. Nature,1980,284(5756):555-556.
    [30]Chodon D, Ramamurty N, Sakthisekaran D. Preliminary studies on induction of apoptosis by genistein on HepG2 cell line [J]. Toxicol In Vitro,2007,21(5):887-891.
    [31]Compton M. A biochemical hallmark of apoptosis:intemucleosomal degradation of the genome [J]. Cancer Metastasis Rev,1992,11(2):105-109.
    [32]Tong C, Shi B, Xiao X, Liao H, Zheng Y, Shen G, Tang D, Liu X. An Annexin V-based biosensor for quantitatively detecting early apoptotic cells [J]. Biosens Bioelectron,2009,24(6):1777-1782
    [33]Wang JJ, Sanderson BJS, Wang H. Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells [J]. Mut Res,2007,628(2):99-106.
    [34]Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S. The ability of the Comet assay to discriminate between genotoxins and cytotoxins [J]. Mutagenesis, 1998,13(1):89-95.
    [35]Vijayalaxmi, Kligerman AD, Prihoda TJ, Ullrich SE. Micronucleus studies in the peripheral blood and bone marrow of mice treated with jet fuels, JP-8 and Jet-A [J]. Mutat Res,2006,608(1):82-87.
    [36]Sickles DW, Brady ST, Testino A, Friedman MA, Wrenn RW. Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility [J]. J Neurosci Res, 1996,46(1):7-17.
    [37]Errol Z, Bhaskar G, Pamela S. Genetic toxicity and carcinogenicity studies of glutaraldehyde-a review [J]. Mut Res,2005,589(2):136-151.
    [38]Forth W, Rummel W. Pharmacology of intestinal absorption:Gastrointestinal absorption of drugs, International encyclopedia of pharmacology and therapeutics [M]. Section 39B,1975.
    [39]Plaa GL, Amdun AM, Doull J, Klasser CD. Toxic Responses of the Liver [M]. 4th ed, Pergamon Press,1991.
    [40]Biswas SJ, Khuda-Bukhsh AR. Cytotoxic and genotoxic effects of the azo-dye p-dimethylaminoazobenzene in mice:A time-course study [J]. Mutat Res,2005, 587(1-2):1-8.
    [41]Timbrell JA. Principles of Biochemical Toxicology [M]. Taylor and Francis, London,1991.
    [42]Bain PJ, Liver, in:Latimer KS, Mahaffey EA, Prasse KW (Eds), Duncan and Prasse'sVeterinary Medicine:Clinical Pathology[M].4th ed, Ames Iowa State Press, 2003, pp.193-214.
    [43]Valentine BA, Blue JT, Shelley SM, Cooper BJ. Increased serum alanine aminotransferase activity associated with muscle necrosis in the dog [J]. J Vet Intern Med,1990,4(3):140-143.
    [44]Vinitha R, Thangaraju M, Sachdanandam P. Effect of administering cyclophosphamide and vitamin-E on the levels of tumormarker enzymes in rats with experimentally induced fibrosarcoma [J]. Jap J Med Sci Biol,1995,48(3):145-156.
    [45]Shih MF, Shau MD, Chang MY, Chiou SK, Chang JK, Cherng JY. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers [J]. Int J Pharm,2006; 327(1-2):117-125.
    [46]Lin WC, Yu DQ Yang MC. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate [J]. Colloid Surface B,2005,44(2-3):82-92.
    [47]Zhu A, Chen T. Blood compatibility of surface-engineered poly(ethylene terephthalate) via o-carboxymethylchitosan [J]. Colloid Surface B,2006,50(2): 120-125.
    [48]黄莹莹,齐民,杨大智,王昌明.冠脉支架表面PLGA涂层制备及其血液相容性研究[J].功能材料,2006,37(3):411-414.
    [49]中国药典2005版二部附录xIxB.
    [1]LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery [J]. Nat Biotechnol,2003,21(10):1184-1191.
    [2]蒋挺大.壳聚糖(第二版)[M].北京,化学工业出版社,2006:12.
    [3]Robert MS, Karlo P, Fanor B, Michael L, Tarek ME The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles [J]. Biomaterials, 2008,29(6):703-708.
    [4]Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption [J]. J Control Release,2009, 135(2):144-151.
    [5]Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats [J]. J Control Release,2007,117(2):163-170.
    [6]Leroux JC, Allemann E, Doelker E, Gurny R. New approach for the preparation of nanoparticles by an emulsification-diffusion method [J]. Eur J Pharm Biopharm,1995, 41(1):14-18.
    [7]Mao S, Bakowsky U, Jintapattanakit A, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives an insulin [J]. J Pharm Sci 2006,95(5): 1035-1048.
    [8]Krauland A, Alonso M. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system [J]. Int J Pharm,2007,340(1-2):134-142.
    [9]Jonker C, Hamman JH, Kotze AF. Intestinal paracellular permeation enhancement with quaternized chitosan:in situ and in vitro evaluation [J]. Int J Pharm,2002, 238(1-2):205-213.
    [10]Thanou M, Verhoef JC, Marbach P, Junginger HE. Intestinal absorption of octreotide:N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo [J]. J Pharm Sci,2000,89(7):951-957.
    [11]Artursson P. Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2) [J]. Pharm Res,1994, 11(9):1358-1361.
    [12]Sandn G Bonferoni MC, Rossi S, Ferrari F, Gibin S, Zambito Y, Colo GD, Caramella C. Nanoparticles based on N-trimethyl chitosan:Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models [J]. Eur J Pharm Biopharm,2007,65(1):68-77.
    [13]Van der Merwe SM, Verhoef JC, Verheijden JHM, Kotze AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs [J]. Eur J Pharm Biopharm,2004,58(2):225-235.
    [14]Kast CE, Bernkop-Schnurich A. Thiolated polymers-thiomers:development and in vitro evaluation of chitosan-thioglycolic acid conjugates [J]. Biomaterials,2001, 22(17):2345-2352.
    [15]Greindl M, Bernkop-Schnurich A. Development of a novel method for the preparation of thiolated polyacrylic acid nanoparticles [J]. Pharm Res,2006,23(9): 2183-2189.
    [16]Bernkop-Schnurich A. Thiomers:a new generation of mucoadhesive polymers [J]. Adv Drug Deliv Rev,2005,57(11):1569-1582.
    [17]Bernkop-Schnurich A, Guggi D, Pinter Y. Thiolated chitosans:development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system [J]. J Control Release,2007,94(1):177-186.
    [18]Bernkop-Schnurch A, Hornof M, Guggi D. Thiolated chitosans [J]. Eur J Pharm Biopharm,2004,57(1):9-17.
    [19]Foger F, Schmitz T, Bernkop-Schnurch A. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan [J]. Biomaterials,2006,27(23): 4250-4255.
    [20]Colo GD, Zambito Y, Zaino C. Polymeric enhancers of mucosal epithelia permeability:synthesis, transepithelial penetration-enhancing properties, mechanism of action, safety issues [J]. J Pharm Sci,2008,97(5):1652-1679.
    [21]Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors:cytotoxicity and transfection efficiency [J]. J Control Release,2005,103(3): 143-153.
    [22]Marschutz MK, Bernkop-Schnurch A. Thiolated conjugates:self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion [J]. Eur J Pharm Sci,2002,15(4):387-394.
    [23]Sadeghi AMM, Dorkoosh FA, Avadi MR, Saadat P, Rafiee-Tehrani M, Junginger HE. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods [J]. Int J Pharm 2008,355(1-2):299-306.
    [24]Guo Z, Xing R, Liu S, Zhong Z, Li P. Synthesis and hydroxyl radicals scavenging activity of quaternized carboxymethyl chitosan [J]. Carbohydr Polym, 2008,73(1):173-177.
    [25]Peterson PL. A simplification of the protein assay method of Lowry et al. which is more generally applicable [J]. Anal Biochem,1977,83(2):346-356.
    [26]He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres [J]. Int J Pharm,1998,166(1):75-88.
    [27]Seki T, Fukushi N, Chono S, Morimoto K. Effects of sperminated polymers on the pulmonary absorption of insulin [J]. J Control Release,2008,125(3):246-251.
    [28]Verheul RJ, Amidi M, Wal SVD. Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan [J]. Biomaterials. 2008,29(27):3642-3649.
    [29]Kafedjiiski K. Jetti RKR, Foger F. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery [J]. Int J Pharm,2007,343(1-2): 48-58.
    [30]Snyman D, Hamman JH, Kotze JS, Rollings JE, Kotze AF. The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride [J]. Carbohydr Polym,2002,50(2):145-150.
    [31]Peniche C, Zaldivar D, Bulay A, Roman JS. Study of the thermal-degradation of poly(furfuryl methacrylate) by thermogravimetry [J]. Polym Degrad Stabil,1993, 40(3):287-295.
    [32]Avadi MR, Sadeghi A, Tahzibi A, Bayati KH, Pouladzadeh M, Zohourian-Mehr MJ, Rafiee-Tehrani M. Diethylmethyl chitosan as antimicrobial agent:synthesis, characterization ad antibacterial effects [J]. Eur Polym J,2004,40(7):1355-1361.
    [33]Cicha I, Tateishi N, Suzuki Y, Maeda N. Rheological changes in human red blood cells under oxidative stress:effects of thiol-containing antioxidants [J]. Pathophysiology,1999,6(2):121-128.
    [34]Hamidi M, Azadi A. Rafiei P. Hydrogel nanoparticles in drug delivery[J]. Adv Drug Deliver Rev,2008,60(15):1638-1649.
    [35]Sun W, Mao S, Mei D, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin [J]. Eur J Pharm Biopharm,2008.69(2): 4170-4125.
    [36]Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin:ex vivo and in vivo studies [J]. Int J Pharm,2008,356(1-2): 259-266.
    [37]Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells [J]. Pharm Res,2005,22(12):2058-2068.
    [38]Duchene D, Touchard F, Peppas NA. Pharmaceutical and medicinal aspects of bioadhesive systems for drug administration [J]. Drug Dev Ind Pharm,1988,14(2-3): 283-318.
    [39]Ponchel G, Irache JM. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract [J]. Adv Drug Del Rev,1998,34(2-3): 191-219.
    [40]Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel Gilles. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles [J]. Biomaterials,2007,28(13):2233-2243.
    [41]Lee SH, Zhang Z, Feng SS. Nanoparticles of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery [J]. Biomaterials,2007,28(11):2041-2050.
    [42]Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives:A comparative study of polyelectrolyte nanocomplexes and nanoparticles [J]. Int J Pharm,2007,342(1-2): 240-249.
    [43]Bernkop-Schnurch A. Polymer-inhibitor conjugates:A promising strategy to overcome the enzymatic barrier to perorally administered (poly)-peptide drugs? [J] STP Pharma Sci,1999,9:78-87.
    [44]Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Colo GD, Caramella C. Buccal penetration enhancement properties of N-trimethyl chitosan:Influence of quaternization degree on absorption of a high molecular weight molecule [J]. Int J Pharm,2005,297(1-2):146-155.
    [45]Imam ME, Hornof M, Valenta C, Reznicek G, Bernkop-Schnurch A. Evidence for the interpenetration of mucoadhesive polymers into the mucus gel layer [J]. STP Pharma Sci,2003,13(3):171-176.
    [46]Peppas NA. Devices based on intelligent biopolymers for oral protein delivery [J]. Int J Pharm,2004,277(1-2):11-17.
    [47]Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent [J]. Pharm Res,1997,14(11):1568-1573.
    [48]Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in the external secretions [J]. J Clinical Immun,1987, 7(4):265-276.
    [49]Pringault E. M-cell Development and Function in Physiology and Disease [M]. Seminars in Immunology, Academic Press, London,1999.
    [50]Neutra MR, Philips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer's patch [J]. Cell Tissue Res,1987,247(3):537-546.
    [51]Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles:effect of particle size [J]. Pharm Res,1996,13(12): 1838-1845.
    [52]Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa:quantitation and particle size dependency [J]. J Pharm Pharmacol,1990,42(12):821-826.
    [53]Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers [J]. Biomaterials,2005,26(32):6343-6356.
    [54]Mao Z, Ma L, Jiang Y, Yan M, Gao C, Shen JN. N-Trimethyl chitosan chloride as a gene vector:synthesis and application [J]. Macromol Biosci,2007,7(6):855-863.
    [1]Winn SR, Hua YH, Sfeir C, Hollinger JO. Gene therapy approaches for modulating bone regeneration [J]. Adv Drug Deliv Rev,2000,42(1-2):121-138.
    [2]Slowing Ⅱ, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Adv Drug Deliv Rev,2008,60(11):1278-1288.
    [3]Gustafson J, Greish K, Frandsen J, Cappello J, Ghandehari H. Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer:From molecular definition to controlled gene expression [J]. J Control Release,2009,140(3):256-261.
    [4]Park JS, Na K, Woo DG, Yang HN, Kim JM, Kim JH, Chung HM, Park KH. Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells [J]. Biomaterials,2010,31(1):124-132.
    [5]Segura T, Shea LD. Materials for non-viral gene delivery [J]. Annu Rev Mater Res, 2001,31:25-46.
    [6]Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery [J]. Pharm Res,2006,24(1):157-167.
    [7]Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnurch A. Chitosan-thioglycolic acid conjugate:An alternative carrier for oral nonviral gene delivery? [J]. J Biomed Mater Res A,2007,82(1):1-9.
    [8]Schmitz T, Bravo-Osuna I, Vauthier C, Ponchel G, Loretz B, Bernkop-Schnurch A. Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system [J]. Biomaterials,2007,28(3):524-531.
    [9]Kommareddy S, Amiji M. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione [J]. Bioconjugate Chem,2005,16(6):1423-1432.
    [10]Zugates GT, Anderson DG, Little SR, Lawhorn IEB, Langer R. Synthesis of poly(β-amino ester)s with thiol-reactive side chains for DNA delivery [J]. J Am Chem Soc,2006,128(39):12726-12734.
    [11]Colo GD, Zambito Y, Zaino C. Polymeric enhancers of mucosal epithelia permeability:synthesis, transepithelial penetration-enhancing properties, mechanism of action, safety issues [J]. J Pharm Sci,2008,97(5):1652-1679.
    [12]Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors:cytotoxicity and transfection efficiency [J]. J Control Release,2005,103(3): 143-153.
    [13]Mao Z, Ma L, Jiang Y, Yan M, Gao C, Shen J. N,N,N-Trimethylchitosan chloride as a gene vector:synthesis and application [J]. Macromol Biosci,2007,7(6):855-863.
    [14]Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers:Establishment of structure-activity relationships in vitro [J]. J Control Release,2008,125(2):145-154.
    [15]Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines [J]. Biomaterials,2002,23(1):153-159.
    [16]Mao Z, Ma L, Yan J, Yan M, Gao C, Shen J. The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer [J]. Biomaterials,2007,28(30):4488-4500.
    [17]Kawamura K, Oishi J, Kang JH, Kodama K, Sonoda T, Murata M, Niidome T, Katayama Y Intracellular signal responsive gene carrier for cell-specific gene expression [J]. Biomacromolecules,2005,6(2):908-913.
    [18]Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers [J]. Biomaterials,2005,26(32):6343-6356.
    [19]Ishii T, Okahata Y, Sato T. Facile preparation of a fluorescence labeled plasmid [J]. Chem Lett,2000,29(4):386-390.
    [20]Zhao Y, Gao J, Sun X, Chen H, Wu L, Liang W. Enhanced nuclear delivery and cytotoxic activity of hydroxycamptothecin using o/w emulsions [J]. J Pharm Sci,2007, 10(1):61-70.
    [21]Lee M, Nah JW, Kwon Y, Koh JJ, Ko KS, Kim SW. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery [J]. Pharm Res,2001,18(4): 427-431.
    [22]Ryser HJ, Levy EM, Mandel R, DiSciullo GJ. Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virusreceptor interaction [J]. Proc Natl Acad Sci USA,1994,91(10): 4559-4563.
    [23]Douglas KL, Piccirillo CA, Tabrizian M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors [J]. Eur J Pharm Biopharm,2008,68(3):676-687.
    [24]Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent [J]. Pharm Res,1997,14(11):1568-1573.
    [25]Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells [J]. Pharm Res,2005,22(12):2058-2068.
    [26]Rejman J. Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae mediated endocytosis [J]. Biochem J,2004,377(1):159-169.
    [27]Kiang T, Wen H, Lim HW, Leong KW. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection [J]. Biomaterials,2004,25(22): 5293-5301.
    [28]Kamiya H, Tsuchiya H, Yamazaki J, Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors [J]. Adv Drug Deliv Rev, 2001,52(3):153-164.
    [29]Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the GSH disulfide/GSH couple [J]. Free Radic Biol Med,2001,30(11): 1191-1212.
    [30]Kamiya H, Tsuchiya H, Yamazaki J, Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors [J]. Adv Drug Deliv Rev, 2001,52(3):153-164.
    [31]Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency [J]. Biomaterials,2001,22(15):2075-2080.
    [32]Nazir SA, Metcalf JP. Innate immune response to adenovirus [J]. J Invest Med, 2005,53(6):292-304.
    [33]Wang J, Lee IL, Lim WS, Chia SM, Yu H, Leong KW, Mao HQ. Evaluation of collagen and methylated collagen as gene carriers [J]. Int J Pharm,2004,279(1-2): 115-126.
    [34]Bottega R, Epand RM. Inhibition of protein-kinase-C by cationic amphiphiles [J]. Biochemistry,1992,31(37):9025-9030.
    [35]Datiles MJ, Johnson EA, McCarty RE. Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles [J]. Biochim Biophys Acta-Bioenerg,2008,1777(4):362-368.
    [36]Beavis AD. On the inhibition of the mitochondrial inner membrane anion umporter by cationic amphiphiles and other drugs [J]. J Biol Chem,1989,264(3): 1508-1515.
    [37]Halliwell B, Gutteridge JMC. Role of free-radicals and catalytic metal-ions in human disease-an overview [J]. Methods Enzymol,1990,186:1-85.
    [1]Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines [J]. Cancer Gene Ther, 2003,10(2):125-133.
    [2]Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA. siRNA-directed inhibition of HIV-1 infection [J]. Nat Med,2003,9(11):1433-1433.
    [3]Verrecchia F, Tacheau C, Laboureau J, Wagner EF, Mauviel A. Absence of type Ⅰ collagen gene trans activation upon TGF-beta stimulation in Fos(-/-) fibroblasts [J]. J Invest Dermatol,2002,119(3):753-753.
    [4]Kim SS, Garg H, Joshi A, Manjunath N. Strategies for targeted nonviral delivery of siRNAs in vivo [J]. Trends Mol Med,2009,15(11):491-500.
    [5]Behlke MA. Progress towards in vivo use of siRNAs [J]. Mol Ther,2006,13(4): 644-670.
    [6]Xie FY, Woodle MC, Lu PY. Harnessing in vivo siRNA delivery for drug discovery and therapeutic development [J]. Drug Discov Today,2006,11(1-2):67-73.
    [7]Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev,2009,61(9):710-720.
    [8]De Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease:a progress report on siRNA-based therapeutics [J]. Nat Rev Drug Discov, 2007,6(6):443-453.
    [9]Aouadi M, Teszi GJ, Nicoloro SM, Wang MX, Chouinard M, Soto E, Ostroff GR, Czech MP.Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation [J]. Nature,2009,458(7242):1180-1184.
    [10]Akhtar S. Oral delivery of siRNA and antisense oligonucleotides [J]. J Drug Target,2009,17(7):491-495.
    [11]Bradley JR. TNF-mediated inflammatory disease [J]. J Pathol,2008,214(2): 149-160.
    [12]Clark J, Vagenas P, Panesar M, Cope AP. What does tumour necrosis factor excess do to the immune system long term? [J]. Ann Rheum Dis,2005,64 (Suppl 4): 70-76.
    [13]Chen PFT, Xu XG, Liu XS, Liu Y, Song CJ, Screaton GR, Jin BQ, Xu XN. Characterisation of monoclonal antibodies to the TNF and TNF receptor families [J]. Cell Immunol,2005,236(1-2):78-85.
    [14]Zwerina J, Redlich K, Polzer K, Joosten L, Kroenke G, Distler J, Hess A, Pundt N, Pap T, Hoffmann O, Gasser J, Scheinecker C, Smolen JS, van den Berg W, Schett G. TNF-induced structural joint damage is mediated by IL-1 [J]. Proc Natl Acad Sci USA,2007,104(28):11742-11747.
    [15]Kleinbongard P, Heusch G, Schulz R. TNFa in atherosclerosis, myocardial ischemia/reperfusion and heart failure [J]. Pharmacol Ther,2010, doi:10.1016/j.pharmthera.2010.05.002.
    [16]Grinblat B, Scheinberg M. The enigmatic development of psoriasis and psoriasiform lesions during anti-TNF therapy:A Review [J]. Semin Arthritis Rheum, 2008,37(4):251-255.
    [17]Jiang HL, Kang ML, Quan JS, Kang SG, Akaike T, Yoo HS, Cho CS. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization [J]. Biomaterials, 2008,29(12):1931-1939.
    [18]des Rieux A, Fievez V, Theate I, Mast J, Preat V, Schneider YJ. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells [J]. Eur J Pharm Sci,2007,30(5):380-391.
    [19]Keller M. Lipidic carriers of RNA/DNA oligonucleotides and polynucleotides: What a difference a formulation makesl [J]. J Control Release,2005,103(3):537-540.
    [20]Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery [J]. J Control Release,2006,115(2):216-225.
    [21]Lee M, Nah JW, Kwon Y, Koh JJ, Ko KS, Kim SW. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery [J]. Pharm Res,2001,18(4): 427-431.
    [22]Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells [J]. Pharm Res,2005,22(12):2058-2068.
    [23]Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin:ex vivo and in vivo studies [J]. Int J Pharm,2008,356(1-2): 259-266.
    [24]Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel Gilles. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles [J]. Biomaterials,2007.28(13):2233-2243.
    [25]Napper CE, Dyson MH, Taylor ME. An extended conformation of the macrophage mannose receptor [J]. J Biol Chem 2001,276(18):14759-14766.
    [26]张小磊.巨噬细胞甘露糖受体siRNA体系的建立及对壳寡糖与巨噬细胞结合的影响[D].杭州:浙江大学,2007:27.
    [27]Witmerpack MD, Swiggard WJ, Miraza A. Inaba K, Steinman RM. Tissue distribution of the DEC-205 protein that is detected by the monoclonal-antibody NLDC-145.2. expression in-situ in lymphoid and nonlymphoid tissues [J]. Cell Immunol,1995,163(1):157-162.
    [28]Bernkop-Schnurch A, Hornof M, Guggi D. Thiolated chitosans [J]. Eur J Pharm Biopharm,2004,57(1):9-17.
    [29]Fievez V, Plapied L, des Rieux A, Pourcelle V, Freichels H, Wascotte V, Vanderhaeghen ML, Jerome C, Vanderplasschen A, Marchand-Brynaert J. Schneider YJ, Preat V. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination [J]. Eur J Pharm Biopharm,2009,73 (1):16-24.
    [30]Salman HH, Gamazo C, Campanero MA, Irache JM. Bioadhesive mannosylated nanoparticles for oral drug delivery [J]. J Nanosci Nanotechnol,2006,6(9-10): 3203-3209.
    [31]Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa:quantitation and particle size dependency [J]. J Pharm Pharmacol,1990,42(12):821-826.
    [32]Imam ME, Hornof M, Valenta C, Reznicek G, Bernkop-Schnurch A. Evidence for the interpenetration of mucoadhesive polymers into the mucus gel layer [J]. STP Pharma Sci,2003,13(3):171-176.
    [33]Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent [J]. Pharm Res,1997,14(11):1568-1573.
    [34]Tse SML, Furuya W, Gold E, Schreiber AD, Sandvig K, Inman RD, Grinstein S. Differential role of actin, clathrin, and dynamin in Fc gamma receptor-mediated endocytosis and phagocytosis [J]. J Biol Chem,2003,278(5):3331-3338.
    [35]Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B; Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model [J]. Mol Ther,2009,17(1):162-168.
    [1]Bernkop-Schnurch A. Chitosan and its derivatives:potential excipients for peroral peptide delivery systems [J]. Int J Pharm,2000,194(1):1-13.
    [2]Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems [J]. J Control Release,2003,89(2):151-165.
    [3]Amidi M, Hennink WE. Chitosan-based formulations of drugs, imaging agents and biotherapeutics [J]. Adv Drug Deliv Rev,2010,62(1):1-2.
    [4]Li DH, Liu LM, Tian KL, Liu JC, Fan XQ. Synthesis, biodegradability and cytotoxicity of water-soluble isobutylchitosan [J]. Carbohydr Polym,2007.67(1): 40-45.
    [5]Li F. Liu WG, De Yao K. Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behavior [J]. Biomaterials,2002,23(2):343-347.
    [6]Liu WG, Zhang X, Sun SJ, Sun GJ, Yao KD, Liang DC, Guo G Zhang JY. Nalkylated chitosan as a potential nonviral vector for gene transfection [J]. Bioconjug Chem,2003,14(4):782-789.
    [7]Ercelen S, Zhang X, Duportail G, Grandfils C, Desbrieres J, Karaeva S, Tikhonov V, Mely Y, Babak V. Physicochemical properties of low molecular weight alkylated chitosans:a new class of potential nonviral vectors for gene delivery [J]. Colloids Surf B Biointerfaces,2006,51(2):140-148.
    [8]Bernkop-Schnurch A, Brandt UM, Clausen AE. Synthesis and in vitro evaluation of chitosan-cysteine conjugates [J]. Sci Pharm,1999,67(1):196-208.
    [9]Kast CE, Bernkop-Schnurch A. Thiolated polymers-thiomers:development and in vitro evaluation of chitosan-thioglycolic acid conjugates [J]. Biomaterials,2001, 22(17):2345-2352.
    [10]Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers-thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates [J]. Int J Pharm,2003,260(2):229-237.
    [11]Kafedjiiski K, Krauland AH, Hoffer MH, Bernkop-Schnurch A. Synthesis and in vitro evaluation of a novel thiolated chitosan [J]. Biomaterials,2005,26(7):819-826.
    [12]Bernkop-Schnurich A, Guggi D, Pinter Y. Thiolated chitosans:development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system [J]. J Control Release,2007,94(1):177-186.
    [13]Foger F, Schmitz T, Bernkop-Schnurch A. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated choosing [J]. Biomaterials,2006,27(23): 4250-4255.
    [14]Bernkop-Schnurch A. Polymer-inhibitor conjugates:A promising strategy to overcome the enzymatic barrier to perorally administered (poly)-peptide drugs? [J]. STP Pharma Sci,1999,9(1):78-87.
    [15]Zugates GT, Anderson DG, Little SR, Lawhorn IEB, Langer R. Synthesis of poly((3-amino ester)s with thiol-reactive side chains for DNA delivery [J]. J Am Chem Soc,2006,128(39):12726-12734.
    [16]Krauland AH, Guggi D, Bernkop-Schnurch A. Oral insulin delivery:the potential of thiolated chitosan-insulin tablets on non-diabetic rats [J]. J Control Release,2004, 95(3):547-555.
    [17]Guggi D, Kast CE, Bernkop-Schnurch A. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix [J]. Pharm Res, 2003,20(12):1989-1994.
    [18]Liu CG, Desai KGH, Chen XG Park HJ. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles [J]. J Agric Food Chem,2005,53(2): 437-441.
    [19]Liu CG, Chen XG, Park HJ. Self-assembled nanoparticles based on linoleic-acid modified chitosan:Stability and adsorption of trypsin [J]. Carbohydr Polym,2005, 62(3):293-298.
    [20]Hu F, Zhao M, Yuan H, You J, Du Y Zeng S. A novel chitosan oligosaccharide-stearic acid micelles for gene delivery:properties and in vitro transfection studies [J]. Int J Pharm,2006,315(1-2):158-166.
    [21]Chae SY, Son S, Lee M, Jang MK, Nah JW. Deoxycholic acid conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier [J]. J Control Release, 2005,109(1-3):330-344.
    [22]Park JK; Kim DG, Choi C, Jeong YL, Kim MY, Jang MK, Nah JW. Preparation and characterization of lithocholic acid conjugated chitosan oligosaccharide nanoparticles for hydrophobic anticancer agent carriers [J]. Polym-Korea,2008,32(3): 263-269.
    [23]Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS. Efficient gene delivery by urocanic acid-modified chitosan [J]. J Control Release,2003,93(3):389-402.
    [24]Rekha MR. Sharma Chandra P. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption [J]. J Control Release, 2009,135(2):144-151.
    [25]Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions [J]. Carbohydr Polym,2003,53(4):355-359.
    [26]Jiang LY, Li YB, Wang XJ, Zhang L, Wen JQ, Gong M. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold [J]. Carbohydr Polym,2008,74(3):680-684.
    [27]Lin Y, Chen Q, Luo H. Preparation and characterization of N-(2-carboxybenzyl)chitosan as a potential pH-sensitive hydrogel for drug delivery [J]. Carbohydr Res,2007,342(1):87-95.
    [28]Cui FY, Qian F, Zhao ZM, Yin LC, Tang C, Yin CH. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles [J]. Biomacromolecules,2009,10(5):1253-1258.
    [29]Jonker C, Hamman JH, Kotze AF. Intestinal paracellular permeation enhancement with quaternized chitosan:in situ and in vitro evaluation [J]. Int J Pharm, 2002,238(1-2):205-213.
    [30]Sadeghi AMM, Dorkoosh FA, Avadi MR, Weinhold M, Bay at A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger HE. Permeation enhancer effect of chitosan and chitosan derivatives:Comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells [J]. Eur J Pharm Biopharm,2008,70(1):270-278.
    [31]Sandri G, Bonferoni MC, Rossi S, Ferrari F, Gibin S, Zambito Y, Colo GD, Caramella C. Nanoparticles based on N-trimethyl chitosan:Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models [J]. Eur J Pharm Biopharm,2007,65(1):68-77.
    [32]Amidi M, RomeijnSG, Gorchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system [J]. J Control Release,2006,111(1-2):107-116.
    [33]Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors:Cytotoxicity and transfection efficiency [J]. J Control Release,2005,103(3): 643-653.
    [34]Fuertges F, Abuchowski A. The clinical efficacy of poly(ethylene glycol)-modified proteins [J]. J Control Release,1990,11(1-3):139-148.
    [35]Mao SR, Shuai XT, Unger F, Wittmar M, Xie XL, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethyleneglycol)-graft-trimethyl chitosan block copolymers [J]. Biomaterials,2005,26(32):6343-6356.
    [36]Natalija C, Ricardas M. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers [J]. Eur Polym J,2004,40(4): 685-691.
    [37]Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury EH, Akaike T, Cho CS. Galactosylated chitosan-graftpoly(ethylene glycol) as hepatocyte-targeting DNA carrier [J]. J Control Release,2001,76(3):349-362.
    [38]Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, Akaike T, Cho CS. Chitosan-graft-polyethylenimine as a gene carrier [J]. J Control Release,2007,117(2): 273-290.
    [39]Wong K, Sun G, Zhang X, Dai H, Liu Y, He C, Leong KW. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo [J]. Bioconjug Chem, 2006,17(2):152-158.
    [40]Lu B, Xu XD, Zhang XZ, Cheng SX, Zhuo RX. Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery:properties and in vitro transfection studies [J]. Biomacromolecules,2008,9(10):2594-2600.
    [41]Park IK, Ihm JE, Park YH, Choi YJ, Kim SI, Kim WJ, Akaike T, Cho CS. Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier. Preparation and physicochemical characterization of GCgraft-PVP/DNA complex (1) [J]. J Control Release,2003,86(2-3):349-359.
    [42]Satoh T, Kano H, Nakatani M, Sakairi N, Shinkai S, Nagasaki T. 6-Amino-6-deoxy chitosan. Sequential chemical modifications at the C-6 positions of N-phthaloylchitosan and evaluation as a gene carrier [J]. Carbohydr Res,2006, 341(14):2406-2413.
    [43]Gao Y, Xu ZH, Chen SW, Gu WW, Chen LL, Li YP. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery:In vitro characteristics and transfection efficiency [J]. Int J Pharm,2008,359(1-2):241-246.
    [44]Yoksan R, Akashi M. Low molecular weight chitosan-g-L-phenylalanine: preparation, characterization, and complex formation with DNA [J]. Carbohydr Polym, 2009,75(1):95-103.
    [45]Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC, Kim IS. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates [J]. Biomacromolecules,2005,6(2):1154-1158.
    [46]Park JH, Kwon SQ Nam JO, Park RW, Chung H, Seo SB, Kim IS, Kwon IC, Jeong SY. Self-assembled nanoparticles based on glycol chitosan bearing 5 beta-cholanic acid for RGD peptide delivery [J]. J Control Release,2004,95(3): 579-588.
    [47]Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles [J]. J Control Release,2008,128(1):23-31.
    [48]Sun SJ, Liu WG, Cheng N, Zhang BQ, Cao ZQ, Yao KD, Liang DC, Zuo AJ, Guo Q Zhang JY. A thermoresponsive chitosan-NIPAAm/vinyl laurate copolymer vector for gene transfection [J]. Bioconjug Chem,2005,16(4):972-980.
    [49]Mao Z, Ma L, Yan J. Yan M, Gao C, Shen J. The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer [J]. Biomaterials,2007,28(30):4488-4500
    [50]Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer [J]. Biomaterials,2004,25(26):5743-5751.
    [51]Dang JM. Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells [J]. Biomaterials,2006,27(3):406-418.
    [52]Lai W, Lin MCM. Nucleic acid delivery with chitosan and its derivatives [J]. J Control Release,2009,134(3):158-168.
    [53]Kim TH, Jin H. H. Kim W, Cho MH, Cho CS. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells [J]. Mol Cancer Ther,2006,5(7):1723-1732.
    [54]Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA. Dalkara T, Capan Y, Couvreur P. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody 0X26 [J]. Bioconjug Chem,2005,16(6):1503-1511.
    [55]Germershaus 0, Mao SR, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers:Establishment of structure-activity relationships in vitro [J]. J Control Release,2008,125(2):145-154
    [56]Mao S, Bakowsky U, Jintapatanakit A, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin [J]. J Pharm Sci,2006,95(5): 1035-1048.
    [57]Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery [J]. Biomaterials,2009,30(29):5691-5700.
    [58]Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, Mao Y. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency [J]. J Control Release,2010,144(1):46-54.
    [59]Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M. Photocrosslinkable chitosan as a biological adhesive [J]. J Biomed Mater Res,2000, 49(2):289-295.
    [60]Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate crosslinked by genipin for protein drug delivery [J]. J Control Release,2004,96(2):285-300.
    [61]Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release [J]. J Control Release,2005,103(3):609-624.
    [62]Ta HT, Dass CR, Larson I, Choong PFM, Dunstan DE. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy [J]. Biomaterials,2009,30(27):4815-4823.
    [63]Lee JI, Kim HS, Yoo HS. DNA nanogels composed of chitosan and Pluronic with thermo-sensitive and photo-crosslinking properties [J]. Int J Pharm,2009,373(1-2): 93-99.
    [64]Kofuji K, Murata Y, Kawashima S. Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions [J]. Int J Pharm,2005,303(1-2): 95-103.
    [65]Yin L, Fei L, Cui F, Tang C, Yin C. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks [J]. Biomaterials,2007,28(6):1258-1266.
    [66]Yin L, Ding J, Fei L, He M, Cui F, Tang C, Yin C. Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles [J]. Int J Pharm,2008,350(1-2):220-229.
    [67]Yin L, Hu Y, Zhao Z, Ding J, Cui F, Tang C, Yin C. Polymer-protein interaction, water retention, and biocompatibility of a stimuli-sensitive superporous hydrogel containing interpenetrating polymer networks [J]. J Appli Polym Sci,2008,108(2): 1238-1248.
    [68]Yin L, Ding J, He C, Tang C, Yin C. Polymer integrity related absorption mechanism of superporous hydrogel containing interpenetrating polymer networks for oral delivery of insulin [J]. Biomaterials,2010,31(12):3347-3356.
    [69]Yin L, Zhao X, Cui L, Ding J, He M, Tang C, Yin C. Cytotoxicity and genotoxicity of superporous hydrogel containing interpenetrating polymer networks [J]. Food Chem Toxicol,2009,47(6):1139-1145.
    [70]Hamidi M, Azadil A, Rafiee P. Hydrogel nanoparticles in drug delivery [J]. Adv Drug Deliv Rev,2008,60(15):1638-1649.
    [71]Zhang XG, Zhang HJ, Wu ZM, Wang Z, Niu HM, Li CZ. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles [J]. Eur J Pharm Biopharm,2008,68(3):526-534.
    [72]Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, Sung HW. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs [J]. J Control Release,2008,132(2):141-149.
    [73]Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Chen CH, Sung HW. Novel nanoparticles for oral insulin delivery via the paracellular pathway [J]. Nanotechnology,2007,18(10):105102.
    [74]Schmitz T, Bravo-Osuna I, Vauthier C, Ponchel G, Loretz B, Bernkop-Schnurch A. Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system [J]. Biomaterials,2007,28(3):524-531.
    [75]Kim J, Kim Y, Park K. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy [J]. Biomaterials,2008,29(12):1920-1930.
    [76]Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery [J]. J Control Release,2005,103(1):235-243.
    [77]Jintapattanakit A, Junyaprasert VB, Mao SR, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives:A comparative study of polyelectrolyte nanocomplexes and nanoparticles [J]. Int J Pharm,2007,342(1-2): 240-249.
    [78]Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin:Ex vivo and in vivo studies [J]. Int J Pharm,2008,356(1-2): 259-266.
    [79]Mao SR, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells [J]. Pharm Res,2005,22(12):2058-2068.
    [80]Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin [J]. Pharm Res, 2007,24(8):1415-1426.
    [81]Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y. Mucoadhesive dl-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin [J]. Pharm Dev Technol,2000,5(1):77-85.
    [82]Cui FY, Qian F, Yin CH. Preparation and characterization of mucoadhesive polymer-coated nanoparticles [J]. Int J Pharm,2006,316(1-2):154-161.
    [83]Qian F, Cui FY, Ding JY, Tang C, Yin CH. Chitosan graft copolymer nanoparticles for oral protein drug delivery:preparation and characterization [J]. Biomacromolecules,2006,7(10):2722-2727.
    [84]Thongborisute J, Tsuruta A, Kawabata Y, Takeuchi H. The effect of particle structure of chitosan-coated liposomes and type of chitosan on oral delivery of calcitonin [J]. J Drug Target,2006,14(3):147-154.
    [85]Haidar ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes [J]. Biomaterials,2008,29(9):1207-1215.
    [86]Homayoun P, Mandal T, Landry D. Controlled release of anti-cocaine catalytic antibody from biodegradable polymer microspheres [J]. J Pharm Pharmacol,2003, 55(7):933-938.
    [87]Ubaidulla U, ultanaY, Ahmed FJ. Chitosan phthalate microspheres for oral delivery of insulin:Preparation, characterization, and in vitro evaluation [J]. Drug Deliv,2007,14(1):19-23.
    [88]Surendrakumar K. Martyn GP, Hodgers ECM. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs [J]. J Control Release,2003,91(3):385-394.
    [89]De-Rosa G, Glarobina D, Immacolata-La-Rotonda M. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres:the case of insulin/hydroxypropyl-beta-cyolodextrin system [J]. J Control Release,2005, 102(1):71-83.
    [90]Kusonwiriyawong C, Pichayakorn W, Lipipun V, Ritthidej GC. Retained integrity of protein encapsulated in spray-dried chitosan microparticles [J]. J Microencapsul,2009,26(2):111-121.
    [91]Dass CR, Contreras KG, Dunstan DE, Choong PFM. Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma [J]. Biomaterials,2007,28(19):3026-3033.
    [92]Zhou XF, Liu B, Yu XH, Zha X, Zhang XZ, Wang XY, Chen Y, Chen Y, Chen Y Shan YM, Jin YH, Wu YQ Liu JQ, Kong W, Shen JC. Enhance immune response to DNA vaccine based on a novel multicomponent supramolecular assembly [J]. Biomaterials,2007,28(31):4684-4692.
    [93]Li HY Birchall J. Chitosan-modified dry powder formulations for pulmonary gene delivery [J]. Pharm Res,2006,23(5):941-950.
    [94]Lim SH, Mao HQ. Electrospun scaffolds for stem cell engineering [J]. Adv Drug Deliv Rev,2009,61(12):1084-1096.
    [95]Lee KY, Yik SH. Polymeric protein delivery systems [J]. Prog Polym Sci,2007, 32(7):669-697.
    [96]Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering [J]. Biomaterials,2009,30(21):3551-3559.
    [97]Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T. Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction [J]. J Surg Res,2005,126(1):27-33.
    [98]Zhang Y, Cheng X, Wang J, Wang Y, Shi B, Huang C, Yang Z, Liu T. Novel chitosan/collagen scaffold containing transforming growth factor-(β1 DNA for periodontal tissue engineering [J]. Biochem Biophys Res Commun,2006,344(1): 362-369.
    [99]Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, Zhang J. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation [J]. Biomaterials,2006,27(7):1095-1103.
    [100]Mao Z, Shi H, Guo R, Ma L, Gao C, Han C, Shen J. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor [J]. Acta Biomater,2009,5(8):2983-2994.
    [101]Grenha A, Remunan-Lopez C, Carvalho ELS, Begona S. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins [J]. Biomaterials,2008,69(1):83-93.
    [102]Sadeghi AMM, Avadi MR, Ejtemaimehr S, Abashzadeh S, Partoazar A, Dorkoosh F, Faghihi M, Rafiee-Tehrani M, Junginger HE. Development of a gas empowered drug delivery system for peptide delivery in the small intestine [J]. J Control Release,2009,134(1):11-17
    [103]Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme [J]. Drug Dev Ind Pharm,2008,34(2):181-188.
    [104]Cui FY, He CB, Yin LC, Qian F, He M, Tang C, Yin CH. Nanoparticles incorporated in bilaminated films:A smart drug delivery system for oral formulations [J]. Biomacromolecules,2007,8(9):2845-2850.
    [105]He C, Cui F, Yin L, Qian F, Tang C, Yin C. A polymeric composite carrier for oral delivery of peptide drugs:Bilaminated hydrogel film loaded with nanoparticles [J]. Eur Polym J,2009,45(2):368-376.
    [106]Werle M, Takeuchi H, Bernkop-Schnurch A. Modified chitosans for oral drug delivery [J]. J Pharm Sci,2009,98(5):1643-1656.
    [107]Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery [J]. Biomaterials,2009,30(12):2329-2339.
    [108]Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles [J]. Biomacromolecules,2007, 8(10):3054-3060.
    [109]Sajeesh S, Bouchemal K, Sharma CP, Vauthier C. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery [J]. Eur J Pharm Biopharm,2010,74(2):209-218.
    [110]Lin YH, Liang HF, Chung CK, Chen MC, Sung HW. Physically crosslinked alginate N,O-carboxymethyl chitosan hydroges with calcium for oral delivery of protein drugs [J]. Biomatenals,2005,26(14):2105-2113
    [111]Liu ZH, Jiao YP, Zhang ZY. Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system [J]. J Appl Polym Sci,2007,103(5):3164-3168.
    [112]Li Y, Du YM, Tang YF, Wang XY. A novel pH-sensitive and freeze-thawed carboxymethyl chitosan/poly(vinyl alcohol) blended hydrogel for protein delivery [J]. Polym Int,2009,58(10):1120-1125.
    [113]Cui FY He CB, He M, Tang C, Yin LC, Qian F, Yin CH. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin [J]. J Biomed Mater Res Part A,2009, 89A(4):1063-1071.
    [114]Bernkop-Schnurch A, Pinter Y, Guggi D, Kahlbacher H, Schoffmann Q Schuh M, Schmerold I, Del Curto MD, D'Antonio M, Esposito P, Huck C. The use of thiolated polymers as carrier matrix in oral peptide delivery-Proof of concept [J]. J Control Release,2005,106(1-2):26-33.
    [115]Werle M. Takeuchi H. Chitosan-aprotinin coated liposomes for oral peptide delivery:Development, characterisation and in vivo evaluation [J]. Int J Pharm,2009, 370(1-2):26-32.
    [116]Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules [J]. Biomacromolecules,2009,10(2):243-249.
    [117]Goycoolea FM, Lollo G, Remunan-Lopez C, Quaglia F, Alonso MJ. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules [J]. Biomacromolecules,2009,10(7):1736-1743.
    [118]Wang X, Zheng C, Wu ZM, Teng DG, Zhang X, Wang Z, Li CX. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin [J]. J Biomed Mater Res Part B,2009,88B(1):150-161.
    [119]De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles:a new vehicle for the improvement of the ocular retention of drugs. Application to cyclosporin A [J]. Int J Pharm,2001,224(1-2):159-168.
    [120]Wu J, Su ZG Ma GH. A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate [J]. Int J Pharm,2006,315(1-2):1-11.
    [121]Maculotti K, Tira EM, Sonaggere M, Perugini P, Conti B, Modena T, Pavanetto F. In vitro evaluation of chondroitin sulphate-chitosan microspheres as carrier for the delivery of proteins [J]. J Microencapsul,2009,26(6):535-543.
    [122]Smoum R, Rubinstein A, Srebnik M. Chitosan-pentaglycine-phenylboronic acid conjugate:A potential colon-specific platform for calcitonin [J]. Bioconjugate Chem, 2006,17(4):1000-1007.
    [123]Sivadas N, O'Rourke D, Tobin A, Buckley V, Ramtoola Z, Kelly JG, Hickey AJ, Cryan SA. A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins [J]. Int J Pharm,2008,358(1-2):159-167.
    [124]Amidi M, Krudys KM, Snel CJ, Crommelin DJA, Della Pasqua OE, Hennink WE, Jiskoot W. Efficacy of pulmonary insulin delivery in diabetic rats:Use of a model-based approach in the evaluation of insulin powder formulations [J]. J Control Release,2008,127(3):257-266.
    [125]Lim MJ, Min SH, Lee JJ, Kim IC, Kim JT, Lee DC, Kim NS, Jeong S, Kim MN, Kim KD, Lim JS, Han SB, Kim HM, Heo DS, Yeom YI. Targeted therapy of DNA tumor virus-associated cancers using virus-activated transcription factors [J]. Mol Ther,2006,13(5):899-909.
    [126]Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, DeSmedt SC. Nucleic acid delivery:Where material sciences and bio-sciences meet [J]. Mater Sci Eng R,2007,58(3-5):117-161.
    [127]Li S, Huang L. Nonviral gene therapy:Promises and challenges [J]. Gene Ther, 2000,7(1):31-34.
    [128]Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, Oungbho K, Park JS, Ahn WS, Kim CK. The use of chitosan as a condensing agent to enhance emulsion mediated gene transfer [J]. Biomaterials,2005,26(14):2147-2156.
    [129]Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency [J]. Biomaterials,2001,22(15):2075-2080.
    [130]Romren K, Pedersen S, Smistad S, Thu BJ. The influence of formulation variables on in vitro transfection efficiency and physicochemical properties of chitosan-based polyplexes [J]. Int J Pharm,2003,261(1-2):115-127.
    [131]Strand SP, Danielsen S, Christensen BE, Varum KM. Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes [J]. Biomacromolecules,2005,6(6):3357-3366.
    [132]Liu WG, Sun SJ, Cao ZQ, Xin Z, Yao KD, Lu WW, Luk KDK. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes [J]. Biomaterials,2005,26(15):2705-2711.
    [133]Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines [J]. Biomaterials,2002,23(1):153-159.
    [134]Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury EH, Akaike T, Cho CS. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier [J]. J Control Release,2001,76(3):349-362.
    [135]Liu WG, Zhang X, Sun SJ, Sun GJ, Yao KD, Liang DC, Guo G, Zhang JY. N-alkylated chitosan as a potential nonviral vector for gene transfection [J]. Bioconjug Chem,2003,14(4):782-789.
    [136]Hu F, Zhao M, Yuan H, You J, Du Y, Zeng S. A novel chitosan oligosaccharide stearic acid micelles for gene delivery:Properties and in vitro transfection studies [J]. Int J Pharm,2006,315(1-2):158-166.
    [137]Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF, Mohapatra SS. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery[J]. Pharm Res,2007,24(1):157-167.
    [138]Zhang H, Mardyani S, Chan WC, Kumacheva E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics [J]. Biomacromolecules,2006,7(5):1568-1572.
    [139]Chan P, Kurisawa M, Chung JE, Yang YY. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery[J]. Biomaterials,2007,28(3):540-549.
    [140]Kim TH, Nah JW, Cho MH, Park TG Cho CS. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles [J]. J Nanosci Nanotechnol,2006,6(9-10):2796-2803.
    [141]Kim TH, Park IK, Nah JW, Choi YJ, Cho CS. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier [J]. Biomaterials, 2004,25(17):3783-3792.
    [142]Hashimoto M, Morimoto M, Saimoto H, Shigemasa Y, Sato T. Lactosylated chitosan for DNA delivery into hepatocytes:The effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes [J]. Bioconjug Chem,2006,17(2):309-316.
    [143]Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH sensitive cationic polymer gene delivery vehicle:N-Acpoly(L-histidine)-graft-poly(L-lysine) comb shaped polymer [J]. Bioconjug Chem,2000,11(5):637-645.
    [144]Li W, Nicol F, Szoka Jr FC. GALA:A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery [J]. Adv Drug Deliv Rev,2004,56(7):967-985.
    [145]El Ouahabi A, Thiry M, Pector V, Fuks R, Ruysschaert JM, Vandenbranden M. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids [J]. FEBS Lett,1997,414(2):187-192.
    [146]Kiang T, Bright C, Cheung CY, Stayton PS, Hoffman AS, Leong KW. Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression [J]. J Biomater Sci Polym,2004,15(11):1405-1421.
    [147]Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS. Efficient gene delivery by urocanic acid-modified chitosan [J]. J Control Release,2003,93(3):389-402.
    [148]Sioud M. On the delivery of small interfering RNAs into mammalian cells [J]. Expert Opin Drug Deliv,2005,2(4):639-651.
    [149]Kumar LD, Clarke AR. Gene manipulation through the use of small interfering RNA (siRNA):from in vitro to in vivo applications [J]. Adv Drug Deliv Rev,2007: 59(2-3):87-100.
    [150]Howard KA, Rahbek UL, Liu XD, Damgaard CK. Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system [J]. Mol Ther,2006, 14(4):476-484.
    [151]Ji AM, Su D, Che O, Li WS, Sun L, Zhang ZY Yang B, Xu F. Functional gene silencing mediated by chitosan/siRNA nanocomplexes [J]. Nanotechnology,2009, 20(40):405103.
    [152]Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules [J]. Nat Rev Drug Discov,2003,2(4):289-295.
    [153]Brime B, Ballesteros MP, Frutos P. Preparation and in vitro characterization of gelatin microspheres containing Levodopa for nasal administration [J]. J Microencapsul,2000,17(6):777-784.
    [154]Chew JL, Wolfowicz CB, Mao HQ, Leong KW, Chua KY. Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der pl for oral vaccination in mice [J]. Vaccine,2003,21(21-22):2720-2729.
    [155]Chen JH, Yang WL, Li G., Qian J, Xue JL, Fu SK, Lu DR. Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles [J]. World J Gastroenterol,2004; 10(1):112-119.
    [156]Kumar M, Behera AK, Lockey RF, Zhang J, Bhullar G, De La Cruz CP, Chen LC, Leong KW, Huang SK, Mohapatra SS. Intranasal gene transfer by chitosan/DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection [J]. Hum Gene Ther, 2002,13(12):1415-1425.
    [157]Kong X, Kumar M, Behera A, Hellerman G, Lockey RF, Mohapatra SS. Chitosan IFN-gamma-gene nanoparticle (CIN) therapy for allergic asthma in mice involves STAT4 signaling pathway [J]. J Allergy Clin Immun,2003,111(2):S354.
    [158]Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds:Transgene expression and cellular transfection [J]. Mol Ther,2005,12(3):475-483.
    [159]Bielinska AU, Yen A, Wu HL, Zahos KM, Sun R, Weiner ND, Baker JR, Roessler BJ. Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo [J]. Biomaterials,2000,21(9):877-887.
    [160]Peng L, Cheng XR, Zhuo RX, Lan J, Wang YN, Shi B, Li SQ. Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering [J]. J Biomed Mater Res A,2009,90A(2): 564-576.
    [161]Giudice EL, Campbell JD. Needle-free vaccine delivery [J]. Adv Drug Deliv Rev,2006,58(1):68-89.
    [162]Illum L. Nasal drug delivery-possibilities, problems and solutions [J]. J Control Release,2003,87(1-3):187-198.
    [163]Alpar HO, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery[J]. Adv Drug Deliv Rev,2005,57(3):411-430.
    [164]Bienenstock J, McDermott MR. Bronchus-and nasal-associated lymphoid tissues [J]. Immunol Rev,2005,206:22-31.
    [165]Vila A, Sanchez A, Janes A, Behrens I, Kissel T, Vila Jato JL, Alonso MJ. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice[J]. Eur J Pharm Biopharm,2004,57(1):123-131.
    [166]Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines [J]. Adv Drug Deliver Rev,2001,51(1-3):81-96.
    [167]Amidi M, Romeijn SQ Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJ, Jiskoot W. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination:Biological properties and immunogenicity in a mouse model [J]. Vaccine,2007,25(1):144-153.
    [168]Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration [J]. J Control Release,2007,121(3): 168-175.
    [169]Jiang HL, Kang ML, Quan JS, Kang SG, Akaike T, Yoo HS, Cho CS. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization [J]. Biomaterials, 2008,29(12):1931-1939.
    [170]Svirshchevskaya EV, Alekseeva LG, Reshetov PD, Phomicheva NN, Parphenyuk SA, Ilyina AV, Zueva VS, Lopatin SA, Levov AN, Varlamov VP. Mucoadjuvant properties of lipo-and glycoconjugated derivatives of oligochitosans [J]. Eur J Med Chem, 2009,44(5):2030-2037.
    [171]Sayin B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Senel S Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery[J]. Int J Pharm,2008,363(1-2): 139-148.
    [172]Zhu BD, Qie YQ, Wang JL,Zhang Y, Wang QZ, Xu Y, Wang HH. Chitosan microspheres enhance the immunogenicity of an Ag85B-based fusion protein containing multiple T-cell epitopes of mycobacterium tuberculosis [J]. Eur J Pharm Biopharm,2007,66(3):318-326.
    [173]Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan [J]. J Microencapsul,2007,24(6): 539-552.
    [174]Florindo HF, Pandit S, Goncalves LMD, Alpar HO, Almeida AJ. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses [J]. Vaccine,2008,26(33): 4168-4177.
    [175]Illum L. Chitosan and its use as a pharmaceutical excipient [J]. Pharm Res, 1998,15(9):1326-1331.
    [176]Wedmore 1, McManus JG, Pusateri AE, Holcomb JB. A special report on the chitosan-based hemostatic dressing:Experience in current combat operations [J]. J Trauma,2006,60(3):655-658.
    [177]Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as DNA delivery system:Biocompatibility, body distribution and ability to complex and protect DNA [J]. Int J Pharm,1999,178(2):231-243.
    [178]Carreno-Gomez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosan microspheres [J]. Int J Pharm,1997,148(2):231-240.
    [179]Sgouras D. The evaluation of biocompatibility of soluble polymers and assessment of their potential as specific drug delivery systems [D]. University of Keele,1990.
    [180]Wan KW, Malgesim B, Verpilio I, Ferruti P, Griffiths PC, Paul A, Hann AC, Duncan R. Poly(amidoamine) salt form:Effect on pH-dependent membrane activity and polymer conformation in solution [J]. Biomacromolecules,2004,5(3): 1102-1109.
    [181]Schipper NQ Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs.1:Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (caco-2) cells [J]. Pharm Res, 1996,13(11):1686-1692.
    [182]Schipper NG Varum KM, Stenberg P, Ocklind G, Lennernas H, Artursson P. Chitosans as absorption enhancers of poorly absorbable drugs.3:Influence of mucus on absorption enhancement [J]. Eur J Pharm Sci,1999,8(4):335-343.
    [183]Thanou MM, Verhoef JC, Romeijn SG, Nagelkerke JF, Merkus FW, Junginger HE. Effects of n-trimethyl chitosan chloride, a novel absorption enhancer, on caco-2 intestinal epithelia and the ciliary beat frequency of chicken embryo trachea [J]. Int J Pharm,1999,185(1):73-82.
    [184]Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, Ding Q, Yuan S, Shen Z, Ping Q, Zhou H. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel [J]. Biomaterials,2008,29(9):1233-1241.
    [185]Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation:Effect on mechanical properties and on long-term viability [J]. Biopolymers,2006,82(6):570-579.
    [186]Hirano S, Iwata M, Yamanaka K, Tanaka H, Toda T, Inui H. Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbits [J]. Agnc Biol Chem,1991,55(10):2623-2625.
    [187]Hirano S, Seino H, Akiyama Y, Nonaka I. Biocompatibility of chitosan by oral and intravenous administrations, proceedings of the ACS division of polymeric materials:Science and engineering [D]. American Chemical Society, Los Angeles, California,1988.
    [188]Rao SB, Sharma CP. Use of chitosan as a biomaterial:Studies on its safety and hemostatic potential [J]. J Biomed Mater Res,1997,34(1):21-28.
    [189]Banerjee T, Mitra S, Kumar Singh A, Kumar Sharma R, Maitra A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles [J]. Int J Pharm, 2002,243(1-2):93-105.
    [190]Song Y, Onishi H, Nagai T. Conjugate of mitomycin c with n-succinyl-chitosan: in vitro drug release properties, toxicity and antitumor activity [J]. Int J Pharm,1993, 98(1-3):121-130.
    [191]Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M. Photocrosslinkable chitosan as a biological adhesive [J]. J Biomed Mater Res,2000, 49(2):289-295.
    1192] Kim JK, Han KH, Lee JT, Paik YH, Ahn SH, Lee JD, Lee KS, Chon CY, Moon YM. Long-term clinical outcome of phase Ⅱb clinical trial of percutaneous injection with holmium-166/chitosan complex (milican) for the treatment of small hepatocellular carcinoma [J]. Clin Cancer Res,2006,12(2):543-548.
    [193]Gades MD, Stern JS. Chitosan supplementation and fecal fat excretion in men [J]. Obes Res,2003,11(5):683-688.
    [194]Arai K, Kinumaki T, Fujita T. Toxicity of chitosan [J]. Bull Tokai Reg Fish Res Lab.1968,56:89-94.
    [195]Zheng F, Shi XW, Yang GF, Gong LL, Yuan HY, Cui YJ, Wang Y, Du YM, Li Y. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration:results of an in vitro and in vivo study [J]. Life Sci,2007,80(4): 388-396.
    [196]Langoth N, Kahlbacher H, Schoffmann G, Schmerold I, Schuh M, Franz S, Kurka P, Bernkop-Schnurch A. Thiolated chitosans:Design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system [J]. Pharm Res,2006,23(3): 573-579.
    [197]Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs [J]. Pharm Res,1994,11(8):1186-1189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700