用户名: 密码: 验证码:
滑移装载机行走系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各国经济建设的发展,各类基础设施建设的不断扩大,极大促进了工程机械行业的发展,多功能小型工程机械作为工程机械的重要分支,发展前景尤为可观。滑移装载机作为多功能小型工程机械的佼佼者之一,越来越受到市场的青睐。然而,我国滑移装载机开发设计起步较晚,核心技术仍需从国外引进,极大地制约了滑移装载机产业化进程。
     行走系统作为滑移装载机的核心系统之一,其性能的优劣直接影响滑移装载机整体性能。随着内燃机技术,液压技术以及计算机控制技术的飞速发展,滑移装载机行走系统的技术水平发展迅速。然而,静压驱动的行走系统仍为整机系统的薄弱环节,相关理论尚不完善,缺乏系统整体性研究。为了提高滑移装载机整机性能,增强其市场竞争力,开展滑移装载机行走系统的研究具有重要的理论和实际意义。
     本文结合校企合作项目——“装载机液压系统及传动系统动态仿真分析及对比测试研究”和“装载机液压、传动系统动态优化仿真与实验研究”,以某型滑移装载机为载体,将发动机、液压驱动系统、车轮-地面负载作为一个整体,采用理论分析、动态仿真和实验研究的方法,对行走系统进行研究。建立了发动机-泵理论模型、静压传动系统数学模型,以及基于贝克地面力学理论的行驶、滑移转向轮胎-地面负载模型,并分别就系统匹配,系统重要参数对液压系统性能,车轮负载进行了定性分析。基于AMESim和Virtual Lab Motion两种仿真软件对系统重要组成元件性能参数、及整体系统开展动态仿真研究,为行走系统的动态优化设计提供了新方法。设计了滑移装载机行走系统性能测试方案,分别对直线行驶、滑移转向、联合铲装、系统性能进行实验测试,实验结果真实的反映了实验样机的性能,同时验证了前面相关理论研究、仿真分析的正确性。最后根据实验过程中发动机的熄火现象,研制了发动机转速反馈的功率控制系统,并通过仿真模型验证了该控制系统的正确性。本论文的研究成果对滑移装载机行走系统的动态仿真设计、优化分析、系统性能评估等具有一定的参考价值,具有重要的理论意义和实用价值。
     本论文主要研究内容如下:
     第1章,阐述了本文的研究目的及意义;概述了滑移装载机的国内外发展及应用现状;概述了滑移装载机行走系统发展现状及研究现状;确定了本文的主要研究内容。
     第2章,以某型滑移装载机为研究对象,详细分析了行走系统组成及其工作原理,从完整系统的角度,建立了滑移装载机行走系统(发动机、液压驱动系统、车轮-地面负载)的数学模型。并对发动机-变量泵的匹配关系、变量泵控制定量马达的系统性能、闭式液压系统控制特性、基于贝克理论的车轮-地面相互作用负载特性进行了分析研究,找出了影响系统性能的重要参数。
     第3章,介绍了滑移转向原理,并对滑移装载机行走系统进行相关假设,根据履带车轮滑移转向原理,提出了轮式滑移车辆的转向传动比和转向比概念,基于贝克地面力学理论,建立了滑移转向过程的运动学、动力学数学模型,定性的分析了转向过程中的两侧驱动马达转向力及转向功率的关系。仿真和实验结果表明:相对于直线行驶,转向阻力矩远大于滚动阻力矩,且随着转向半径的减小转向阻力系数增加。
     第4章,根据行走系统分析,利用AMESim软件和Virtual Lab Motion多体动力学软件分别建立了发动机模型、变量泵HCD半物理化模型、液压驱动系统模型、行走机构与地面的相互作用的三维动力学模型,并对发动机、变量泵等主要元件性能进行仿真分析,同时,根据行走系统工况的不同对整个行走系统进行了联合仿真研究。仿真结果表明:模型建立准确可信,通过合理匹配阀芯控制信号与阀口形状的组合,可以显著提高系统的性能。元件模型被模块化封装后,已被企业采纳并被成功运用于滑移装载机设计开发及故障分析。
     第5章,制定了滑移装载机行走系统性能测试方案,分别对直线行驶、滑移转向、联合铲装、系统性能进行实验测试分析,分析结果验证了相关理论推导及模型仿真的正确性;
     第6章,根据试验样车存在的发动机熄火现象,开发设计了滑移装载机发动机速度反馈的功率控制系统。仿真结果表明:该系统可以最大限度的利用发动机对应油门位置的功率,提高了功率利用率,同时可以有效的防止熄火现象发生。
     第7章,对本论文的研究工作和成果进行总结,并对下一阶段工作进行了展望。
Within quite a few years, the national economic construction and the expansion of allkinds of infrastructure construction have accelerated the development of Constructionmachinery industry. As a rather important branch of Construction machinery industry,Multi-function mini construction machinery seems to have an impressive prospect.Skid-steer Loader is becoming more popular as one of the best kind of Multi-function miniconstruction machinery. However, the development and design of Skid-steer Loader in Chinastarted quite lately, and the core technology is needed to introduce from abroad. These twofactors limit the industrialization process of Skid-steer Loader greatly.
     As one core system of the Skid-steer Loader, the performance of travel system candirectly affect its overall performance. The level of travel system develops rapidly with thepromotion of the internal combustion engine technology, hydraulic technology and computercontrol technology. But the hydrostatic drive travel system still be the weak links of thewhole system. In addition, the relative theory is not perfect, and there has no enoughsystematic and integrated research. In order to improve the overall performance of theSkid-steer Loader, enhance its Market competitiveness, t he research in Skid-steer Loaderstravel system has important theoretical and practical significance.
     Referring to the School-enterprise cooperation project “The dynamic simulationanalysis and coMParison test of the loader hydraulic system and drive system “and”Thedynamic optimization simulation and experimental study of the loader hydraulic drivesystem”, depending on a certain type of Skid-steer Loader, combining engine, hydraulicdrive system, the wheel-ground load as a whole, using the methods of theoretical analysis,dynamic simulation and experimental study, this essay takes research for the travel system.There are many qualitative analysis on wheel load and hydraulic system performance inrespect of the system matches and the important parameters of the system, depending on thedevelopment of Engine-pump theoretical model, hydrostatic transmission mathematicalmodel, and Baker ground-based mechanical theory of traveling, slip steering tire-ground load model. The dynamic simulation research of the functional parameters of the keycomponents and the system are based on the AMESim and Virtual Lab Motion, and attaineda new method for dynamic optimization design. The travel system performance testingprogram is designed for testing straight-line driving, skid steering, joint shovel loading andsystem performance respectively. Experimental results reflect the performance of theexperimental prototype and verify the correctness of previous theoretical research andsimulation analysis. Finally, according to the engine flameout phenomenon in theexperimental procedure, the engine speed feedback power control system is developed, andthe correctness of this system is verified through simulation models. This dissertation hascertain reference value for the dynamic simulation design, optimizing analysis and systemperformance evaluation of the travel system of Skid-steer Loader. It also has importanttheoretical significance and practical value.
     The research contents are mainly as follows:
     Chapter1. This chapter is mainly about the purpose and significance of this paper; Itoverviews the domestic and overseas development and application status of Skid-steerLoader; it summarizes the development and research status of Skid-steer Loader travelsystem; the main contents of this paper is determined in this chapter.
     Chapter2. In this chapter, a detailed analysis of the composition and the operatingprinciple of the travel system is done according to a certain type of Skid-steer Loader. Themathematical models of Skid-steer Loader travel system (engine, hydraulic drive system,wheel-ground loader)are established from the point of view of the complete system.Moreover, in this chapter, the matching relationships of engine-variable displacement pump,the system performance of variable pump control quantitative motor, the control features ofthe close hydraulic system and wheel-ground interaction load characteristics based onBaker`s theory are analyzed and researched. Important parameters which affect the systemperformance are found here.
     Chapter3. It introduces the principle of skid steering and puts forward assumptions ofSkid-steer Loader travel system. Besides, according to the principle of skid steering, it raises the concept of transmission ratio and steering ratio of wheel slip vehicles, carrys out thequalitative analysis of the relationship between the steering force and steering power of twosides by establishing kinematics, dynamics mathematical models in the skid-steering process.All this is based on Baker ground-based mechanics theory. The simulation and experimentalresults show: relative to the straight-ahead driving, steering resistance moment is muchlarger than the rolling resistance torque and steering drag coefficient increases withdecreasing turning radius.
     Chapter4. In this chapter, according to the analysis of travel system, engine model,Half a physical change HCD model of variable displacement pump, Hydraulic drive systemmodel, Three dimensional dynamic model of wheel-ground interaction are built by usingAMESim Software and Virtual Lab Motion Multibody Dynamics Software. Then, simulationanalysis of engine and variable pump are carried out, as well as the joint simulation of thewhole travel system according to various travel system working conditions. Simulationresults show that: the model is built accurately and credibly, and the performance of thesystem is promoted greatly through matching spool control signal with the shape of the valveport combination reasonably. Component models are received and used in Skid-steer Loaderdesign and failure analysis after being packed modularly.
     Chapter5. In this chapter, Skid-steer Loader travel system performance testingprograms are developed. Depending on this, experimental test The experiment test andanalysis on straight-line driving, skid steering, joint shovel loading and system performanceare done. The analysis results verify the correctness of the theoretical model simulation.
     Chapter6. In this chapter, according to the engine flameout phenomenon of the testsample car, the speed feedback power control system of the Skid-steer Loader engine isdeveloped and designed. Simulation results show that: the system can maximize the use ofthe engine power corresponding to the throttle position, improve the power efficiency, andcan effectively prevent flameout occurring.
     Chapter7. The work and achievements of this thesis are summarized, and prospect thenext phase of work.
引文
[1]汪矿.国际市场呈现“两极化”格局,国内小型工程机械崛起指日可待[N].中国工业报,2005-01-10
    [2]孙小鹤.中国小型工程机械市场分析[J].工程机械与维修,2005(19):72~74
    [3]姚怀新.行走机械液压传动与控制[M].北京:人民交通出版社,2002
    [4]滑移装载机[EB/OL].(2010-09-13).http://baike.baidu.com/view/1506927.html
    [5]刘伟.滑移转向装载机的应用与发展[J].建筑机械化,2011(9):20~23
    [6]卯红连,蔡海霄.百变金刚—滑移转向装载机的诞生及发展[J].机械广场,2006(8):28~32
    [7]滑移装载机在中国的应用[EB/OL].(2009-4-9):http://bbs.cehome.com/forum.php?mod=viewthread&tid=2014
    [8]姚雪.我国首台微型滑移装载机在江苏柳工诞生[N].中国工业报,2008-11-6(B01)
    [9]刘庆东.浅谈滑移装载机[J].工程机械,1999(10):32~34
    [10]英格索兰小型设备部.如何选择合适的滑移转向装载机[J].今日工程机械,2005(4):68~69
    [11]徐霖,于今,吕伟华等.液压动力控制系统[M].重庆:重庆大学出版社.1996(3)
    [12]刘长年,袁子荣.液压控制系统导论[M].北京:北京科学技术出版社.1987(12)
    [13]王意.行走机械液压驱动技术发展大观[J].液压气动与密封,2000(2):19~28
    [14]王意.行走机械的液压复合传动技术[J].液压气动与密封,2004(1):18~22
    [15]夏海南,葛建人,陈明宏.液压机械传动在工程机械上的应用[J].工程机械,2000(3):17~19
    [16]胡昌云.滑移装载机液压系统分析与设计[D].上海交通大学硕士学位论文.2011(4)
    [17]英格索兰小型设备部.小型滑移转向装载机及其变形机种简介[J].今日工程机械,2004(10):66~68
    [18]彭天好,杨华勇,傅新.工程机械中的泵与发动机匹配[J].工程机械,2001(8):37~39
    [19]罗艳蕾.工程机械中静压传动系统形式及调节原理[J].有色金属,2003(1):36~38
    [20] Rexroth. The Drive&Control CoMPany Technical Information[S].2007
    [21] Sauer. Products and Systems Technical Information[S].2010
    [22]林宇.卡特彼勒246C型滑移转向装载机[J].今日工程机械,2008(06):95
    [23] Scott Schuh, Fort Ransom. Electro hydraulic load sense on a power machine[P]. US patentNo.0070071A1,2006(6):13
    [24] Mike Osenga.四种新的Caterpillar铁路柴油机[J].国外内燃机车,2008(3):17~18
    [25]赵军,农业机械静压传动装置的研究与应用[J].农机化研究,2000(4):99-101
    [26] Tsutomu Hayashi, Mitsuru Saito, Yoshihiro Yoshida. Advanced Hydro-Mechanical Transmissionwith High-Durability for Small Utility Vehicles[J]. Society of Automotive Engineers,2001(1):109-114
    [27] Manami Ochiai. Recent trend of hydraulic system in excavator[C]. In:SAMOTER96COVEGNOMEETING.Verona,Italy,1996
    [28] Piyoros Jirawattana. Design, simulation, fabrication and testing of a low-speed high-torque (LSHT)pump/motor for a hydrostatic vehicle[M].USA: University of Wisconsin-Madison,2000
    [29] Flippo Daniel; Heller Richard; Miller David P. Turning Efficiency Prediction for Skid Steer RobotsUsing Single Wheel Testing[C].7th International Conference on Field and Service Robotics,2009(7):479~488
    [30] Wang Q F, Gu L Y, Lu Y X. Research on digital control of meter-in and meter-out independentregulating for high inertia load. In: Proceedings of the FPST Division,The AEME InternationalMechanical Engineering Congress,Nashville,Tennessee,USA,1999:109-114
    [31]刘述学.工程机械地面力学[M].北京:机械工业出版社,1992
    [32]杨士敏,傅香如.工程机械地面力学与作业理论[M].北京:人民交通出版社,2010
    [33] R.Bernstein. Problems of the Experimental Mechanics of Motor Ploughs[M]. Der Motorwagen,V0l.16,1913
    [34] W.F.Mickleth-waite. Soil Mechanics in Relation to Fighting Vehicles[M]. Military Coll. of Science,Chobham Lane, Chertsey,1944
    [35] M.G.Bekker.地面-车辆系统导论[M].《地面-车辆系统导论》翻译组译,北京:机械工业出版社,1978
    [36] Z.Janosi. Analytical Determination of Drawbar Pull as a function of Slip for Tracked Vehicle inDeformable Soils[M]. Proc.1st Int. Conf. of ISTVS, Torino,1961
    [37] Reece A R. problems of Soil-Vehicle Mechanics[M]. U.S. Army L.L.L.,ATAC,No.8479,Warren,Mich.,1964
    [38] Wong J Y. Theory of Ground Vehicle[M]. John Wiley,1978
    [39]田中孝(日).农业拖拉机[M].长春:吉林工业大学讲义,1980
    [40]陈秉聪.土壤-车辆系统力学[M].北京:中国农业机械出版社,1981
    [41] Bruce Maclaurin. A skid steering model using the Magic Formula[J]. Journal of Terramechanics,2011:247~263
    [42] B. Janarthanan, C. Padmanabhan, C. Sujatha. Lateral dynamics of single unit skid-steered trackedvehicle[J]. International Journal of Automotive Technology,2011:865~875
    [43] J.C. Fauroux, P. Vaslin. Improving skid-steering on a6x6all-terrain vehicle: A preliminaryexperimental study[J]. Journal of Field Robotics,2010:107~126
    [44]权元俊,赵越.滑移转向四轮驱动装载机转向阻力矩的研究[J].机械设计与制造,1998(6):48-49
    [45]郁录平,张志友.滑移转向装载机的转向原理分析[J].工程机械,2001(6):24-26
    [46]罗艳蕾,何清华.滑移式装载机静压传动系统原理及特性分析.建筑机械,2001(06):64-67
    [47]胡昌云,王旭永,朱武强.滑移式装载机行走转向液压系统的匹配计算[J].内江科技,2011(1):21~22
    [48]李帅.泵控马达闭式回路调速控制系统特性研究[D].浙江大学硕士学位论文.2010(1)
    [49]姚怀新,陈波.工程机械底盘理论[M].北京:人民交通出版社,2002
    [50]孙业保主编.车用内燃机[M].北京:北京理工大学出版社,1997(10)
    [51]姚怀新.工程机械发动机理论与性能[M].北京:人民交通出版社,2002
    [52]柳波,黄杰,陆江斌,王浩.滑移装载机自动铲掘轨迹控制研究[J].武汉理工大学学报,2010(12):107~110
    [53]徐元昌.流体传动与控制[M].上海:同济大学出版社,1998(3)
    [54]王春行.液压伺服控制系统[M].北京:机械工业出版社,1987(2)
    [55]资新运,郭锋,王琛,邓成林.电液比例变量泵控定量马达调速特性研究[J].工程机械,2007(7):45~48
    [56] I.T.Hong, E.C.Fitch. Hydraulic System Modeling and Simulation-Compendiums and Prospects[C].Proceeding of the fourth International Symposium on Fluid Power Transmission and Control (ISFP2003):30~137
    [57] M.G.Bekker.陆用车辆行驶原理[M].孙凯南译.北京:机械工业出版社,1964
    [58] MACLAURI B. A skid steering model with tracked pad flexibility[J]. Journal of Terramechanics,2007(44):95-110.
    [59] W.Merhof, E.M.Hackbarth.履带车辆行驶力学[M].韩雪海,刘侃,周玉珑译.北京:国防工业出版社,1989
    [60]王殿龙,周君,徐金帅.简化地面条件下履带起重机原地转向研究[J].中国工程机械学报,2009,7(4):407-411
    [61]周文雄,陈慕忱.叉车转向轮转向阻力矩的测试与分析[J].起重运输机械,1988(8):14-20
    [62] Ying Sun, Ping He, Yunqing Zhang, Liping Chen. Modeling and Co-simulation of Hydraulic PowerSteering System[C].2011Third International Conference on Measuring Technology and MechatronicsAutomation.2011IEEE:595-600.
    [63]戚烈.车辆四轮驱动系统研究及仿真分析[D].西北农林科技大学,2011
    [64] IMAGINE SA: Hydraulic Component Design Library version8.0A [S]. June2008.
    [65] IMAGINE SA: AMESim version8.0A [S]. June2008
    [66] Chen Jinshi,Liu Xinhui,Zhang Cui,Dong Quan,Zhao Feng.Dynamic simulation and experimentalstudy of slewing system on80T crane[J]. Source: Proceedings-International Conference on Electricaland Control Engineering, Shanghai, China, ICECE2010, p2332-2335.
    [67] LMS IMAGINE S.A.: Virtual.Lab Motion Rev8B[S]. December2008
    [68] LMS IMAGINE S.A.:LMS Imagine.Lab AMESim&Virtual.Lab Motion Coupling[R]. MasterClass for Institute15, July,2009
    [69]石银明.利用混合仿真技术提高研发的速度和精度[R].杭州: LMS Hybrid simulation final,2009
    [70]程磊.基于LMS1D&3D CAE产品的重工行业机电一体化仿真解决方案[R].杭州:LMS UserConference Off-Highway Heavy Industry Solution for Customer,2009
    [71]谢峰.并联式液压混合动力车辆的动力匹配性研究[D].吉林大学硕士学位论文,2012
    [72]元万荣.滑移装载机闭式行走系统研究[D].吉林大学硕士学位论文,2012
    [73]陈晋市,刘昕晖,王同建,赵璐,张举.平衡阀对起重机起升系统抖动现象影响因素的研究[J].中国工程机械学报,2010,8(1):38-42
    [74] A.GALLREIN, M.BACKCER. CDTire: a tire model for comfort and durability applications[J].Vehicle System Dynamics Vol.45, Supplement,2007:69-77.
    [75]郭孔辉,金凌鸽,卢荡.统一轮胎模型在车辆动力学仿真中的应用[J].吉林大学学报(工学版),2009,39(S2):241-245
    [76] Shohei Ryu, Masami Ochiai, Katsumi Ueno, et al. Analysis of flow force in valve with notches onspool[J]: In Proceedings of the6th International Conference on Fluid Power Transmission and Control,2005:435~438.
    [77]冀宏,王东升,丁大力,谭正生,刘小平.非全周开口滑阀的阀口面积计算方法[J].兰州理工大学学报,2008,34(3):48~51.
    [78]冀宏,王东升,刘小平,傅新.滑阀节流槽阀口的流量控制特性[J].农业机械学报,2009(1):198~202
    [79]冀宏,张继环,王东升,张玮,刘小平.滑阀矩形节流槽阀口的流量系数[J].第六届全国流体传动与控制学术会议.2005:74~77
    [80]周会,邓斌,刘恒龙.液压组合阀口过流面积计算及特性分析[J].机械研究与应用.2008(11):80-85
    [81]周会.液压滑阀阀口的特性研究[D].西南交通大学2009
    [82]那成烈.三角槽节流口面积的计算[J].甘肃工业大学学报.1993(6):45~48
    [83]杜钧,赵堂春.节流阀阀口结构与功能辨析[J].液压与气动.2010年第2期:52-54
    [84] JI Hong, FU Xin, YANG Huayong. Analysis and Calculation on Typical Shape Orifice areas inHydraulic Valves[J]. Machine Tool and Hydraulics.2003(5):14-16
    [85]冀宏.液压阀芯节流槽气穴噪声特性的研究[D].浙江大学,2004
    [86] AMIRANTER, VESCOVOG, LIPPOLISA. Evalution of the flow force on an open centredirectional control valve by means of a computational fluid dynamic analysis[J]. Energy Conversion andManagement.2006,47:1748-1760.
    [87]闻德生,李永安,张月忠,孙江波,杜利斌.锥形阀口滑阀的特性研究及流场数值模拟[J].机床与液压,2010(11):49~51
    [88]吴晓明,要继业,李伟,翟瑞超,赵燕. U+K节流槽滑阀的数值模拟[J].流体传动与控制.2010(9):13~15
    [89]雷天觉.新编液压工程手册[M].北京:机械工业出版社,2005.
    [90]盛敬超.液压流体力学[M].北京:机械工业出版社,1980.
    [91]郭勇,陈勇,何清华,罗伟.小型液压挖掘机节流系统主阀芯节流口计算[J].液压液力.2006(9):80-83
    [92]张海平.测试是液压的灵魂[J].液压气动与密封,2010(6):1~5
    [93]尚涛.液压挖掘机作业及行走系统节能控制研究[D].吉林大学博士学位论文.2005(4)
    [94]郑娟.自主式摊铺机行走系统运动建模与控制的研究[D].中南林业科技大学,2009
    [95]李侃,赵静一.重型平板车液压系统与发动机功率匹配研究[J].中国机械工程,2009,20(6):745-749
    [96]力士乐A4VG变量泵服务手册[DB/OL]. http://www.boschrexroth.com/
    [97]姚晓频. A4V泵的DA变量调节系统[J].液压与液力,1998(12):24~25
    [98]梁贵萍,何晓晖.带DA阀的A4V液压泵的控制原理分析与应用[J].机械设计与制造,2010(12):105~107
    [99]资新运,郭锋,王琛,邓成林.电液比例变量泵控定量马达调速特性研究[J].工程机械,2007(7):45~48
    [100]I.T.Hong, E.C.Fitch. Hydraulic System Modeling and Simulation-Compendiums and Prospects[C].Proceeding of the fourth International Symposium on Fluid Power Transmission and Control (ISFP2003):30~137
    [101]王智勇.900吨运梁车新型电液控制系统研究与工程实践[D].秦皇岛:燕山大学,2007.
    [102]姜友山,邹广德,徐刚,姚友良.全液压推土机发动机与液压泵匹配研究[J].建筑机械化,2009(12):49-52
    [103]莫波,雷明,曹泛.恒功率恒压泵变量机构的调节原理[J].液压与气动,2002(6):5-6
    [104]范斌.滑移装载机行走闭式液压系统研究[D].吉林大学硕士学位论文.2011(5)
    [105]赵静一,王智勇,覃艳明,王金祥. TLC900型运梁车液压驱动系统与发动机功率匹配研究[J].中国机械工程,2007,18(7):878-881
    [106]张久林.工程机械液压行走系统的设计及理论研究[D].同济大学硕士学位论文,2007
    [107]鲁峣.液压机械无级传动系统及控制仿真研究[D].吉林大学硕士学位论文,2008
    [108]沈海阔.基于能量调节的电液变转速控制系统研究[D].浙江大学博士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700