用户名: 密码: 验证码:
采放比对煤与瓦斯突出危险性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放顶煤开采是十分重要的厚煤层采煤方法。煤与瓦斯突出(简称“突出”)煤层放顶煤开采在我国至今仍存在有利于抑制和增加突出危险性两种截然相反的学术观点;现行《煤矿安全规程》禁止突出煤层放顶煤开采及其采放比’确定依据也欠充分。本论文针对长壁式放顶煤开采采高一定不同采放比对突出危险性的影响进行了研究,以探索突出厚煤层放顶煤开采的安全性、可行性、存在问题及其防治对策,为其安全开采提供技术基础理论与依据。
     在调查突出厚煤层放顶煤开采及研究现状基础上,从瓦斯地质、工程技术两方面分析了突出影响因素,发现该采煤方法的采放比技术参数对突出的影响效应复杂。放顶煤、采煤机割煤及炮采落煤工艺对突出影响存在差异,采放比是主要敏感安全参数,而放顶煤工作面宽度、支架高低位顶煤方式、回采速度等因素处于从属地位。
     在总结长壁式放顶煤开采支承压力分布一般规律研究成果基础上,对初采期首轮放煤应力分布采用FLAC3D软件进行模拟,得到顶板来压前的初采期放顶煤围岩应力重新分布会导致采煤分层前、后方煤壁附近应力集中且工作面应力梯度有增大趋势;这与顶板来后的正常期随采高或采放厚度增加卸压区及集中应力区宽度增加、峰值应力集中系数及工作面应力梯度降低的趋势不同。
     针对放顶煤开采复杂动、静态力学作用过程,基于瞬态动力运动方程采用有限元ANSYS10.0瞬态分析模块分析了某矿煤系条件采高2.5m、采放比1:3的初采期和及正常期放顶煤的应力、应变及弹性能释放演化分布等力学特征,以及不同采放比、顶板来压对其力学特征效应,发现初次放煤过程附近10m应力随时间变化,不同采放比应力峰值分布在放煤附近6m左右,工作面前、后方煤壁附近应力梯度增大。初采期首次放煤所释放弹性能是第二次放煤的3.5倍左右;采放比增加,放煤口附近20m范围内释放弹性能增加。初采期首次放顶煤在相同时间内采放比在1:3范围内增加不明显;超过1:3范围,其弹性能释放增加显著。放顶煤在顶板初次来压、周期来压和正常回采期弹性能释放分别分布在工作面前方25m、30m、40m,工作面中部较两侧释放多,且随采放比增加而增大。顶板来压时弹性能释放具有集中性,初次来压是正常回采的两倍多,且比周期来压时多;工作面附近煤体位移在顶板初次、周期来压期间显著增加。正常回采过程弹性能释放集中在工作面前方20m,且随采放比增加增幅减缓、释放范围有增加趋势;同时,工作面卸压区宽度增大、应力峰值集中系数减小。
     基于初采期切眼简化为圆形巷道弹塑性、流变等理论分析:顶煤及切眼巷道两侧煤壁附近一定范围内产生卸压带;小采放比的顶煤处于切眼巷道卸压影响范围内时,放顶煤对突出危险影响小;反之,大采放比的顶煤处于切眼巷道产生的集中应力影响范围内时,放顶煤则增加了突出危险。
     此外,基于煤层瓦斯含量满足朗格缪尔方程、瓦斯流动过程等温且符合达西定律条件,建立了工作面煤层支承压力与瓦斯渗流随时间变化的三维方程,采用ANSYS10.0热分析模块对放顶煤工作面切眼巷道、初采期放顶煤瓦斯流动场时空演化分布特征进行模拟,发现切眼巷道瓦斯排放宽度约为采高3倍,初采期首次放煤过程附近产生的瓦斯压力梯度比第二次放煤的瓦斯压力梯度大,首采放煤突出危险较第二次放煤突出危险大。
     根据放数值模拟、理论分析及现场资料统计分析等综合研究,发现了采放比对煤与瓦斯突出危险性的影响规律。初采期,煤层厚度10m、采放比1:3以内,采放比对突出危险影响不大;超过此范围,采放比增加,突出危险性增大。正常回采期,采放比增大可以一定程度缓解地应力主导型突出危险。
     基于突出矿井两级“四位一体”综合防治技术体系,初步总结出突出煤层放顶煤开采合理巷道布置、开采工艺参数等安全开采技术,提出了放顶煤开采工作面预测新要求,并在现场应用取得了良好效果。
     放顶煤工作面预测钻孔应间隔10-15m布置两排分别控制顶煤与采煤分层,在切眼两帮及初次期工作面前方预测孔深不少于10m、正常回采期测孔6-8m。初采期放煤与采煤分别留10m、5m安全煤柱;正常回采过程预测超前及措施超前距较一般采煤工作面有所增加。
Top-coal caving mining is an important mining method. Top-coal caving mining of coal-gas outburst(Referred to as "outburst") still has two poles apart academic views that restrain and increase outburst danger; in "Safety Regulations in Coal Mine ",outburst coal top-coal caving mining is banned and the basis to determine the caving ratio is insufficient. The influence of the different caving ratio to the outburst risk was studied in the long wall top-coal caving mining with mining height constant. To explore the safety、feasibility、problems and prevention countermeasures of top-coal caving mining of outstanding thick coal seam and provide technical theory and basis for its safety mining.
     On the basis of surveying top-coal caving mining in outburst thick coal seam and its research status, the influence of the outburst is analyzed from two aspects of gas geology and engineering technology. The influence effect of technical parameter of the caving ratio to the outburst is complex, and the influence of the top-coal caving, coal-winning-machine cutting coal and coal drop position to outburst exist differences. The caving ratio is the main sensitive safety parameters, and the other factors such as working face width, high-low coal mining, mining speed are in subordinate status.
     Based on the summary long wall top coal caving mining process abutmdent pressure distribution general law research results, stress distribution is simulated by FLAC3D software at the first cutting coal, it is obtained that top-coal caving mining surrounding rock stress redistribution at the beginning of the period before the pressure coming to the roof will lead to stress near the wall concentrated that in the front and back of coal layer and working face stress gradient increased. It is different from the trend that the width of pressure relief area and stress concentration area increased and the peak stress concentration factor and working face stress gradient reduced with the mining height and the mining put thickness increasing during the normal stoping process behind the pressure coming to the roof.
     According to complex dynamic and static mechanics process of the top-coal caving mining, based on the transient dynamic equation of motion and by using the finite element ANSYS10.0transient analysis module, the mechanics characteristics of top coal caving of stress, strain and elastic energy release evolution distribution are analyzed that are during the initial mining stage and normal phase with the mining height of2.5m and caving ratio of1:3. At the same time, the mechanical characteristics effect that the different caving ratio, roof pressure to it are analyzed. It found that the stress near10m changes during the first put coal process and the stress peak of different caving ratio distributed near the6m, and the stress gradient ahead and behind coal wall increases. The first time put coal release elastic energy of the initial mining stage is3.5times than the release elastic energy during the second time. With the caving ratio increasing, the release elastic near the caving range of20m increases. But at the same time of initial mining stage, if the caving ratio is less than1:3, the increase is not obvious, and if the caving ratio is more than1:3, the release elastic increases fast. The first and cycle pressure of top coal seam roof and the elastic energy release during normal stoping period distributed25m and30m,40m in front of the working, and the amount of central working face is more than both the two sides. And with the caving ratio increasing the release increases; the energy release has concentrated during the roof pressure, and the first weight is two times more than pressure of normal stoping, and it is more than cycle pressure; and the coal displacement near the working face during the first weight and periodic pressure increased significantly. The elastic energy release concentrated in the place20m in front of the working during normal stoping, and with the increase of caving ratio in put growth slowing, the increasing of release range have increase trend. But with the pressure relief zone width increasing, the peak stress concentration factor decreases.
     Based on the theory analysis of elastic-plastic, rheological that the cut is simplified to circular roadway during initial mining stage:it produces pressure relief belt in a certain range of top coal and on both sides coal wall of the cutting eye roadway; when the top coal of small caving ratio is in the impact range of pressure relief of cutting eye roadway, the affect of the top coal to the outburst danger is small; On the other hand, the top coal of big caving ratio is in'the influence range of stress concentration of cutting eye roadway, the outburst dangerous is increased by top coal.
     In addition, based on coal seam gas content meeting the Langmuir's equation, the process of gas flow is isothermal and according with Darcy law, the three-dimensional equation of the variation of working face coal abutment pressure and gas seepage with time is established. Using ANSYS10.0thermal analysis module, the evolution and distribution characteristics in time and space of the top coal caving mining face roadway and top-coal caving mining gas flow field during initial mining stage is simulated. It found that the gas emission width of cutting-hole roadway is about3times as mining height, the gas pressure gradient which is produced by the first coal caving is bigger than the one which is produced by the second coal caving during initial mining stage, and the outburst dangerous of the first coal caving is bigger than the second coal caving.
     According to the comprehensive research of numerical simulation and theoretical analysis and field data statistical analysis, it is found that the influence law of the caving ratio to the coal-gas outburst danger. In the initial mining stage, if the coal seam thickness is10m and the caving ratio is less than1:3, The impact of the caving ratio to the outburst dangerous is not big; but if it is more than this range, the outburst dangerous increased with the caving ratio increasing. The increase of caving ratio can relieve dangerous of stress-leading outstanding during normal stoping stage.
     Based on the comprehensive prevention and control technology system of the outburst mine two stage "quaternity", the paper preliminary summarized the reasonable roadway layout and mining technology parameters and the other safety mining technology, at the same time,put forward the new demand of forecast of top coal caving mining working face, and has obtained the good effect in the field application.
     Forecast drilling should be decorated with two rows to respectively control top-coal mining and mining seam, and with the space between10m and15m. On both sides of the cut-hole and in the front of the working face during initial mining stage, the depth of prediction hole should not be less than10m, and the measuring hole should be6-8m in normal stoping period. Leave10m safety pillar when putting coal and leave5m safety pillar when coal mining during initial mining stage, the prediction advance distance and the measures advance distance arre increased than the average coalface.
引文
[1]国家安全生产监督管理总局、国家煤矿安全监察总局.防治煤与瓦斯突出规定[M],2009.
    [2]国家安全生产监督管理总局、国家煤矿安全监察总局.煤矿安全规程[M],2009.
    [3]孙东玲,王汉民.芦岭煤矿突出煤层放顶煤开采的回顾与思考[J].矿业安全与环保,2001,28(1):19-21.
    [4]练友红,梁运培,房伟青.放顶煤开采突出煤层与突出危险性的关系分析[J].矿业安全与环保.2007,34(1):42-47.
    [5]尚海涛,吴键等.高瓦斯及煤与瓦斯突出危险煤层的综放开采探讨[J].煤炭科学技术,2003,31(12):95-97.
    [6]尚海涛,吴键.关于综放开采在高瓦斯及具有煤与瓦斯突出危险煤层中应用的商榷[J],煤炭企业管理.2003,9:56-58.
    [7]王家臣.关于综放开采技术安全问题的几点认识[J].中国安全生产科学技术,2005,1(5):21-25.
    [8]王家臣.我国综放开采技术及其深层次发展问题的探讨[J].煤炭科学技术,2005,33(1):14-17.
    [9]王家臣.综放开采技术安全问题的探讨[C].徐州:中国矿业大学出版社,2005.
    [10]杨开贵.突出煤层综采放顶煤开采实践及安全可行性探讨[C].徐州:中国矿业大学出版社,2005.
    [11]谢广祥.综放采场围岩三维力学特性[M].煤炭工业出版社,2007.
    [12]刘程.综采放顶煤与瓦斯突出的耦合关系研究[J].焦作工学院学报(自然科学版),2004,23(4):241-246.
    [13]谢广祥.综放工作面及其围岩宏观应力壳力学特征[J].煤炭学报,2005,30(3):309-313.
    [14]谢广祥,杨科,常聚才等.综放采场围岩支承压力分布及动力灾害的层厚效应[J].煤炭学报,2006,31(6):731-735.
    [15]赵玉岐,吴健,张勇.放顶煤开采煤与瓦斯突出煤层的探索[J].煤炭工程,2004,(8):48-49.
    [16]潘俊锋,连国明,齐庆新等.冲击危险性厚煤层综放开采冲击地压发生机理[J].煤炭科学技术,2007,35(6):87-94.
    [17]贾悦谦.综采放顶煤的主要问题及对策[J].矿山压力与顶板管理,1991,(1)1-6.
    [18]于海勇,吴健等.“三软”煤层综放工作面矿压显现特征[C].第七届煤炭工业采场矿压理论与实践讨论会论文专辑.1993:64-68.
    [19]吴健,于海勇.我国放顶煤开采工艺的理论研究与实践[C].徐州:中国矿业大学出版社,1998:1-9.
    [20]靳钟铭.放顶煤开采理论与技术[M].北京:煤炭工业出版社,2001,57-63,163-172.
    [21]赵经彻等.关于综放开采的岩层运动和矿山压力控制问题[J].岩石力学与工程学报,1997,16(2):132-139.
    [22]樊运策.国外厚煤层放顶煤采煤法[J].煤炭科研参考资料,1985,(4):1-7.
    [23]于海勇.机械化放顶煤工作面顶煤破碎机理及放煤规律[D].北京:中国矿业大学,1989.4.
    [24]王庆康,宋振骐.综采放顶煤工作面顶煤破碎机理探讨[J].矿山压力与顶板管理,1989,(2),10-13.
    [25]康立军,史元伟,姚建国.缓倾斜特厚煤层放顶煤采法支架与顶煤相互作关系研究[C].首届全国放顶煤开采理论与实践研讨会,1992.12.
    [26]毕国旗.高应力区综采放顶煤矿压显现特征[J].矿山压力与顶板管理,1995,(增):89-92.
    [27]阎少宏,孟金锁,吴健.放顶煤开采顶煤分区的力学方法[J],煤炭科学技术,1995.12.
    [28]阎少宏.放顶煤开采顶煤与顶板活动规律研究[D].北京:中国矿业大学,1995.
    [29]谢和平.综放开采顶煤冒放性的损伤力学分析[J].岩石力学与工程学报,2002,21(8):1136-1140.
    [30]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [31]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [32]张顶立.综合机械化放顶煤开采采场矿山压力控制[M].北京:煤炭工业出版社,1999.
    [33]邓广哲.放顶煤采场上覆岩层运动和破坏规律研究[J].矿山压力与顶板管理,1994,(2):23-26.
    [34]贾喜荣,翟英达,杨双锁.放顶煤工作面顶板岩层结构及顶板来压计算[J].煤炭学报,1998,(4):366-370.
    [35]阎少宏.放顶煤开采上覆岩层结构向高位转移机理分析[J].矿山压力与管理.1996,3:3-5.
    [36]史红.综采放顶煤采场厚层坚硬顶板稳定性分析及应用[D].山东:山东科技大学, 2005.
    [37]宋选民,康天合,靳钟铭等.顶煤冒放性影响因素研究[J].矿山压力与顶板管理,1995,(34):85-88.
    [38]吴健.放顶煤开采的顶煤活动规律及矿压显现[C].第四届煤矿采场矿业理论与实践讨论会论文汇编.徐州:中国矿业大学出版社,1989,130-136.
    [39]张海戈,吴凤东,王志勤.放顶煤综采顶煤活动规律与顶煤可放性研究[A].综合机械化放顶煤开采论文集[C].徐州:中国矿业大学出版社,1995:88-97.
    [40]郑哲敏.从数量级和量纲分析看煤与瓦斯突出机理[A].煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文[C].重庆:煤炭科学研究院重庆研究所,1983.
    [41]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [42]周世宁,何学秋.煤和瓦斯突出的流变假说[J].中国矿业大学学报,1990.
    [43]蒋承林,俞启香.煤与瓦斯突出的球壳失稳假说[J].煤矿安全,1995.
    [44]梁冰,章梦涛等.煤和瓦斯突出的固流耦合失稳理论[J],煤炭学报,1995.
    [45]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [46]胡千庭等.预防煤矿瓦斯动力灾害的基础研究[R].重庆:中煤科工集团重庆研究院,2010.
    [47]胡千庭.煤与瓦斯突出过程的力学作用机理及应用研究[D].北京:中国矿业大学博士论文,2007.4.
    [48]孟贤正.综采工作面煤的突然压出危险性预测[D].重庆:重庆大学,2002.6.
    [49]赵和松.采场支承压力对煤和瓦斯突出的影响.矿山压力与顶板管理,1990,(2):47-50.
    [50]周宏伟.论采场矿山压力与煤与瓦斯突出的关系[M].西安:西安矿业学院,1991.6.
    [51]陈绍明.论煤和瓦斯突出与支承压力显现的关系.第五届煤矿采场矿压理论与实验实践讨论会论文.1990.2.
    [52]孟贤正.上山石门微差控制排爆揭煤预防突出的试验研究[J].矿业安全与环保,2004,9(2),13-23.
    [53]孟贤正.用控制爆破预防采面突出的初步试验,煤炭工程师[J].1996(3):10-13.
    [54]方昌才.突出煤层深孔预裂控制松动爆破防突技术研究[J],1996(3):21-23.
    [55]杨永琦.矿山爆破技术与安全[M].北京:煤炭工业出版社,1991.
    [56]邵鹏,东兆星,韩立军等.控制爆破技术[M].徐州:中国矿业大学出版社,2004.6.
    [57]戴俊,钱七虎.高地应力条件下的巷道崩落爆破参数[J].爆炸与冲击.2007,27(3): 272-277.
    [58]秦吴,茅献彪.应力波扰动诱发冲击矿压数值模拟研究[J].采矿与安全工程学报,2008,25(2):127-131.
    [59]Zubelewice A, Mroz Z. Numerical simulation of rock-burst process treated as problems of dynamic in-stability[J]. Rock Mechanics and Rock Engineering,1983.16:253-274.
    [60]Mueller W. Numerical simulation of rockburst[J]. Mining Science & Technology, 1991, 12:27-42.
    [61]杨小林,侯爱军,梁为民.隧道掘进爆破的损伤机理与振动危害[J].煤炭学报,2008.4.
    [62]PushR. StanforsR. The zone of distribution around blasted tunnels at depth [J]. Int.J. RockMech.Sc.i Geomech. Ab-str,1992,29(2):165-172.
    [63]IngvarBogdanof.F. Vibration measurements in the damage zone in tunnel blasting[A]. Mohanty. Rock Fragmentation by blas-ting[C].1996.
    [64]肖正学,张志呈.初始应力场对爆破效果的影响[J].煤炭学报,1996,21(5):497-501.
    [65]马建军.爆破应力波中远区破岩作用分析[J].武汉科技大学学报,2005,28(2):182-187.
    [66]杨小林,员小有,吴忠.爆破损伤岩石力学特性的实验研究[J].岩石力学与工程学报,2001,20(4):436-439.
    [67]Xie Guang-xiang, Chang Ju-cai, Yang Ke. Investgation on the Stress Field Characteristics of Top Coal at FMTC Face under the Influence of Caving Thickness[J]. Joural of Coal Science & Engineering,2007,13(2):123-125.
    [68]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008.
    [69]宋振骐,陈立良等.综采放顶煤安全开采条件的认识[J].煤炭学报,1995,20(4):356-360.
    [70]宋振骐,蒋宁静,扬增夫等.煤矿重大事故预测和控制的动力信息基础研究[M].北京:煤炭工业出版社,2003.
    [71]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [72]王永,杨家忠,甘林堂.4111(3)消突效果小议[J].煤矿安全,2002,33(3):20-22.
    [73]张明杰,马耕.放顶煤开采厚煤层的突出因素分析及防突措施[J].矿业安全与环保,2005,32(1):59-62.
    [74]夏仕柏.被保护层突出危险评价及其在放顶煤回采中的应用[J].煤矿安全,2002,33(3):7-8.
    [75]马耕,张明杰.单一突出厚煤层放顶煤开采试验研究[C].徐州:中国矿业大学出版社,2005.
    [76]李伟,王家臣等.极软、高瓦斯突出、易燃、特厚煤层综放开采关键技术研究[R].淮北矿业(集团)有限责任公司,中国矿业大学(北京),煤炭科学研究总院重庆分院,煤炭科学研究总院北京开采所,安徽理工大学,2006.
    [77]孟贤正,张洪宾等.獐儿沟煤矿南翼煤二层综合防治煤与二氧化碳突出技术研究[R].重庆:煤炭科学研究总院重庆分院,2003.
    [78]王应启.济三煤矿6303工作面巷帮冲击地压机理研究[J].山东煤炭科技,2007,1:59-61.
    [79]赵武强等.桑树坪矿北一采区突出危险性划分[R].韩城:桑树坪煤矿技术报告,2003.
    [80]孟贤正.靖远矿务局大水头煤矿103工作面突出危险危险性评价[R].重庆:煤炭科学研究总院重庆分院,2004.
    [81]安欧.构造应力场[M].北京:地震出版社,1992.4.
    [82]李增学,马兴强.实用矿井地质研究方法与进展[M].北京:地质版社,1993.
    [83]彭苏萍,李恒堂,程爱国.煤矿安全高效开采地质保障技术[M].徐州:中国矿业大学出版社,2007.
    [84]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [85]国家煤炭工业局.岩石冲击倾向性分类及指属的测定方法(MT/T866-200).2000.
    [86]M.M.佩图霍夫(俄)著,段克信译.冲击地压和突出计算方法[M].北京:煤炭工业出版社,1994.
    [87]H.M.佩图霍夫,M.M.巴杜金娜(俄)著,王丽等译.地下地质动力学[M].北京:煤炭工业出版社,2006.
    [88]赫尔曼·伊莱斯贝格尔(德).大采深厚煤层长壁开采的岩层控制[A].高产高效综采技术国际研讨会论文集,1992.
    [89]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].北京:煤炭工业出版社,1994.
    [90]宋守志.固体介质中的应力波[M].北京:煤炭工业出版社,1989.
    [91]宋选民.综放采场顶煤冒放性控制理论及其应用[M].煤炭工业出版社,2002.
    [92]蒋金全.采场围岩应力与运动[M].北京:煤炭工业出版社,1999.
    [93]司荣军,王春秋,谭云亮.采场支承压力分布规律的数值模拟研究[J].岩土力学,2007,28(2):351-353.
    [94]谢广祥,杨科,常聚才等.非对称综放开采煤层三维应力分布特征及层厚效应研究[J].岩土力学与工程学报,2007,26:173-176.
    [95]孟贤正,夏永军,程国强等.放顶煤开采顶煤初次垮落动力学分析[J].煤炭学报,2008,33(8):841-844.
    [96]董芳庭.巷道围岩送动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [97]李世平,吴振业等.岩石力学简明教程[M].北京:煤炭工业出版社,1996.
    [98]徐素国,梁卫国,莫江等.软弱泥岩夹层对层状岩体力学特性影响研究[J].地下空间与工程学报,2009,5:878-882.
    [99]叶洲元.分区破裂现象发生机制[J].矿业工程研究,2009,9:1-4.
    [100]李英杰,潘一山,章梦涛.深部岩体分区碎裂化进程的时间效应研究[J].中国地质灾害与防治学报,2006,12:119-122.
    [101]孟贤正,李平,张永将等.基于应力场时空演化规律的钻孔法突出预测理论与实践[A].2010中国煤矿瓦斯治理国际研讨会论文集[C].2010.
    [102]高建良.煤层瓦斯流动数值解算时空步长的选择[J].中国安全科学学报,2006,16(7):9-12.
    [103]夏永军,唐娟,孟贤正等.放顶煤开采初期放煤口附近煤体瓦斯压力分布规律研究[J].矿业安全与环保,2009,36(1):4-6.
    [104]孟贤正,汗长明,唐兵等.具有突出和冲击地压双重危险煤层工作面的动力灾害预测理论与实践[J].矿业安全与环保,2007,34(3):1-4.
    [105]朱连山.关于煤层中的瓦斯膨胀能[A].重庆:煤炭科学研究总院重庆分院论文集[C].1990,1:128-131.
    [106]胡千庭,邵军,文光才等.工作面预测敏感指标值的确定方法[R].重庆:煤炭科学研究总院重庆分院,1995.
    [107]Meng Xian-zheng, Xia Yong-jun, Tang Bing et al. Analysis of the dialectical relation between top coal caving and coal-gas outburs[J]. Joural of Coal Science & Engineering(China), Volume 15 Nunber 2 June 2009:181-187.
    [108]唐春安.岩石破裂过程的的灾变[M].北京:煤炭工业出版社,1993.
    [109]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [110]胡千庭.煤矿瓦斯抽采与瓦斯灾害防治[M].中国矿业大学出版社,2008.
    [111]于不凡,王佑安.煤矿瓦斯灾害防治及利用手册[M].北京:煤炭工业出版社,1993.
    [112]孟贤正,唐兵,夏永军等.急倾斜特厚突出煤层水平分层开采自保护范围的研究[J].矿 业安全与环保,2007,34(增):1-6.
    [113]O.R.科尔前夫等.开采技术对突出倾向的煤层和砂岩层状态的影响[A].第21届国际采矿安全论文集[C].《世界煤炭技术》编辑部编辑出版,1989.
    [114]国家安全生产监督管理总局.煤矿瓦斯抽采达标暂行规定[M].2012.
    [115]国家安全生产监督管理总局.煤矿瓦斯抽采基本指标(AQ1026-2006)[M],2006
    [116]孟贤正,张永将等.采掘工作面(包括石门揭煤)突出预测预报敏感指标体系及其临界值的确定[R],重庆:煤炭科学研究总院重庆分院,2009.
    [117]胡千庭,孟贤正,张永将等.深部矿井综掘面煤的突然压出机理及其预测[J].岩土工程学报,2009.
    [118]文光才,吴燕清,康建宁等.矿井突出危险区域预测技术及装备的研究[R].重庆:煤炭科学研究总院重庆分院,1999.
    [119]孟贤正,唐兵等.韩城矿务局桑树坪煤矿北一采区4320采煤工作面区域突出危险评价报告[R].重庆:煤炭科学研究总院重庆分院,2004.
    [120]孟贤正,董钢锋等.海石湾首采区单一近水平特厚煤二层综合防治煤(岩)与二氧化碳、瓦斯、油气突出及涌出灾害试验研究[R].重庆:煤炭科学研究总院重庆分院,2006.
    [121]孙学会,李铁.深部矿井复合型煤岩瓦斯动力灾害防治理论与技术[M].北京:科学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700