用户名: 密码: 验证码:
用于体表心电监测的纺织结构电极与皮肤之间机械作用分析及动态噪音研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近十多年,纺织结构电极越来越受到各国研究者的重视。这是因为老龄化社会到来,各种心血管疾病成为老龄人的高发病,成为人类健康的头号杀手,加重了患者家庭和整个社会的医疗负担。由于这类疾病具有长期性、累积性、偶发现,常规的定期健康检查不能有效的防止这类疾病,国外通行的做法是防患于未然,即对心脏健康状况进行长期监测。然而,传统医疗上使用的一次性心电电极不适合于长期监测,因为它是采用金属平板电极,为了提高人体皮肤和电极之间的导电性,二者之间涂有一次粘性水凝胶,在使用过程中水凝胶逐渐干涸,影响电极的性能;同时,水凝胶中的导电电解质会对皮肤产生刺激,造成皮肤过敏,严重的时候会导致皮肤发炎、溃烂。纺织结构电极作为潜在的传统金属平板电极替代电极,不但没有这些缺点,而且还具有传统电极不具备的优点,和普通纺织品一样,纺织结构电极质地柔软,舒适性较好;纺织结构电极透气性透水性好,而且不使用导电胶,长时间使用,不会造出皮肤刺激问题;纺织结构电极易于集成到服装中用于可穿戴健康监测,可以水洗和重复使用……因此,研究纺织结构电极具有重要的社会意义。
     纺织结构电极是个新兴的研究领域,也是个多学科交叉的研究热点,具有非常高的学术研究价值。纺织结构电极概念的提出和发展历程只有十多年时间,但是对其研究受到来自材料、物理、化学、电子、生物、力学等多个学科研究人员的广泛关注。目前,欧美、日本、韩国、台湾等国家和地区对纺织结构电极已经进行了较多的研究,国内还处于起步阶段。现阶段研究表明纺织结构电极可以很好检测人体在静态是的心电信号,但在人体活动时,心电信号受到非常大的干扰噪音,这种动态下的噪音叫做运动伪迹,它普遍存在于人体表面生物电势测量中,对其研究也从来没有中断过。传统金属平板电极的研究表明,运动伪迹主要来源于电极-皮肤界面的变化和皮肤自身变形产生的电势两方面,而纺织结构电极在结构和使用方法上与传统电极不同,其动态噪音和传统一次性诊断电极既存在相同点又是有区别的,其区别主要体现在纺织结构电极是柔性的,而且不使用导电胶,人体运动时,纺织结构容易发生变形,电极与皮肤发生相对滑移,接触界面容易受到影响。所以,纺织结构电极的动态噪音较传统金属平板电极更为复杂,皮肤-电极界面变化产生的动态噪音更为突出,这正是本课题研究的重点。论文通过研究纺织结构电极与皮肤相互作用,探讨纺织结构及运动方式对动态噪音的影响,进而分析纺织结构电极动态噪音的机理,主要工作和创新点有以下几方面:
     (1)纺织结构电极的制作和静态性能评价。本课题中采用导电银纤维作为纺织结构电极的基础材料,为了改善电极表面电化学性能,如:极化阻抗和电势稳定性,采用电化学的方法对纤维表面进行改性处理,其原理是将整理齐的纤维束放入0.9%氯化钠(NaCl)电解质溶液中,银(Ag)作为工作电极(Working Electrode)发生电解与溶液中的氯离子发生反应,生成氯化银(AgCl)沉积,包覆在纤维表面。电化学处理的工艺参数主要有处理电压和处理时间,采用不同的工艺,纤维表面的微观形态明显不同,纺织结构电极与电解质的阻抗发生显著变化。利用经过优化工艺处理的纤维,制作不同织物结构的电极,如:机织平纹、针织平针、刺绣平纹和刺绣毛圈结构电极,评价这些织物结构电极的静态性能,如:电化学阻抗、开路电压,同时比较他们在实际心电图测量中的性能。
     (2)纺织结构电极与皮肤之间的机械作用分析。人体在动态下,电极与皮肤相互作用是评价纺织结构电极动态性能和研究运动伪迹的前提。课题研究中将电极和皮肤的相互作用定义为平行于皮肤面内的平动和垂直于皮肤的压缩或者挤压。实验中设计一种集成光学位移传感器的电极,测量人体在不同肢体动作时,电极与人体特定位置皮肤之间的相对运动速和运动轨迹。为了测量电极-皮肤之间的挤压,在皮肤和电极之间放置薄片压力传感器,测量电极和皮肤之间不同运动状态下的二者接触压力变化。这些测量指标为进一步分析人体在不同运动状态下电极-皮肤之间相互作用的规律、研究纺织结构电极的动态性能评价提供依据。同时,通过测量不同运动状态下的心电图,可以了解运动对心电图的影响,实践中确认运动是运动伪迹的原因。
     (3)纺织结构电极的动态噪音评价。目前纺织结构电极的动态噪音评价主要在人体上进行,然而不同人在生理上存在差异、同一个人不同时间也存在差异,直接在人体上评价纺织结构电极动态性能的数据不稳定、难以重复,为此课题中开发一台纺织结构电极动态噪音评价仪器,这台仪器分为五部分:皮肤-电极界面模拟器,运动控制机构、信号采集单元、电解质循环装置和计算机程序。测试时,电解质循环装置将生理盐水在皮肤-电极界面模拟器中循环,电极通过运动控制机构在模拟器件上运动,信号采集单元测量电极运动状态下的各种信号,如:电极-皮肤界面接触压力、电极的开路电压、电极-皮肤界面的阻抗等。课题中选用了不同织物结构的电极,研究它们与模拟器在不同接触压力和相对移动速度时的动态噪音,分析动态噪音与这些运动参数之间的变化规律,以便进一步研究动态噪音的机理。
     (4)纺织结构电极动态噪音机理的研究。人体(2)和仪器模拟试验(3)表明皮肤-电极相互作用是产生纺织结构电极动态噪音的原因,为此需进一步研究二者界面的电化学性能。课题中通过仪器模拟试验方法表征纺织结构电极与皮肤界面在动态下的电化学阻抗谱,并建立其等效电路模型,分析模型中各参数的变化,研究动态噪音产生的机理,最后通过人体试验对其进行验证。仪器模拟实验发现电极-皮肤相互作用中压力变化对电极-皮肤界面阻抗有显著影响,而水平运动速度对界面阻抗影响不明显,分析不同压力下阻抗谱的等效电路模型中各参数变化,结果表明纺织结构电极动态噪音与皮肤-电极界面电容性有关,结合压力变化过程中的电极两端开路电压变化,理论计算也验证了这个噪音机理。据此设计人体实验,改变电极-皮肤接触面积,测试动态噪音,结果也证明这种动态噪音机理是正确的。
Textile electrodes have received much attention in the last ten years. As the growing aging population, cardiovascular diseases have been the top diseases of death among elderly people, even found in younger people, which have become a medical and economic burden to the whole society. Cardiovascular diseases is chronic, accumulative and unpredictable, conventional periodic fitness checkup can hardly found this kind of diseases in advance, the prevail method in abroad is long-term ECG monitoring. However, the traditional disposal metal plate electrodes are not suitable for long-term health monitoring because the electrodes are stuck to skin using hydrogel to improve skin-electrode interfacial contact. The hydrogel has adverse effect on electrode performance when it is dehydrated, as well as causing skin allergy or inflammation in long-term application. As a potential alternative to traditional metal plate electrodes, textile electrodes don't have these disadvantages which are superior in its flexible structure, comfortable feeling, good air and moisture penetration ability, as well as dry application without gel, thus less prone to skin problems in long-term application. Additionally, textile electrodes are washable, reusable and easy integrated into garments for wearable health monitoring. These advantages will undoubtedly promote more application areas for textile electrodes as well as influential social impact in the future.
     Although textile electrodes is a newly emerge research area, it became a hottest research topic in the scientific community showing its academic importance. Using textile structures to fabric biopotential monitoring electrodes came up only in last ten more years, which is a multidisciplinary subject involving material science, physics, chemistry, electronics, biology, mechanics and so on. In recent years, textile electrodes has been enthusiastically investigated in developed countries and regions, such as Europe, American, Japan, South Korea and Taiwan, while the research in China is still at its early stage. The state-of-the-art textile electrodes can detect perfect ECG signal when the subject is in static state, while the signal may be contaminated by noise from body movement usually called motion artifacts. Actually, motion artifacts are common phenomenon among physiological measurements which have been extensively studied in traditional metal plate electrode. From the study, we know that motion artifacts in ECG signal mainly originated from the skin-electrode interfacial instability and skin deformation induced potentials. Whereas, compared with traditional metal plate electrodes, motion artifacts in textile electrodes have their own characteristics as the differences in structure and application methods. Textile electrodes are flexible and no gel presents at the skin-electrode interface, the contact area is easily affected by fabric deformation and skin-electrode relative slippage during body movement. So motion artifacts in textile electrodes are much more complicated than traditional metal plate electrodes, especially the noise from skin-electrode interfacial instability which is the main concern of this study. The methodology in our study is through the investigation of skin-electrode mechanical interaction to determine the influence of textile structure and electrode movement on motion artifacts, thus to analyze the mechanism of motion artifacts. According to the above described method, the following wok has been done in the past few years,
     (1) Fabrication of textile electrodes and evaluation of the static performance. In this study, silver coated multifilament was used to fabricate textile electrodes. To improve fiber surface electrochemical properties e.g. polarization impedance and electric stability, the fiber surface was chlorided in0.9%NaCl solution using electrochemical method, the silver at working electrode was decomposed and reacted with chlorine ionic to deposit silver chloride (AgCl) on fiber surface. The processing parameters include electric voltage and treating time which affect surface microstructure and impedance of electrodes. These parameters were optimized and the treated fibers were fabricated into textile electrodes using woven, knitting and embroidery techniques. Electrical performance such as impedance and open circuit potentials of different structural electrodes were tested, ECG signal were also measured to verify the functionality of these electrodes.
     (2) Analysis of skin-electrode mechanical interaction. Understanding the electrode-skin mechanical interaction in dynamic state is crucial to study the motion artifacts of textile electrodes. In this study, skin-electrode mechanical interaction is defined as two independent movements:in-plane movement parallel to skin and vertical compression to skin. A special designed electrode with integrated optical displacement sensor was used to determine electrode moving speed during various body movement. The electrode-skin compression is indicated by skin-electrode contact pressure which is measured by a thin film pressure sensor at specific body locations. Electrode-skin relative moving speed and their pressure variation were analyzed which can be a useful reference for the dynamic evaluation of textile electrodes. Additionally, ECGs during different body movements were measured to analyze the influence of boy movement on ECG signal.
     (3) Evaluation of the motion artifacts of textile electrodes. From previous studies, we know that the influential effect of boy movement on motion artifacts of ECG signals which need to be objectively evaluated. However, physiological conditions varied greatly from subject to subject, even within subject at different times, making the experimental results inconvincible and unrepeatable, so a dynamic measurement equipment was developed. The equipment consists five parts:skin simulator, motion controller, data acquisition unit, electrolyte circulation apparatus and computer program. When testing, electrolyte circulation apparatus pumps 0.9%NaCl solution through skin simulator, electrodes held by motion controller move on skin simulator, data acquisition unit records various signals such as electrode pressure, electrode open circuit potential, skin-electrode interfacial impedance. These signals were analyzed to quantify motion artifacts induced by electrode pressure and moving speed.
     (4) Study the mechanism of motion artifacts of textile electrodes. Motion artifacts are directly related to skin-electrode mechanical interaction which has been demonstrated in previous in-vivo measurement (2) and simulated evaluation (3). To study the mechanism of motion artifacts from skin-electrode interaction, an equivalent circuit model of skin-electrode interface was built whose parameters can be determined by analyzing interfacial impedance. From simulated study, we know that electrode pressure has obvious effect on interfacial impedance while electrode moving speed has least. We assume that the motion artifacts are attributed to interfacial capacitance. Through theoretical calculation using open circuit potential and model parameters, the assumption were verified by simulated study and in-vivo measurement.
引文
1. Cheng, J. and P. Lukowicz, Towards wearable capacitive sensing of physiological parameters. 2008, EEE. p.272-273.
    2. Xu, P.J., H. Zhang, and X.M. Tao, Textile-structured electrodes for electrocardiogram.2008, Taylor & Francis, p.183-213.
    3. Mankodiya, K., et al., Wearable ECG Module for Long-term Recordings using a Smart phone Processor.
    4. Ueno, A., et al., Capacitive Sensing of Narrow-Band ECG and Breathing Activity of Infants through Sleepwear.
    5. Yoon, S.W., et al., Adaptive motion artifacts reduction using 3-axis accelerometer in e-textile ECG measurement system. Journal of Medical Systems,2008.32(2):p.101-106.
    6. Huigen, E., A. Peper, and C.A. Grimbergen, Investigation into the origin of the noise of surface electrodes.2002, Springer, p.332-338.
    7. Grimnes, S. and O.G Martinsen, Bioimpedance and bioelectricity basics.2008: Academic press.
    8. Constant, J., Essentials of learning electrocardiography:A complete course for the non-cardiologist.1997:Parthenon.
    9. Webster, J., Medical instrumentation: application and design.2009:Wiley-India.
    10. Baek, J.Y., et al., Flexible polymeric dry electrodes for the long-term monitoring of ECG. 2008, Elsevier. p.423-429.
    11. Avenel, M., et al., Contact dermatitis from electrocardiograph monitoring electrodes:role of p-tert-butylphenol-formaklehyde resin.2003, Wiley Online Library, p.108-111.
    12. Connolly, M. and D.A. Buckley, Contact dermatitis from propylene glycol in ECG electrodes, complicated by medicament allergy.2004, Wiley Online Library, p.42-42.
    13. Fonseca, C, et al., A novel dry active electrode for EEG recording.2007, IEEE. p.162-165.
    14. Searle, A. and L. Kirkup, A direct comparison of wet, dry and insulating bioelectric recording electrodes.2000, IOP Publishing, p.271.
    15. Gargiulo, G, et al., A new EEG recording system for passive dry electrodes, Elsevier. p. 686-693.
    16. Nishimura, S., Y. Tomita, and T. Horiuchi, Clinical application of an active electrode using an operational amplifier.1992, IEEE. p.1096-1099.
    17. Merritt, C.R., H.T. Nagle, and E. Grant, Fabric-based active electrode design and fabrication for health monitoring clothing.2009, IEEE. p.274-280.
    18. Portnoy, W., R. David, and L. Akers, Insulated ECG electrodes.1974, New York:Academic.
    19. Fonseca, C., F. Vaz, and M.A. Barbosa, Electrochemical behaviour of titanium coated stainless steel by if sputtering in synthetic sweat solutions for electrode applications.2004, Elsevier. p.3005-3018.
    20. Lymberis, A. and A. Dittmar, Advanced wearable health systems and applications-research and development efforts in the European Union.2007, IEEE. p.29-33.
    21. Coyle, S., et al., BIOTEX-Biosensing Textiles for Personalised Healthcare Management.2010, IEEE. p.364-370.
    22. Milosevic, M., M.T. Shrove, and E. Jovanov, Applications of Smartphones for Ubiquitous Health Monitoring and Wellbeing Management.2011.
    23. Gatzoulis, L. and I. Iakovidis, Wearable and portable eHealth systems.2007, IEEE. p.51-56.
    24. Pola, T. and J. Vanhala, Textile electrodes in ECG measurement.2007, IEEE. p.635-639.
    25. Beckmann, L., et al., Characterization of textile electrodes and conductors using standardized measurement setups.2010, IOP Publishing, p.233.
    26. Schwarz, A., et al., Gold coated para-aramid yarns through electroless deposition, Elsevier. p. 1412-1418.
    27. Jang, S., et al., Exploring possibilities of ECG electrodes for bio-monitoring smartwear with Cu sputtered fabrics.2007, Springer.p.1130-1137.
    28. Scilingo, E.P., et al., Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables.2005, IEEE. p.345-352.
    29. Kang, T.H., et al., Nonwoven fabric active electrodes for biopotential measurement during normal daily activity.2008, IEEE. p.188-195.
    30. Ackmann, J.J., et al., Specific impedance of canine blood.1995, Springer. p.58-66.
    31. Yamamoto, Y. and T. Yamamoto, Characteristics of skin admittance for dry electrodes and the measurement of skin moisturisation.1986, Springer, p.71-77.
    32. Wiese, S.R., et al., Electrocardiographic motion artifact versus electrode impedance.2005, IEEE. p.136-139.
    33. Tarn, H. and J.G. Webster, Minimizing electrode motion artifact by skin abrasion.1977, IEEE. p.134-139.
    34. Burbank, D.P. and J.G. Webster, Reducing skin potential motion artefact by skin abrasion. 1978, Springer, p.31-38.
    35. Talhouet, H. and J.G. Webster, The origin of skin-stretch-caused motion artifacts under electrodes.1996, IOP Publishing, p.81.
    36. Odman, S. and P. Ake Oberg, Movement-induced potentials in surface electrodes.1982, Springer. p.159-166.
    37. Yoon, S.W., et al., Adaptive motion artifacts reduction algorithm for ECG signal in textile wearable sensor. Ieice Electronics Express,2007.4(10):p.312-318.
    38. Liu, Y. and M.G. Pecht, Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering.2006, IEEE. p.6045-6048.
    39. Odman, S., Potential and impedance variations following skin deformation.1981, Springer, p. 271-278.
    40. Odman, S., Changes in skin potentials induced by skin compression.1989, Springer, p. 390-393.
    41. Odman, S., On the spread of deformation potentials in the skin.1982, Springer, p.451-456.
    42. Webster, J.G., Reducing motion artifacts and interference in biopotential recording.1984, IEEE. p.823-826.
    43. Winter, B.B. and J.G. Webster, Reduction! of Interference Due to Common Mode Voltage in Biopotential Amplifiers.1983, IEEE. p.58-62.
    44. Thakor, N.V. and Y.S. Zhu, Applications of adaptive filtering to ECG analysis:noise cancellation and arrhythmia detection.1991, IEEE. p.785-794.
    45. Sahambi, J.S., S.N. Tandon, and R.K.P. Bhatt, Using wavelet transforms for ECG characterization. An on-line digital signal processing system.1997, IEEE. p.77-83.
    46. Hamilton, P.S. and M.G Curley, Adaptive removal of motion artifact [ECG recordings].1997, IEEE. p.297-299.
    47. Laguna, P., R. Jane, and P. Caminal, Adaptive filtering of ECG baseline wander.1992, IEEE. p.508-509.
    48. Hamilton, P.S., et al., Comparison of methods for adaptive removal of motion artifact.2000, IEEE. p.383-386.
    49. Yoon, S., et al., A Development of Motion Artifacts Reduction Algorithm for ECG signal In Textile Wearable Sensor, in World Congress on Medical Physics and Biomedical Engineering 2006, Vol 14, Pts 1-6, S.I. Kim and T.S. Suh, Editors.2007. p.1210-1213.
    50. Grand challenges for engineering. [cited Feb.25,2012];Available from: http://www.engineeringchallenges.org/.
    51. Comert, A., et al., The Suitability of Silver Yarn Electrodes for Mobile EKG Monitoring, in 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, A. Katashev, Y. Dekhtyar, and J. Spigulis, Editors.2008. p.198-201.
    52. Rattfalt, L., et al., Electrical characteristics of conductive yrns and textile electrodes for medical applications. Medical & Biological Engineering & Computing,2007.45(12):p. 1251-1257.
    53. Rattfalt, L., et al. Electrical properties of textile electrodes.2007. Lyon, FRANCE.
    1. Schwarz, A., et al., Gold coated para-aramid yarns through electroless deposition. Surface and Coatings Technology,2010.204(9-10):p.1412-1418.
    2. L Rattfalt, L., et al., Electrical characteristics of conductive yarns and textile electrodes for medical applications.2007, Springer, p.1251-1257.
    3. Mestrovic, M.A., et al., Preliminary study of dry knitted fabric electrodes for physiological monitoring.2007, IEEE. p.601-606.
    4. Jang, S., et al., Exploring possibilities of ECG electrodes for bio-monitoring smartwear with Cu sputtered fabrics. Human-Computer Interaction. Interaction Platforms and Techniques, 2007.4551:p.1130-1137.
    5. Wang, R.X., et al., Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surface and Coatings Technology,2010.204(8):p. 1206-1210.
    6.尹立志,姜.霍.,医用传感器.1997:科学出版社.
    7. Bagotski, V.S., Fundamentals of electrochemistry. Vol.44.2006:John Wiley and Sons.
    8. Westbroek, P., et al., Analytical electrochemistry in textiles.2005:CRC Press.
    9. Xu, P.J., H. Zhang, and X.M. Tao, Textile-structured electrodes for electrocardiogram. Textile Progress,2008.40(4):p.183-213.
    10. Kubota, M., Y. Hanai, and T, Yamaguchi, Silver-silver chloride electrode and manufacturing method thereof.1982, Totoku Electric Co., Ltd.
    11. Zhang, X., et al., Pulse electroplating of copper film: A study of process and microstructure. Journal of Nanoscience and Nanotechnology,2008.8(5):p.2568-2574.
    12. Shih, C.C., et al., Mechanism of degradation of AgCl coating on biopotential sensors. Journal of Biomedical Materials Research Part A,2007.82(4):p.872-883.
    13. Marozas, V., et al., A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. Journal of Electrocardiology,2011.44(2): p.189-194.
    14. Huigen, E., A. Peper, and C.A. Grimbergen, Investigation into the origin of the noise of surface electrodes. Medical and Biological Engineering and Computing,2002.40(3):p. 332-338.
    15. Krasteva, V.T. and S.P. Papazov, Estimation of current density distribution under electrodes for external defibrillation. Biomedical Engineering Online,2002,1(1):p.7.
    16. Beckmann, L., et al., Characterization of textile electrodes and conductors using standardized measurement setups. Physiological Measurement,2010.31:p.233.
    17. Kang, T.H., et al., Nonwoven fabric active electrodes for biopotential measurement during normal daily activity. IEEE Transactions on Biomedical Engineering,2008.55(1):p.188-195.
    18. Scilingo, E.P., et al., Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Transactions on Information Technology in Biomedicine, 2005.9(3):p.345-352.
    19. Westbroek, P., et al., Quality control of textile electrodes by electrochemical impedance spectroscopy. Textile Research Journal,2006.76(2):p.152-159.
    20. Rattfalt, L., et al., Electrical characteristics of conductive yarns and textile electrodes for medical applications. Medical & Biological Engineering & Computing,2007.45(12):p. 1251-1257.
    21. Priniotakis, G., et al., Electrochemical impedance spectroscopy as an objective method for characterization of textile electrodes. Transactions of the Institute of Measurement and Control,2007.29(3-4):p.271-281.
    22. Song, H. Y., et al., Textile electrodes of jacquard woven fabrics for biosignal measurement. The Journal of the Textile Institute.101(8):p.758-770.
    23. Bouwstra, S., et al. Smart jacket design for neonatal monitoring with wearable sensors, in Sixth International Workshop on Wearable and Implantable Body Sensor Networks.2009: IEEE.
    24. Pola, T. and J. Vanhala. Textile electrodes in ECG measurement, in 3rd International Conference on International Conference on Intelligent Sensors, Sensor Networks and Information 2007.
    25. Catrysse, M., et al., Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A:Physical,2004.114(2):p.302-311.
    26. Noury, N., et al., VTAMN-A smart clothe for ambulatory remote monitoring of physiological parameters and activity, in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2004, IEEE. p.3266-3269.
    27. Muhlsteff, J., et al. Wearable approach for continuous ECG-and activity patient-monitoring. in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2004: IEEE.
    28. ANSI/AAMI EC12:2000. Disposable ECG electrodes:American National Standard Institute and Association for the Advancement of Medical Instrument.
    29. Zhang, H., et al., Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Textile research journal,2005.75(8):p. 598-606.
    1.宋晓霞 and 冯勋伟,服装压力与人体舒适性之关系纺织学报,2006.27(3):p.103-105.
    2. Denton, M., Fit, stretch and comfort. Textiles,1972.3:p.12-17.
    3.占辉 and 徐军,服装压力舒适性研究及应用北京纺织,2004.25(005):p.58-60.
    4.尹玲,张文斌,and夏蕾,服装压力舒适性的研究综述与剖析.纺织学报,2008.29(003):p.137-142.
    5. Nishimatsu, T., et al., Comfort pressure evaluation of men's socks using an elastic optical fiber. Textile Research Journal,1998.68(6):p.435.
    6. Jin, Z.M., et al., A Study on the Dynamic Pressure Comfort of Tight Seamless Sportswear. J Fiber Bioeng Inform,2008.1:p.217-224.
    7. Shu, L., et al., In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. Information Technology in Biomedicine, IEEE Transactions on,2010. 14(3):p.767-775.
    8.王佳,戴晓群,and刘国联,浅谈服装压力及其对人体的影响.国外丝绸,2007.22(5):p.20-22.
    9.金子敏,et al.,男式无缝上衣压力的分布规律及其舒适压范围.纺织学报,2010(010):p.104-109.
    1. Beckmann, L., et al., Characterization of textile electrodes and conductors using standardized measurement setups.2010, IOP Publishing.p.233.
    2. Vos, W.K., P. Bergveld, and E. Marani, Low frequency changes in skin surface potentials by skin compression:Experimental results and theories.2003, Informa UK Ltd UK. p.369-376.
    3. Huigen, E., A. Peper, and C.A. Grimbergen, Investigation into the origin of the noise of surface electrodes.2002, Springer, p.332-338.
    4. Odman, S. and P. Ake Oberg, Movement-induced potentials in surface electrodes.1982, Springer, p.159-166.
    1. Lonnblad, J., et al., Artefacts in continuous ECG recordings-Provoking and preventing manoeuvres. Scandinavian Cardiovascular Journal,2005.39(3):p.167-171.
    2. Talhouet, H. and J.G Webster, The origin of skin-stretch-caused motion artifacts under electrodes.1996, IOP Publishing.p.81.
    3. Webster, J.G., Reducing motion artifacts and interference in biopotential recording.1984, IEEE. p.823-826.
    4. Priniotakis, G., et al., Electrochemical impedance spectroscopy as an objective method for characterization of textile electrodes. Transactions of the Institute of Measurement and Control,2007.29(3-4):p.271-281.
    5. Antano-Lopez, R., M. Keddam, and H. Takenouti, A new experimental approach to the time-constants of electrochemical impedance: frequency response of the double layer capacitance.2001, Elsevier. p.3611-3617.
    6. Franks, W., et al., Impedance characterization and modeling of electrodes for biomedical applications. IEEE Transactions on Biomedical Engineering,2005.52(7):p.1295-1302.
    7. Westbroek, P., et al., Quality control of textile electrodes by electrochemical impedance spectroscopy. Textile Research Journal,2006.76(2):p.152-159.
    8. Beckmann, L., et al., Characterization of textile electrodes and conductors using standardized measurement setups. Physiological Measurement,2010.31:p.233.
    9. Geddes, L.A., Historical evolution of circuit models for the electrode-electrolyte interface. 1997, Springer, p.1-14.
    10. Helmholtz, H., Studien uber electrische Grenzschichten.1879, Wiley Online Library, p. 337-382.
    11. Warburg, E., Ueber das Verhalten sogenannter unpolarisharer Elektroden gegen Wechselstrom. Annalen der Physik und Chemie,1899.67:p.493-499.
    12. Fricke, H., The theory of electrolytic polarization.1932.14(90):p.310-318.
    13. Randles, J.E., Kinetics of rapid electrode reactions.1947. p.11-19.
    14. Sluyters-Rehbach, M. and J.H. Sluyters, Sine wave methods in the study of electrode processes. 1970, Marcel Dekker:New York. p.1-128.
    15. Onaral, B. and H.P. Schwan, Linear and nonlinear properties of platinum electrode polarisation. Part I:frequency dependence at very low frequencies.1982, Springer.p. 299-306.
    16. Barsoukov, E. and J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications.2005:John Wiley and Sons.
    17.张鉴清,曹.,电化学阻抗谱导论.2002:科学出版社.
    18. Shih, C.C., et al., Mechanism of degradation of AgCL coating on biopotential sensors.2007, Wiley Online Library, p.872-883.
    19. Kim, S., et al., Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensor shirt.2008, IEEE. p.256-259.
    20. Grimnes, S. and 脴.G Martinsen, Bioimpedance and bioelectricity basics.2008:Academic press.
    21. Priniotakis, G, et al., Electrochemical impedance spectroscopy as an objective method for characterization of textile electrodes. Transactions of the Institute of Measurement and Control,2007.29:p.271-281.
    22. ANSI/AAMI, ANSI/AAMI ECI2:2000, in Disposable ECG electrode.2000, Association for the Advancement of Medical Instrument:Arlington, US.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700