用户名: 密码: 验证码:
柴油机进气系统集成设计若干基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的爆炸性发展和环境恶化,“节能减排”已经成为国家“十二五规划”中一项基本国策。对于传统发动机来说,提升燃烧性能是减少各项损耗、回收废弃能量的关键技术,相对于汽油机,柴油机是节能产品。而进气系统是影响柴油机经济性、动力性与排放性能的主要因素。近年来进气系统仍然是研究的热点,但是基于历史和供求关系等原因始终存在一个普遍的问题,即针对进气系统的研究往往是单独和零散的,没有从系统级角度进行整体开发、匹配研究和集成设计,可以认为,目前进气系统的开发设计流程仍不完善。
     作为一种探索性的研究,本文以某型号柴油机作为研究对象,遵循系统级分析的原则,对其进气系统的流动性能、匹配特性以及对整机性能的影响,进行了试验测试与仿真分析。本文主要的研究内容有以下几个方面:
     柴油机进气管理试验平台开发搭建了进气系统综合流动性能检测试验平台,可以实现相关零部件单独性能检测和系统流动性能校核,以此作为进气系统匹配试验和基础数据库建立的基础。
     柴油机进气系统评价方法研究对目前进气系统的性能评价方法进行了对比和分析,研究了目前主流的三种定压差评价方法彼此之间的区别、联系和局限性,在此基础上通过相似原理和能量守恒定律,推导出了通用的评价方法,为后续的进气系统分析提供了评价标准。
     柴油机进气系统试验研究通过对试验系统的标定试验,确定了合理的试验方法,在此基础上对研究对象进行了流动性能试验与结果分析,以期探索进气系统的匹配流动特性以及各零部件对系统流动性能的影响。
     柴油机进气系统仿真分析建立进气系统性能仿真分析平台,力图从系统级角度解释试验现象产生的原因,通过将仿真结果与系统流动性能试验结果及缸内流场可视化试验结果的对比分析,验证了采用仿真分析方法预测进气系统性能的可行性。
     柴油机进气系统对整机效能影响的分析通过与整机性能试验结果的标定,验证了建立的一维整机数值仿真模型的准确性,在此基础上利用数值仿真的方法,探索分析了进气系统性能与整机性能之间联系,有助于建立完整的进气系统设计流程,并基于系统系统设计思想,确定了关键零部件的设计参数的取值方法。
     通过上述研究工作,本文取得了以下主要结论:
     (1)由于压强系数对涡压数的减弱效果,涡压数无法全面衡量进气系统流动性能,采用涡压数和涡流比可以作为通用的进气系统评价参数,为消除独立变量气门升程影响,应采用加权平均的方法;
     (2)涡压数明显受进气零部件的流阻特性影响,涡流比和涡压数的变化步调一致,进气系统的流通特性主要受到进气歧管编号的影响;
     (3)采用S型传递激励函数与RPROP反向误差传递算法的MLP神经网络方法可以预测进气系统的性能,提高进气系统分析效率,平均绝对误差小于3%;
     (4)选用合适的多孔介质参数,仿真计算结果与试验误差小于5%,进气系统仿真分析在小气门升程下偏差较大,随气门升程增加偏差较小,采用加权平均方法计算结果与试验结果偏差小于5%,是否加装气缸盖对进气均匀性结果影响不大,进气均匀性为2.74%;
     (5)采用合适的参数建立一维数值仿真模型分析整机性能,与试验结果相比,在各工况下计算得到的功率、扭矩等性能参数误差均小于5%;
     (6)采用基于零维燃烧模型的一维整机数值模拟方法时,无法校核涡流比变化对整机性能影响,而可以用进气涡压数反映流动损失对整机性能影响很大,对优化设计和系统集成设计十分重要。
     (7)采用系统集成设计的方法分析结果表明,星形空气滤清器的滤纸夹角应处于3-4。;
     本文采用试验测试结合数值仿真分析的方法,研究了一款柴油机的进气系统的流通性能,探讨了进气系统性能评价方法,搭建了进气系统、整机模型的仿真模型及试验平台,为进气系统集成设计和匹配优化奠定了坚实的基础,并提供了一定方向性的指导。
With the explosive development of Automobile and the deterioration of the environment, energy saving and emission reduction has become a basic policy of1025planning. As for the traditional internal combustion engine (ICE), the key technology to explore its energy saving potential is to improve its combustibility. Especially, diesel engine faces great challenge due to its feature of compression ignition. The realization of combustion optimization requires the cooperation of fuel injection, valve mechanism and other systems, and none of them could work without the inlet system. The inlet system is the main factor to the economic and dynamic properties of diesel engine, as well as its emission characteristic. Recently the inlet system is a hot spot in research, however, there is a common problem that the research on inlet system happened to be independent and scattered, and there are no ensemble development, matching research and collaborative design based on the whole system. Therefore, it could regard that the design cycle of inlet system is still far from perfection.
     As an exploratory research, one diesel engine was taken as the research object in the dissertation. According to the principle of systematic analysis, numerical research together with experimental examination were completed on the flow characteristic, matching properties and the effects on engine performance. The main contents are as follows:
     The development of diesel engine inlet system test platform. The test platform of comprehensive flow characteristic of inlet system was established. Though the application of the platform,the independent performance test of inlet components, as well as matching examination could be realized with the platform. The test was regarded as the foundation of systematic research and data-accumulation.
     The research on inlet system evaluation methodology. The evaluation methods on inlet system performance is compared and analyzed, and the main three constant pressure differential methods were researched to reveal their difference, communication and limitation. Then the common evaluation method was raised upon it according to the principle of similitude and the energy conservation law, providing the standard for the following research.
     The experiment research on diesel engine inlet system. The reasonable experiment method was settled through the calibration. The test and result analyze of flow characteristic was completed on the research object, so that the systematic matching and the effects on components performance could be revealed.
     The simulation on diesel engine inlet system. The simulation platform of inlet system was set up to explain the phenomena in the experiment on a systematic level. By the flow test and cylinder visiable result comparison, the feasibility of simulation to predict the inlet system performance is examined.
     The analysis of the effect of inlet system on engine performance. On the base of1-D simulation model, the relation between the performance of inlet system and that of engine was explored. Then the complete inlet system design cycle was set up and the range of design parameters was settled following the principle of the collaborative design.
     By researches mentioned above, the following conclusions were achieved:
     Ⅰ. Since the swirl pressure number could be weakened by the pressure coefficient, the swirl pressure number and swirl rate could be used as the ordinary evaluation parameters of inlet system to achieve the overall measurement. In order to eliminate the effect of independent variable, the weighted average should be taken.
     Ⅱ. The flow resistance of inlet components has main effect on swirl pressure number. The change of swirl rate agreed with that of swirl pressure number. The flow characteristic of inlet system was mainly affected by the exit position of inlet manifold.
     Ⅲ. The performance of inlet system could be predicted by S transfer excitation function and MLP neural network of RPROP reverse error transfer, so that the analyze efficiency of inlet system could be improved and the mean absolute error was below3%.
     Ⅳ. The error between simulation and experiment was less than5%when choosing the right of porous media parameters. The deviation between simulation and the test result decreased along with the increase of the valve lift and could be limited below5%using the weighted average method. The uniformity of inlet system was2.74%, and it has no influence on the uniformity with or without the cylinder head.
     V. The engine performance could be examined through1-D simulation and error of the parameters such as power and torque could be below5%comparing with test results.
     VI. Within1-D simulation, the swirl rate could only reflect the flow pattern and the character of the engine, while the swirl pressure number could reflect the pressure loss and the change of the engine.
     VII. The adjacent angle presented the structure of the filter element should be between three degree to four degree following the principle of the collaborative design.
     The method combined with experiment and simulation was adopted within the dissertation to analyze the flow characteristic of the inlet system. The evaluation methodology was studied, and the simulation model and test platform of inlet system and engine were built up to provide a firm base and an oriental guide for the collaborative design and matching optimization of inlet system.
引文
[1]铃木孝.发动机的浪漫[M].北京:北京理工大学出版社.1996.
    [2]http://auto.qq.com/
    [3]http://overseas.kiiik.com
    [4]http://www.chinadaily.com.cn/
    [5]http://news.stockstar.com/
    [6]http://www.stats.gov.cn/
    [7]http://www.miit.gov.cn/
    [8]崔民选.能源蓝皮书-中国能源发展报告(2009)[M].北京:社会科学文献出版社.2009.
    [9]http://www.bp.com/
    [10]刘立国,程继夏.汽车保有量与国民经济GDP及相关产业关系[J].长安大学学报(社会科学版)2005,Vo1.7(3):35-38
    [11]蒋德明.内燃机燃烧与排放[M].西安:西安交通大学出版社,2001
    [12]韩玉敏.汽车排放控制系统[M].北京:化学工业出版社,2005
    [13]陈平录.气动燃油混合动力车混合效能分析及其电控气动发动机的研究[D].浙江大学博士论文,2010.
    [14]大井宽等.满足日本新长期排放法规的大型卡车用柴油机[J].国外内燃机,2010(1):10-14
    [15]Timothy V. Johnson. Diesel Emission Control in Review[C]. SAE Paper 2008-01-0069
    [16]胡军强.气动-柴油混合动力发动机工作过程研究[D].浙江大学博士论文,2009,6.
    [17]Akihiro Taniguehi, Noriyuki Fujioka, Munehisa Ikoma. Development of nickel/metal-hydride batteries for EVs and HEVs [J]. Journal of Power Sources,2001, 100(1-2):117-124.
    [18]John T. Kubesh. Development of a Throttleless Natural Gas Engine[C]. SAE Paper 2001-01-2522.
    [19]C.Grimaldi and L.Postrioti. Experimental Comparison Between Conventional and Bio-derived Fuels Sprays from a Common Rail Injection System[C]. SAE Paper 2000-01-1252
    [20]Ji M. B, Wei Z. D. A novel anode for preventing liquid sealing effect in DMFC[J]. International Journal of Hydrogen Energy,2009,34(6):2765-277'0.
    [21]Chan H L. A New Battery Model for use with Battery Energy Storage and Electric Vehicles, Power systems [J]. IEEE(c),2000(1):470-475.
    [22]Chu Liang, Ming Shaomin, Zhang Yongsheng. Development and validation of new control strategy of hybrid power train with ISG for family sedan[C] SAE Paper 2006-01-3291.
    [23]Knowlen C, Mattick A T, Bruckner A P, et al. High efficiency energy conversion systems for liquid nitrogen automobiles[C]. SAE Paper,981898.
    [24]C A Ordonez. Liquid nitrogen fueled, closed brayton cycle cryogenic heat engine. Energy Conversion and Management[J].2000,41(1):331-341.
    [25]YU Xiaoli, YUAN Guangjie, SU Shichuan, et al. Theoretical study on the ideal open cycle of the liquid nitrogen engine [J]. Journal of Zhejiang University SCIENCE A. 2002,8(3):258-262.
    [26]聂相虹.气动/燃油混合动力能量回收利用研究[D].浙江大学博士论文,2010.
    [27]Shimazaki N, Tsurushima T, Nishimura T. Dual mode combustion concept with premixed diesel combustion by direct injection near top dead center[C]. SAE Paper 2003-01-0742
    [28]Okude K, Mori K, Shiino S. Premixed compression ignition (PCI)combustion for simultaneous reduction of NOx and soot in diesel engine[C]. SAE Paper 2004-01-1907
    [29]Minato A, Tanaka T, Nishimura N. Investigation of premixed lean diesel combustion with ultra high pressure injection[C]. SAE Paper 2005-01-0914
    [30]Ryo Hasegawa, Hiromichi Yanagihara. HCCI Combustion in DI Diesel Engine[C].SAE Paper 2003-01-0745.
    [31]Najt P, Foster D E. Compression ignited homogeneous charge combustion[C].SAE Paper 830264
    [32]Takeda Y, Nakagome K, Niimura K. Emission characteristic of premixed lean diesel combustion with extremely early staged fuel injection. SAE Paper 961163
    [33]Dec J E, Sjoeberg M.A parametric study of HCCI combustion--the sources of emissions at low loads and the effects of GDI fuel injection[C].SAE Paper 2003-01-0752
    [34]Kyle Collair,Gareth Floweday. Understanding HCCI Characteristics in Mini HCCI Engines[C].SAE Paper 2008-01-1662
    [35]Aceves S M, Flowers D L, Martinez-Frias J.HCCI combustion:analysis and experiments[C].SAE Paper 2001-01-2077
    [36]Daisuke Kawano,Hisakazu Suzuki,Yutaka Murata.Ignition and Combustion Control of Diesel HCCI[C]. SAE Paper 2005-01-2132
    [37]Magnus Lewander,Nebojsa Milovanovic,Par Bergstrand.Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine[C]. SAE Paper 2008-01-1658
    [38]Ogawa H, Noboru M, Shimizu H, et al. Characteristics of diesel combustion in low oxygen mixtures with ultra—high EGR[C]. SAE Paper 2006-01-1147
    [39]Kanda T, Hakozake T, Uchimoto T. Ultra clean combustion technology combining a low temperature and premixed combustion concept for meeting future emission standards [C]. SAE Paper 2005-01-0378.
    [40]Gerardo Valentino, Stefano Iannuzzi,Felice E. Corcione. Effects of Low Temperature Premixed Combustion (LTPC) on Emissions of a Modern Diesel Engine for Passenger Cars[C].SAE Paper 2010-01-0333.
    [41]Tomohiro Kanda, Takazo Hakozaki, Hiroshi Sono.PCCI Operation with Early Injection of Conventional Diesel Fuel[C]. SAE Paper 2005-01-0378.
    [42]Mamoru Oki, Shuichi Matsumoto.180MPa piezo common rail system[C]. SAE Paper 2006-01-0274.
    [43]Cheolwoong Park, Sanghoon Kook. Effects of multiple injections in a HSDI diesel engine equipped with common rail injection system[C]. SAE Paper 2004-01-0127
    [44]Par Bergstrand. The Effects of Orifice Shape on Diesel Combustion[C]. SAE Paper 2004-01-2920.
    [45]Sehmid M,Leipertz A, Fettes C. Influence of nozzle hole geometry, rail pressure and pre-injection on injection, vaporisation and combustion in a single-cylinder transparent passenger car common rail engine[C].SAE Paper 2002-01-2665.
    [46]Bergstrand P,Denbratt I,Diesel combustion with reduced nozzle orifice diameter[C].SAE Paper 2001-01-2010.
    [47]Tobias Husberg,Vittorio Manente,Sven Andersson. Fuel Flow Impingement Measurements on Multi-Orifice Diesel Nozzles[C]. SAE Paper 2006-01-1552.
    [48]Carl Wilhelmsson,Bengt Johansson.Operation strategy of a Dual Fuel HCCI Engine with VGT[C].SAE Paper 2007-01-1855
    [49]Hailei Zhang,Weilin Zhuge,Yangjun Zhang,Lifeng Hu.Study of the Control Strategy of the Plateau Self-adapted Turbocharging System for Diesel Engine [C]. SAE Paper 2008-01-1636
    [50]Claudia Sauer, Tom Durbin, Gervase Mackay. Measurement of Low Concentration NH3 in Diesel Exhaust using Tunable Diode Laser Adsorption Spectroscopy (TDLAS)[C]. SAE Paper 2009-01-1519
    [51]Prasad Sajjan Divekar, Beshah Ayalew, Robert Prucka. Coordinated Electric Supercharging and Turbo-Generation for a Diesel Engine[C]. SAE Paper 2010-01-1228
    [52]J.Gieshoff, M.Pfeifer et al. Advanced urea SCR calalysts for automotive applications[C]. SAE Paper 2001-01-0514
    [53]Ingo Mikulic,Reggie Zhan,Scott Eakle.Dependence of Fuel Consumption on Engine Backpressure Generated by a DPF [C]. SAE Paper 2010-01-0535.
    [54]Alexander Kozlov, Thomas Harris, Colton Salyards. Engine Test for DOC Quenching in DOC-DPF System for Non-Road Applications[C].SAE paper 2010-01-0815
    [55]Johan Wahlstrom, Lars Eriksson. Nonlinear Input Transformation for EGR and VGT Control in Diesel Engines[C]. SAE Paper 2010-01-2203.
    [56]Johan Wahlstrom, Lars Eriksson,Lars Nielsen. Controller Tuning based on Transient Selection and Optimization for a Diesel Engine with EGR and VGT[C].SAE Paper 2008-01-0985.
    [57]Fujita T,Onogawa K, Kiga S. Development of innovative variable event and lift(VVEL)system[c].SAE Paper 2008-01-0349
    [58]Yutaka Murata, Daisuke Kawano, Yuichi Goto.Miller-PCCI Combustion in an HSDI Diesel Engine with VVT[C]. SAE Paper 2008-01-0644
    [59]Chihaya Sugimoto,Hisao Sakai,Hidetaka Ozawa. Study on Variable Valve Timing System Using Electromagnetic Mechanism[C]. SAE Paper 2004-01-1869.
    [60]Fitsos P, Harralson J. Valve Timing by Means of a Rotary Actuator[C]. SAE Paper 1999-01-0330.
    [61]Watson J P, Wakeman R J. Simulation of a pneumatic valve actuation system for internal combustion engine[J]. SAE Paper,2005-01-0771.
    [62]大圣泰弘.未来柴油机技术的展望[J].国外内燃机,2007(1):1-6.
    [63]AoyagiY Yokota H Sugihara H Suzuki. Development of a Higher Doost Turbocharged Diesel Engine for Better Fuel Economy in Heavy Vehicles[C]. SAE Paper 830379.
    [64]Ederson Claudio Andreatta,Ricardo Sassake. Inlet Ports Development:Euro IV Diesel Engine Cylinder Head[C].SAE Paper 2008-36-0331.
    [65]W.J.D.安南德.内燃机中的气体流动[M].北京:中国农业机械出版社,1981
    [66]陈家瑞.汽车构造(第2版)[M].北京:机械工业出版社,2008
    [67]Endres H,Neuper H J,Wurms R.Influence of Swirl and Tumble on Economy and Emissions of Multi Valve S.I.Engines. SAE Paper 920516
    [68]Philipp Adomeit, Dieter Seebach, Dean Tomazic. Operation Strategies for Controlled Auto Ignition Gasoline Engines[C].SAE Paper 2009-01-0300.
    [69]Deschamps B. Effect of Flow and Gasoline Stratification on Combustion in a 4-Valve S.I.Engine.SAE Paper 941993.
    [70]Kudou H. A Study about In-Cylinder Flow and Combustion in a 4-Valve S.I.Engine. SAE Paper 920574.
    [71]周龙保.内燃机学(第2版)[M].北京:机械工业出版社,2007.
    [72]杨连生.内燃机设计[M].北京:中国农业机械出版社.1980.
    [73]顾宏中MIXPC涡轮增压系统研究与优化设计[M].上海交通大学出版社,2006.
    [74]卫绍元,王冬梅.进气系统技术状况对发动机排气影响试验研究[J].小型内燃机与摩托车,2007,36(3):30-32.
    [75]Oskar Leufven,Lars Eriksson.Engine Test Bench Turbo Mapping[C].SAE Paper 2010-01-1232.
    [76]余兀.进气系统阻力对柴油机性能影响的试验研究[J].柴油机设计与制造,2006,1(14):42-44
    [77]Newman,R. Duran,F. W. Chambers. Air Filter Test Housing Velocity Profile Effects on Filter Efficiencies[C].SAE Paper970554.
    [78]J.Fodor,.Improving Utilization of Potential I.C.Engine Life by Filtration[J]. TRIBOLOGY Intemation,1979,(12):127-129
    [79]霍玉荣,空气滤清器的效率及发动机磨损的试验研究[J],内燃机工程,1996,17(4):1-7.
    [80]Bugli N J. Performance requirement of air filter for engine air induction system [J]. International Information of Diesel Research,1999(1):14-2
    [81]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002.
    [82]Kevin Edwards, Paul Daly. Plastic Inlet Manifolds—Geometric Growth for 7 Years[C]. SAE Paper 1999-01-0315.
    [83]Wagner Roberto da Silva Trindade.Use of 1D-3D Coupled Simulation to Develop an Inlet Manifold System[C].SAE Paper 2010-01-1534.
    [84]J.G. Ih, K.S. Peat. On the Couses of Negative Source Impedance in the Measurement of Inlet and Exhaust Noise Sources [J]. Applied Acoustics.2002,63:153-171
    [85]S. C. Low. Prediction of pressure Fluction in the Inlet and Exhaust System of Engine Using a Real Gas Model [J]. SAE Paper 2001-01-3372
    [86]F. Bozza, A. Gimelli, V. Pianese, S. De Martino, R. Curion. An Acoustic Design Procedure for Inlet Systems:1D Analysis and Experimental Validation [J]. SAE Paper 2004-01-0412
    [87]Y.S. Kim, D.J. Lee. Numerical Analysis of Internal Combustion Engine Inlet Noise with a Moving Piston and a Valve [J]. Journal of Sound and Vibration.2001,241(5):895-912
    [88]S.Kitahara, H. Takao, T. Hashimoto, S. Hatano. Improvement of Car Interior Noise by Utilizing a Porous Inlet Duct:Treatment Effect on an Inlet System [J]. SAE Paper 2005-01-2363
    [89]福田基一,奥田襄介.噪声控制与消声设计[M].北京:国防工业出版社.1982
    [90]P. O. A. L. Davies, K. R. Holland. I. C. Engine In-take and Exhaust Noise Assessment J]. Journal of Sound and Vibration,1999,223:425-44
    [91]方丹群.空气动力性噪声和消声器[M].北京:科学出版社,1978.
    [92]P. O. A. L. Davies. Piston Engine Inlet and Exhaust System Design [J]. Journal of Sound and Vibration,1996,190:677-712.
    [93]贾维新,发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].浙江大学博士论文,2008
    [94]STONE C R.The Measurement and analysis of swirl in steady flow[C]. SAE Paper, 921642.
    [95]Jose M. Corberan, Ricardo Perez. An Alternative Technique for Swirl Measurement[C].SAE Paper 980486.
    [96]H. Schock, M. DeFilippis, Leon A. LaPointe. High Frame Rate Flow Visualization and LDV Measurements in a Steady Flow Cylinder Head Assembly[C].SAE Paper 910473.
    [97]R. S. W. Cheung, M. Yianneskis. An Experimental Study of Velocity and Reynolds Stress Distributions in a Production Engine Inlet Port Under Steady Flow Conditions[C].SAE Paper 900058.
    [98]Yuanxian Zhu, Gerrit Hommersom. LDA Measurements of Steady and Unsteady Flow Through the Induction System of a Heavy Duty Diesel Engine[C].SAE Paper 901576.
    [99]Bahram Khalighi. Inlet-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Inlet Configurations-Flow Visualization and Particle Tracking Velocimetry[C].SAE Paper 900059.
    [100]Kent J C. Observation on the Effects of Inlet Generated Swirl and Tumble on Combustion Duration[C].SAE Paper 892096.
    [101]Seoung-Chool Yoo, Harold Schock, Philip Keller.3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine[C]. SAE Paper 950648.
    [102]Keunchul Lee, Tom Stuecken, Harold Schock. An Experimental Study of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine by High Speed Flow Visualization and Two-Component LDV Measurement[C].SAE Paper 930478.
    [103]DAI Wen. Predictions of In-Cylinder Tumble Flow and Combustion in Engines with a Quasi-Dimensional Model[C].SAE Paper 961962.
    [104]Y Li, L Li, J Xu, X Gong, S Liu, S Xu. Effects of Combination and Orientation of Inlet Ports on Swirl Motion in Four-Valve DI Diesel Engines[C]. SAE Paper 2000-01-1823.
    [105]M. C. Bates, M. R. Heikal. A Knowledge-Based Model for Multi-Valve Diesel Engine Inlet Port Design[C].SAE Paper 2002-01-1747.
    [106]Yasuo Murakami, Hitoshi Kurosaka, Hiroshi Kamiya. M. R. Heikal.Practical Application of Combustion Simulation using CFD for Small Engine of Two-Wheeled Vehicle [C].SAE Paper 2004-01-0006.
    [107]David J. A simple Technique for Predecting Optimum Fuel Air Mixing Conditions in a D.I. Diesel Engine with Swirl[C]. SAE Paper 831543.
    [108]J. F. O'Connor, N. R. McKinley. CFD Simulations of Inlet Port Flow Using Automatic Mesh Generation:Comparison With Laser Sheet, Swirl and LDA Measurements for Steady Flow Conditions[C]. SAE Paer 980129.
    [109]Marie Ronnback, Wang Xiao Le.Study of Induction Tumble by Particle Tracking Velocimetry in a 4-Valve Engine[C].SAE Paper 912376
    [110]Tsuneaki Ishima, Tomokazu Nomura, Yasushi Takahashi. Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation under Steady State Flow Condition[C].SAE Paper 2008-01-1063.
    [111]Gerardo Valentino,Duane Kaufman.Inlet Valve Flow Measurements Using PIV[C].SAE Paper 932700.
    [112]Henrik Nordgren, Leif Hildingsson, Bengt Johansson, Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements[C].SAE Paper 2003-01-3147.
    [113]Kang Y Huh, Chang Ryol Choi, Jong Gyn Kim. Flow Analysis of the Helical Inlet Port and Cylinder of a Direct Injection Diesel Engine[C]. SAE Paper 95206
    [114]Wagner Roberto da Silva Trindade, Use of 1D-3D Coupled Simulation to Develop an Inlet Manifold System[C].SAE Paper 2010-01-1534
    [115]Udo G. Riegler, Michael Bargende. Direct Coupled 1D/3D-CFD-Computation (GT-Power/Star-CD) of the Flow in the Switch-Over Inlet System of an 8-Cylinder SI Engine with External Exhaust Gas Recirculation[C].SAE Paper 2002-01-0901
    [116]Yasuo Murakami,Hitoshi Kurosaka,Hiroshi Kamiya. Practical Application of Combustion Simulation using CFD for Small Engine of Two-Wheeled Vehicle[C]. SAE Paper 2004-32-0006
    [117]William Taylor, Sunil K. Jain. IC Engine Inlet Region Design Modifications for Loss Reduction Based on CFD Methods[C]. SAE Paper 981026
    [118]Cui Yingjin, Pan Wenyu, James H Leylek. Cylinder-to Cylinder Variation of Losses in lntake Regions of IC Engines[C]. SAE Paper 981025
    [119]H.Jasak, H. Echtle, M. Wierse. Rapid CFD Simulation of Internal Combustion Engines[C].SAE Paper 1999-01-1185.
    [120]Bertrand Fasolo, Anne-Marie Doisy, Alain Dupont, Frederic Lavoisier. Combustion System Optimization of a New 2 Liter Diesel Engine For EURO IV[C]. SAE Paper 2005-01-0652.
    [121]C. Novak, H. Ule, R. Gaspar. Noise Cancellation Technique for Automotive Inlet Noise Using a Manifold Bridging Technique [J]. SAE Paper 2005-01-2368.
    [122]Hyunsoo Jung,Kyung-Jin Chang. Development of Air Inlet System for Sporty Coupe Using the Robust Design Method[C]. SAE Paper 2009-01-0985.
    [123]F. Pricken. Active Noise Cancellation in Future Air Inlet Systems [J]. SAE Paper 2000-01-0026.
    [124]M. Vaishya. Unified Strategy for Active Control of Air Induction Sound [J]. SAE Paper 2005-01-2535.
    [125]刘伍权,许洪军,刘书亮,李建文.四气门发动机可变进气结构的斜轴涡流特性[J].天津大学报,2005,38(6):476-480.
    [126]刘书亮,沈捷,刘德新,李玉峰,卓松芳,邱瑞兴,任立红,肖浩栋.旋进气道形状和位置偏差对涡流比及流量系数的影响[J].燃烧科学与技术.2003,9(5):397-403.
    [127]冯明志,李玉峰,孙晓燕,许振忠,刘书亮,史绍熙.四气门发动机缸内空气运动的试验和多维数值模拟计算[J].内燃机学报,1999,17(4):330-334
    [128/]王天友,刘大明,张学恩,张东明,刘书亮,赵华.可变气门升程下汽油机缸内气体 流动特性的研究[J].内燃机学报,2008,26(5):420-428
    [129]赵振武,刘书亮,刘德新,气道稳流试验的变压差试验方法研究内燃机学报2004,22(1):79-85
    [130]许洪军,刘书亮,王天友,李兴.应用变压差技术的气道稳流试验研究[J].农业机械学报,2005,36(8):17-19.
    [131]吴志军,黄震.四气门柴油机的可变涡流进气系统的试验研究[J].内燃机工程,2001,22(3):75-79.
    [132]吴志军,黄震.柴油机气道试验中缸内涡流转速的测量方法[J].汽车工程,2000,22(5):358-360
    [133]罗马吉,黄震.发动机进气流动三维瞬态数值模拟研究.空气动力学学报.2005,23(1):74-78
    [134]王志,黄荣华..基于CAD/CAM/CFD的发动机气道研究[J].内燃机工程,2002,23(3):26-29
    [135]常思勤.发动机气道现代设计方法及其应用的研究[D].华中理工大学,1999.
    [136]Tetsuya Nakayasu, Hajime Yamada, Toshikazu Suda, Noritoshi Iwase, Kyo Takahashi. Inlet and Exhaust Systems Equipped with a Variable Valve Control Device for Enhancing of Engine Power[C].SAE Paper 2001-01-0247.
    [137]官田逵司.先进柴油的最新控制技术[J].国外内燃机,2008(2):1-6.
    [138]Hammer T. Non-thermal plasma-enhanced urea-scr treatment of diesel exhaust for low-temperat ure NOx reduction[C]. SAE Paper 2001-01-3200
    [139]Harmit Juneja, Youngchul Ra, Rolf D. Reitz. Premixed Diesel Combustion Analysis in a Heavy-Duty Diesel Engine[C]. SAE Paper 2003-01-0341.
    [140]Taewon Lee,Rolf D. Reitz.The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System[C].SAE Paper 2003-01-0349.
    [141]黄锦星,黄立.船用直喷式柴油机可控进气涡流技术[J].柴油机,2006,28(2):1-9.
    [142]R. S. W. Cheung,M. Yianneskis. An Experimental Study of Velocity and Reynolds Stress Distributions in a Production Engine Inlet Port Under Steady Flow Conditions. SAE Paper 900058.
    [143]倪计民.汽车内燃机原理[M].上海:同济大学出版社.1997.
    [144]Yutaka Murata,Daisuke Kawano,Yuichi Goto. Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing[C]. SAE Paper 2006-01-0203.
    [145]HERRMANN H D,DURNHOLZ M. Development of a DI Diesel Engine with Four Valves for Passenger Cars[C].SAE Paper 950808.
    [146]Chris Cowland,Peter Gutmann, Peter L. Herzog. Passenger Vehicle Diesel Engines for the U.S.[C].SAE Paper 2004-01-1452.
    [147]TIMONEY D J.Smoke and Fuel Consumption Measurements in a Direct Injection Diesel Engine with Variable Swirl[C].SAE Paper 851542.
    [148]郑芬.柴油机的可变控制机构[J].国外汽车,1988,3:37-42
    [149]Buomsik Shin, Haengpyo Heo, Hyeungwoo Lee, Yohan Chi.Technologies for Improved Emission Potential in a Small Displacement Passenger Diesel Engine[C].SAE Paper 2009-01-1444.
    [150]Tomoya Abe, Kenichi Nagahiro, Takatoshi Aoki, Hideki Minami, Masahiro Kikuchi,Seiichi Hosogai.Development of New 2.2-liter Turbocharged Diesel Engine for the EURO-IV Standards[C].SAE Paper 2004-01-13167.
    [151]李向荣,李建,杜巍.具有可调进气涡流的1132Z单缸机性能[J].北京工业大学学报,2009,35(10):1314-1319.
    [152]www.mahle.com
    [153]李勤.FEV公司的小型高速4气门直喷式柴油机[J].国外内燃机,1998(1):9-17
    [154]Heuvel B Willems W. Ford和PSA公司轻型商用车新型柴油机燃烧系统的开发[J].国外内燃机,2007(6):17-22
    [155]BOSCH:EDCAcr Introduction to the common rail system [EB],2003.
    [156]吴建华.汽车内燃机原理[M].北京:机械工业出版社.2005.
    [157]Koj i Morikawa, Makoto Kaneko, Yasuo Moriyosh. A Study on New Combustion Method of High Compression Ratio Spark Ignition Engine[C].SAE Paper,2005-01-0240.
    [158]刘忠民.配气机构动力学试验方法与模型规划研究[D].浙江大学博士论文,2005.
    [159]严兆大.热能与动力工程测试技术.第2版.北京:机械工业出版社,2006.
    [160]Jeffrey Travis, Jim Kring. LabVIEW大学实用教程(第三版).北京:电子工业出版社,2008.
    [161]G.Zimmer,Stationaere Stoemungsunterchungen an Einlasskannaelen von Viertakt-Dieselmotoren[J], Kraftfahrzeug technik,1961
    [162]D.Fitzgeorge, J.L.Allison. Air Swirl in a Road Vehicle Diesel Engine[J]. Proc.I ns.Mech.Engre(A.D),No.4,1962-1963
    [163]Tippelmann G, A New Method of Investigation Of Swirl Ports[C]. SAE Paper 770404
    [164]黄宜谅.内燃机性能与测试的研究[M].山西:山西科学技术出版社,2000.
    [165]夏兴兰,陈大陆,王胜利.内燃机气道性能的评价方法[J].现代车用动力.2007,2(126):7-12.
    [165]林建忠,阮晓东等.流体力学[M].北京:清华大学出版社,2006.
    [166]齐国荣,李约上.内燃机气道流通能力与综合性能评价参数的研究[J].大连工学院学报,1987,28(2):73-78.
    [167]赵进华.浅析影响发动机充气系数的因素[J].农业装备技术,2006,32(6):38-39
    [168]廉乐明,谭羽非等.工程热力学(第五版)[M].北京:中国建筑工业出版社,2007.
    [169]赵春明,吴志新,马宁,郑广州.气道稳流模拟试验系统开发及评价方法数值处理分析[J].内燃机工程,2004,25(5):1-4
    [170]E. John Finnemore, Joseph B. Franzini. Fluid Mechanics with Engineering Applications,10th Edition[M].The USA:McGraw-Hill Education,2002.
    [171]沈祖京.内燃机气道稳流试验的数据处理及其可比性[J].内燃机工程,1981,2:55-63.
    [172]易大义,沈云宝,李有法.计算方法[M].杭州:浙江大学出版社,2002.
    [173]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社,2006.
    [174]张德丰Matlab神经网络仿真与应用[M].北京:电子工业出版社,2009.
    [175]飞思科研产品研发科技Matlab6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [176]肖宝兰.车辆典型热交换器流动传热微观机制研究及性能优化[D].浙江大学博士论文,2009.
    [177]Tchaban T, Taylor M J, Griffin A. Establishing impacts of the inputs in a feed forward neural network [J]. Neural Compute Apply,1998,7(4):309-317.
    [178]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [179]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [180]Fluent Inc., FLUENT User's Guide. Fluent Inc.,2003.
    [181]S. V. Patanker, D. B. Spalding. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flow. Int J Heat Mass Transfer.1972,15: 1787-1806.
    [182]江国华,温苗苗.EQD180N-20型发送机进气不均匀性分析[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1008-1010.
    [183]付经纶,李向荣,杜巍.切向/螺旋进气道稳流实验与数值仿真[J].北京理工大学学报,2005,25(12):1039-1042.
    [184]王迟宇.柴油机热平衡数值仿真与试验研究[D].浙江大学硕士论文,2007.
    [185]AVL BOOST User's Guide Version 5.1 [M].AVL LIST GmbH,2007.
    [186]黄鑫.发动机热平衡试验系统开发[D].浙江大学硕士论文,2006.
    [187]梁乐华.发动机与整车热管理平台开发和研究[D].同济大学硕士论文,2008
    [188]A. Subrenat, J. Bellettre, P. Le Cloirec,3-D numerical simulations of flows in a cylindrical pleated filter packed with activated carbon cloth[J]. Chemical Engineering Science,2003,58(22):4965-4973
    [189]李佳,刘忠民,俞小莉,基于C++Builder6.0的空气滤清器性能实验台建设[C].华东四省一市内燃机学会联合学术年会,2009,8
    [190]Tobias Lucke, Heinz Fissan. The prediction of filtration performance of high efficiency gas filter elements[J]. Chemical Engineering Science,1996,51(8):1199-1208
    [191]熊迪.发动机进气管理系统试验及仿真研究[D].浙江大学硕士论文,2010.
    [192]王丽平.基于CAD/CFD的135型柴油机螺旋进气道的研究[D].大连理工硕士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700