用户名: 密码: 验证码:
几类切换系统的滑模控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切换系统是由一组连续或离散动态子系统组成,并按某种切换规则在各子系统之间切换的混杂系统,是混杂系统理论与应用研究中非常活跃的一个分支。由于众多实际工程系统,比如化工过程、交通传输过程、计算机控制系统、通讯工业等可以建模成切换系统,因而在过去的几年内,切换系统已经受到国内外学者的广泛关注。另外,在许多智能控制器的设计上,为了克服传统的单一控制器的缺点,为提高系统性能,而采取多控制器切换的智能控制系统,这样其闭环系统也形成了切换系统。另一方面,滑模控制具有对参数摄动不敏感、抗干扰能力强和响应速度快等优点,近二十年滑模控制方法已经取得了许多重要的成果,并用于研究时变切换系统、不确定系统、时延系统和随机系统等,但有关切换系统的滑模控制很少有报道,有待进一步发展和完善。本文将在前人工作的基础上,针对切换系统中的参数摄动和非线性扰动,研究切换系统的滑模控制问题,并对一类Markov切换系统,进行了滑模控制器设计。论文的主要研究工作可以概括如下:
     1.第1章首先简单介绍了问题的研究背景、切换系统的基本概念、分析方法、设计方法和当前国内外在该领域的研究现状。其次,介绍了滑模控制的基本知识、特性、设计方法和应用,为后续工作提供了充分的理论基础。最后介绍了本论文的主要研究内容。
     2.第2章回顾了切换系统的稳定性、能控性和能观测性分析以及切换系统的滑模控制。首先给出了公共二次Lyapunov函数存在的条件和构造方法,并用公共二次Lyapunov函数分析了切换线性系统的稳定性。其次用多Lyapunov函数法分析了切换线性系统的稳定性。同时总结了以上两种方法各自的特点及在切换系统稳定性分析方面的保守性和适用性。最后分析了切换系统的控制以及滑模控制用于切换系统的必要性,总结了切换系统理想滑模面和滑模控制器的设计方法。
     3.第3章研究了线性切换系统基于观测器的鲁棒控制问题。针对系统状态不易直接测量,或不可能实际上获得系统全部状态变量的切换系统,应用公共二次Lyapunov函数设计了切换系统的降阶观测器,使得观测误差系统在任意切换下是渐进稳定的。并基于所设计的观测器进一步获得切换系统的理想滑模面和滑模控制器。
     4.第4章研究了切换系统的输出反馈滑模控制问题。首先,针对一类无扰动的线性切换系统,设计了输出反馈滑模函数,给出了滑模系数存在的充分必要条件,设计了输出反馈滑模控制器。其次,在第一节的基础上进一步研究了非线性扰动切换系统的降阶输出反馈滑模控制问题。给出了切换系统滑动模态可达条件,同时设计了各子系统的理想滑模面和滑模控制器,使闭环切换系统对于未知非线性扰动具有鲁棒性。
     5.第5章研究离散线性切换系统的滑模控制问题。首先,基于多Lyapunov函数设计了任意切换下稳定的滑模面。采用滑模函数预测模型及滑模参考轨迹,结合预测控制中的反馈校正和滚动优化方法,设计了一组滑模控制器,使得闭环系统在任意切换下渐近稳定。其次,针对传统变结构控制应用于离散系统时易失去其鲁棒性的问题,提出了一种采用带调整参数递归式滑模函数的离散滑模控制策略,改进了离散时间滑模控制系统的趋近律方法,并针对不确定因素的影响设计了无须知道扰动上界的估计器,得到了可实现的离散滑模控制律。
     6.第6章研究一类不确定Markov切换系统的滑模控制问题。引入线性变换将系统变换为标准型,设计了滑模面,应用线性矩阵不等式,给出了系统在滑模面上均方意义下指数稳定的充分条件。设计了确保系统运动轨迹在有限时间内到达滑模面,并且能够保持均方意义下指数稳定的滑模控制器。
     最后是全文的总结以及展望。
Switched systems form a class of hybrid systems consisting of a family of subsystems described by continuous-time or discrete-time dynamics, and a rule specifying the switching among them. Switched systems have received increasing attentions in the past few years, since many real-world systems such as chemical processes, transportation systems, computer-controlled systems, and communica-tion industries can be modelled as switched systems. More importantly, many intelligent control strategies are designed based on the idea of controllers switching to overcome the shortcoming of the traditionally used single controller and to improve the performance, thus making the corresponding closed-loop sys-tems to become switched systems. On the other hand, sliding mode control (SMC) has proven to be an effective robust control strategy for incompletely modelled or nonlinear systems since its appearance in the 1950s. In the past two decades, sliding mode control has successfully been applied to a wide variety of practical engineering systems such as robot manipulators, aircrafts, underwater vehicles, spacecrafts, flexible space structures, electrical motors, power systems, and automotive engines. Sliding mode control utilizes a discontinuous control to force the system state trajectories to some predefined sliding surfaces on which the system has desired properties such as stability, disturbance rejection capabil-ity, and tracking ability. Many important results have been reported for this kind of control strategy, which includs some different systems, such as uncertain sys-tems, time-delay systems, and stochastic systems.
     The main contents can be stated as follows:
     1. In Chapter 1, we first present the background, the basic conceptions, and some related approaches for the switched systems. Then, we sum-marize and analyze the basic conception, properties, design approaches and recent study status of SMC, from which we can find some desider-ated problems to be studied. Finally, we introduce the main contents and the background of several important systems and control problems in this thesis.
     2. In Chapter 2, we introduce the analysis approaches of the stability, controllability and the observability for the switched systems. Firstly, the construction and the existence analysis of CQLF for switched sys-tems are discussed. Moreover, the stability conditions by using CQLF approach are established. Secondly, the stability conditions by using multiply Lyapunov function approach are also established. The switching law design approaches are summarized. The conservatism of the stability conditions obtained by using the above-mentioned two ap-proaches is compared. Finally, the controllability and the observability conditions for the switched systems are given respectively.
     3. In Chapter 3, we investigate the SMC and the observer designs of a class of switched systems with a nonlinear disturbance based on the multiply Lyapunov function approach. The sliding mode controller and the switching law are designed by using the estimated states, which guarantee the asymptotic stability of the closed-loop systems.
     4. In Chapter 4, we address the problem of output feedback SMC of switched systems. Firtly, for a class of disturbance-free linear switched systems, we design a sliding function by using only output information, and propose the existence condition of the sliding mode dynamics. Based on the obtained condition, we get the solution to the parameters of the designed sliding function. Also, we synthetize the output feed-back sliding mode controller and the switching law. Secondly, based on the results obtained in this chapter, we further investigate the problem of the reduced-order output feedback SMC of switched systems with nonlinear disturbance. The condition for the existence of sliding mode dynamics is proposed. Also, the controllers for all the subsystems and the switching law are designed, which guatantee the robustness of the closed -loop systems to the unknown disturbance.
     5. In Chapter 5, our attention is focused on the studying of SMC of dis-crete-time switched systems. Firstly, by applying the feedback control and the rolling optimaization approaches in the predictive control, we design a class of predictive sliding mode controllers, which guarantee the asymptotic stability of the closed-loop system under arbitrary switching. Secondly, as for the robustness-loss of the traditional SMC of discrete-time systems, we proposed a discrete-time SMC strategy containing a recursive sliding surface function. Moreover, the reaching law approaches used in discrete-time SMC systems are improved. In addition, as for the systems with that its uncertainties and disturbances’upper bounds are unknown, an admissible discrete-time SMC law is proposed.
     6. In Chapter 6, we study the SMC of a class of Markov switching sys-tems. A model transformation is introduced firstly, by which the origi-nal system becomes a“regular”form. A linear sliding surface is de-signed. A sufficient condition of the mean-square exponential stability is proposed for the sliding mode dynamics by using linear matrix ine-quality approach. Finally, a sliding mode controller is synthetized, which guarantees the reachability of the system’s trajectories to pre-defined sliding surface in a finite time.
     The conclusion and perspective are given in the end of the paper.
引文
1黄林,秦化淑,郑应平,郑大钟.复杂控制系统理论:构想与前景.自动化学报. 1993, 19(2): 129-136.
    2郑刚,谭民,宋永华.混杂系统的研究进展.控制与决策. 2004, 19(1): 7-11.
    3 S. Morino. Recent developments in hybrid structures in Japan-research, de-sign and construction. Engineering Strutures. 1998, 20(4-6): 336-346.
    4 R. A. Decarlo, S. H. Zak, G. P. Matthews. Variable structure control of nonlinear multivariable systems: a tutorial. Proceedings of the IEEE, 1988, 76(3): 212-232.
    5 B. D. O. Anderson, T. S. Brinsmead, F. DeBruyne, etc. Multiple model adaptive control. Part 1: finite controller coverings. International Journal of Robust and Nonlinear Control. 2000, 10(11-12): 909-929.
    6 J. P. Hespanha, D. Liberzon, A. S. Morse. Multiple model adaptive control. Part 2: switching. International Journal of Robust and Nonlinear Control. 2001, 11(5): 479-496.
    7 F. D. Palma, L. Magni. A multi-model structure for model predictive control. Annual Reviews in Control. 2004, 28(1): 47-52.
    8 W. J. Rugh, J. S. Shamma. Research on gain scheduling. Automatica. 2000, 36(10): 1401-1425.
    9 A. S. Morse. Control Using Logic-based Switching. New York: Springer- Verlag. 1997.
    10 C. D. Persisa, R. D. Santisa, A. S. Morse. Supervisory control with state-dependent dwell-time logic and constraints. Automatica. 2004, 40(2): 269-275.
    11 A. S. Morse. Supervisory control of families of linear set-point control-lers-part 1: exact matching. IEEE Transactions on Automatic Control. 1996, 41(10): 1413-1431.
    12 A. S. Morse. Supervisory control of families of linear set-point control-lers-part 2: robustness. IEEE Transactions on Automatic Control. 1997,42(11): 1500-1515.
    13 E. Skafindas, I. R. Petersen, R. J. Evans, A. V. Savkin. Quadratic stabiliza-bility of state feedback hybrid control systems. In Proceedings of the 14th International Conf. on Control, Automation, Roboties and Vision. 1996.
    14 J. M. Goncalves. Constructive global analysis of hybrid systems. Ph. D. Dissertation, Massachusetts Institute of Technology, MA, USA. 2000.
    15 J. Malmborg. Analysis and design of hybrid control systems. Ph. D. Disser-tation, Lund Institute of Technology, Lund, Sweden. 1998.
    16 T. Yamaguchi, H. Numasato, H. Hirai. A mode-switching control for motion control and its application to disk drives: design of optimal mode-switching conditions. IEEE/ASME Transactions on Mechatronics. 1998, 3(3): 202- 209.
    17 R. Horowitz, P. Varaiya. Control design of an automated highway system. Proceedings of IEEE. 2000, 88(7): 913-925.
    18 A. Balluchi, L. Benvenuti. Automotive engine control and hybrid systems: challenges and opportunities. Proceedings of IEEE. 2000, 88(7): 888-912.
    19 C. G. Cassandras, D. L. Pepyne, Y. Wardi. Optimal control of a class of hy-brid systems. IEEE Transactions on Automatic Control. 2001, 46(3): 398-415.
    20 D. L. Pepyne, C. G. Cassandras. Optimal control of hybrid system in manu-facturing. Proceedings of IEEE. 2000, 88(7): 1108-1123.
    21 M. Song, T. J. Tam, N. Xi. Integration of task scheduling, action planning, and control in robotic manufacturing systems. Proceedings of the IEEE. 2000, 88(7): 1097-1107.
    22 J. Tan, N. Xi, Y. Wang. A singularity-free motion control algorithm for robot manipulators - a hybrid systems approach. Automatica. 2004, 40(7): 1239- 1245.
    23 P. V. Zhivoglydov, R. H. Middleton. Networked control design for linear systems. Automatica. 2003, 39(4): 743-750.
    24 H. Lin, P. J. Antsaklis. Switching stabilizability for continuous-time uncertain switched linear systems. IEEE Transactions on Automatic Control 2007; 52(4): 633-646.
    25 Z. Wang, J. Lam, X. H. Liu. Robust filtering for discrete-time Markovianjump delay systems. IEEE Signal Processing Letters. 2004; 51(8): 659-662.
    26 G. Zhai, H. Lin, Y. Kim, J. Imae, T. Kobayashi. L2 gain analysis for switched systems with continuous-time and discrete-time subsystems. International Journal of Control. 2005, 78(15): 1198-1205.
    27 H. Gao, J. Lam, C. Wang. Model simplification for switched hybrid systems. Systems and Control Letters. 2006, 55(12):1015-1021.
    28 P. Y. Richard, H. Cormerais, J. Buisson. A generic design methodology for sliding mode control of switched systems. Nonlinear Analysis. 2006, 65(9): 1751-1772.
    29 M. S. Branicky, V. S. Bokar, S. K. Mitter. A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control. 1998, 43(1): 31-45.
    30 A. N. Michel. Recent trends in the stability analysis of hybrid dynamical systems. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications. 1999, 45(1): 120-134.
    31 A. Bemporad, M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica. 1999, 35(3): 407-427.
    32 J. Stiver, P. J. Antsaklis. Modeling and analysis of hybrid control systems. Proceedings of Conference on Decision and Control. 1992: 3748-3751.
    33景丽,高立群.等时切换下线性切换系统的稳定性及鲁棒稳定性研究-LMI方法.计算技术与自动化. 2003, 22(4):16-20.
    34 J. Ezzine, A. H. Haddad. Controllability and observability of hybrid systems. International Journal of Control. 1989, 49(6): 2045-2055.
    35 N. H. El-Farra1, P. Mhaskar, P. D. Christofides. Output feedback control of switched nonlinear systems using multiple Lyapunov functions. Systems & Control Letters. 2005, 54: 1163-1182.
    36 D. Ames, A. Alessandro, S. Shankar. Sufficient conditions for the existence of Zeno behavior. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference . 2005: 12-15.
    37 Z. Li, C. B. Soh, X. Xu. Lyapnuov stability of a class of hybrid dynamic systems. Automatica. 2000, 36(2): 297-302.
    38 M. S. Branicky. Stability of hybrid systems:state of the Art. Proceedings of the 36th Conference of Decision and Control.San Diego. California USA.1997: 120-125.
    39 M. S. Branicky. Stability of switched and hybrid systems. Proc.33rd IEEE Conf. Decision and Control. 1994: 3498-3503.
    40 M. S. Branicky. Mutiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control.1998, 43(4): 475-482.
    41 M. Margaliot. Stability analysis of switched systems using variational prin-ciples: an introduction. Automatica. 2006, 42(12): 2059-2077.
    42 G. N. Davrazos, N. T. Koussoulas. A review of stability results for switched and hybrid systems. 9th Mediterranean Conference on Control and Automa-tion. 2001: 27-29.
    43 R. Fierro, F. L. Lewis, C. T. Abdallah. Common, multiple, and parametric Lyapunov functions for a class of hybrid dynamical systems. Proc. IEEE Mediterranean Symp. New Directions in Contr. and Automat. 1996,7:77-82.
    44 O. Beldiman, L. Bushnell. Stability, linearization and control of switched systems. Proc. of American Control Conference. San Diego. CA. 1999: 2950-2955.
    45 T. Ooba, Y. Funahashi. Two conditions concerning common quadratic Lyapunov functions for linear systems. IEEE Trasactions on Automatic Control. 1997, 42(5): 719-721.
    46 Cheng Daizhan, Zhu Yahong, Hu Qingxi. Stabilization of switched systems via common Lyapunov function. Proceedings of the World Congress on In-telligent Control and Automation (WCICA), 2006, 1: 183-187.
    47 D. Cheng. Stabilization of planar switched systems. System & Control Let-ters. 2004, 51(2): 79-88.
    48董亚丽,王威,王彦刚.三阶切换系统的镇定.信息与控制. 2005, 34(4): 79-88.
    49 H. Sun, J. Zhao. Control Lyapunov functions for switched control systems. Proceedings of the American Control Conference. 2001: 1890-1891.
    50 L. Rodrigues, S. Boyd. Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization. Systems & Control Lerrers. 2005, 54(9): 835-853.
    51 J. Daafouz, P. Riedinger, C. Iung. Stability analysis and control synthesis forswitched systems: a switched Lyapunov function approach. IEEE Transac-tions on Automatic Control. 2002, 47(11): 1883-1887.
    52 J. P. Hespanha, A. S. Morse. Switching between stabilizing controllers. Automatica. 2002, 38(11): 1905-1917.
    53 F. Blanchini. Nonquadratic Lyapunov functions for Robust control. Auto-matica. 1995, 31(3): 451-461.
    54 F. Blanchini. Set invariance in control - a survey. Automatica. 1999, 35(11): 1747-1768.
    55 F. Blanchini, S. Miani. A new class of universal Lyapunov functions for the control of uncertain linear systems. IEEE Transaction on Automatic Control. 1999, 43(3): 641-647.
    56 S. V. Emelyanov. Control of first order delay systems by means of anastatic controller and nonlinear correction. Automation and Remote Control. 1995, 20(8): 983-991.
    57 U. Itkis. Control Systems of Variable Structure. New York, Wiley, 1976.
    58 V. Utkin. Variable structure systems with sliding modes. IEEE Trans. On Automatic Control. 1977, 22(2): 212-222.
    59高为炳.变结构控制的理论及设计方法.北京:科学出版社, 1996.
    60刘金昆,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用. 2007, 24(3): 407-418.
    61 J. Y. Hung, W. Gao, J. C. Hung. Variable structure control: a survey. IEEE Transactions on Industrial Electronics. 1993, 40(1): 2-22.
    62 W. B. Gao, J. C. Hung. Variable structure control of non-linear systems: a new approach. IEEE Transactions on Industrial Electronics. 1993, 40(1): 45-55.
    63王丰尧.滑模变结构控制.机械工业出版社. 2001.
    64 Y. H. Zhang, H. A. A. Fattah, K. A. Loparo. Non-linear adaptive sliding mode observer-controller scheme for induction motors. Int J of Adaptive Control and Signal Processing. 2000, 14(3): 245-273.
    65 S. M. Kim, W. Y. Han, S. J. Kim. Design of a new adaptive sliding mode observer for sensorless induction motor drive. Electric Power Systems Re-search. 2004, 70(1): 16-22.
    66 S. S. Lee, J. K. Park. Design of power system stabilizer using observer /sliding mode, observer/sliding mode-model following and H/sliding mode controllers for small-signal stability study. Int J of Electrical Power & En-ergy Systems. 1998, 20(8): 543-553.
    67 R. El-Khazali, R. Decarlo. Output feedback variable structure control design. Automatica. 1995, 31(6): 805-816.
    68 S. H. Zak, S. Hui. On variable structure output feedback controllers for un-certain dynamic systems. IEEE Transactions on Automatic Control. 1993, 38(10): 1509-1512.
    69 S. H. Zak, S. Hui. Output feedback in variable structure controllers and state estimators for uncertain/nonlinear dynamical systems. IEE Proc. Part D: Control Theory & Applications. 1993, 140(1): 41-50.
    70 C. M. Kwan. On variable structure output feedback controllers. IEEE Transactions on Automatic Control. 1996, 41(11): 1509-1512.
    71 C. M. Kwan. Further Results on Variable Output Feedback Controllers. IEEE Transactions on Automatic Control. 2001, 46(9): 1505-1508.
    72 H. H. Choi. Variable structure output feedback control design for a class of uncertain dynamic systems. Automatica. 2002, 38(2): 335-341.
    73 C. Edward, S. K. Spurgeon. Sliding mode stabilization of uncertain systems using only output information. International Journal of Control. 1995, 62(5): 1129-1144.
    74 C. Edwards, A. Akoachere, S. K. Spurgeon. Sliding-mode output feedback controller design using linear matrix inequalities. IEEE Transactions on Automatic Control. 2001, 46(1): 115-119.
    75 C. Edward, S. K. Spurgeon. Linear matrix inequality methods for designing sliding mode output feedback controllers. IEE Proc. Part D: Control Theory & Applications. 2003, 150(5): 539-545.
    76 J. J. Slotine, S. S. Sastry. Tracking control of nonlinear systems using slid-ing surfaces with application to robot manipulator. Int J Control. 1983, 38(2): 465-492.
    77 S. Z. Sarpturk, Y. Istefanopulos, O. Kaynak. On the stability of discrete-time sliding mode control system. IEEE Trans on Automatic Control. 1987, 32(10): 930-932.
    78 K. Furuta. Sliding mode control of a discrete system. Systems & ControlLetters. 1990, 14(2): 145-152.
    79 W. J. Wang, G. H. Wu, D. C. Yang. Variable structure control design for un-certain discrete-time systems. IEEE Transactions on Automatic Control. 1994, 39(1): 99-102.
    80 P. Myszkorowski, U. Holmberg. Comments on "Variable structure control design for uncertain discrete-time systems". IEEE Transactions on Auto-matic Control. 1994, 39(11): 2366-2367.
    81 S. K. Spurgeon. Hyperplane design techniques for discrete time variable structure control systems, International Journal of Control. 1992, 55: 445-456.
    82 J. Y. Hung, W. B. Gao, J. C. Hung. Variable structure control: a survey. IEEE Transactions on Industrial Electronics. 1993, 40(1): 2-22.
    83 Y. Fujisaki, K. Togawa, K. Hirai. Sliding mode control for multi-input dis-crete time systems. Proceedings of the 33rd conference on decision and con-trol. 1994, 1933-1935.
    84 Y. Xia, G. P. Liu, P. Shi, J. Chen. Sliding mode control of uncertain linear discrete time systems with input delay. IET Control Theory and Applications. 2007, 1(4): 1169-1175.
    85 S. Janardhanan, B. Bandyopadhyay. Output feedback discrete-time sliding mode control for time delay systems. IEE Proceedings: Control Theory and Applications. 2006, 153(4): 387-396.
    86 K. Abidi, J. Xu, X. Yu. On the discrete-time integral sliding mode control. Proceedings of the 2006 International Workshop on Variable Structure Sys-tems, VSS'06. 2006: 29-34.
    87 S. Hebertt, F. Vicente. On the GPI-sliding mode control of switched frac-tional order systems. Proceedings of the 2006 International Workshop on Variable Structure Systems, VSS'06. 2006: 310-315.
    88 L. Wu, J. Lam. Sliding mode control of switched hybrid systems with time-varying delay. International Journal of Adaptive Control and Signal Process. To appear in 2008.
    89 M. Akar, U. Ozguner. Sliding mode control using state/output feedback in hybrid systems. Proceeding of the 37th IEEE Conference on Decision and Control. 1998: 2421-2422.
    90张达科,胡跃明.任意切换时间下的二维线性混合系统的滑模控制.计算机工程与应用. 2004, 12: 29-31.
    91 R. Frasca, L. Iannelli, F. Vasca. Dithered sliding-mode control for switched systems. IEEE Transactions on Circuits and Systems II: Express Briefs. 2006, 53(9): 872-876.
    92 R. Frasca, L. Iannelli, F. Vasca. Experimental validation of dithered sliding mode control for switched systems. Proceedings of the 2006 American Con-trol Conference. 2006: 5905-5910.
    93 W. B. Gao, Y. F. Wang, A. Homaifa. Discrete-time variable structure con-trol system. IEEE Transactions on Industrial Electronics. 1995, 42(2): 117-122.
    94 Z. Sun. Combined stabilizing strategies for switched linear systems. IEEE Transactions on Automatic Control. 2006, 51(4): 666-674.
    95顾则全,刘贺平,李晓理,廖福成.一类线性不确定切换系统的鲁棒镇定.北京科技大学学报. 2007, 29(12): 1273-1275
    96 X. Xu, P. J. Antsaklis. Optimal Control of Switched Systems Based on Parameterization of the Switching Instants. IEEE Transactions on Automatic Control. 2004, 49 91(1): 2-16
    97孙常春,刘玉忠.一类不确定切换系统的鲁棒状态反馈镇定.控制理论与应用. 2005, 22(5): 794-798.
    98 R. N. Shorten, K. S. Narendra. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function in two stable second order linear systems. in Proc. Amer. Control Conf.. 1999: 1410-1414.
    99 R. Shorten, K. S. Narendra, O. Mason. A result on common quadratic Lyapunov functions. IEEE Transactions on Automatic Control. 2003, 48(1): 110-113.
    100 K. S. Narendra, J. Balakrishnan. A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transactions on Automatic Control. 1994, 39(12): 2469-2471.
    101 J. L. Mancilla-Aguilar. A condition for the stability of switched nonlinear systems. IEEE Transactions on Automatic Control. 2000, 45(1): 2077-2079.
    102 D. Cheng, L. Guo, J. Huan. On quadratic Lyapunov functions. IEEE Trans-actions on Automatic Control. 2003, 48(5): 885-890.
    103 Y. Zhu, D. Cheng, H. Qin. Constructing conmmon Lyapunov functions for a class of stable matrices. Acta Automatica Sinica. 2007, 33(2): 202-204.
    104 W. P. Dayawansa, C. F. Martin. A converse Lyapunov theorem for a class of dynamical systems which undergo swithing. IEEE Transactions on Auto-matic Control. 1999, 40(4): 751-760.
    105 L. Gurvits, R. Shorten, O. Mason. On the stability of switched positive liner systems. IEEE Transactions on Automatic Control. 2007, 52(6): 1099-1103.
    106 M. Johansson, A. Rantaer. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control. 1998, 43(4): 555-559.
    107 P. Peleties, R.A. Decarlo. Asymptotic stability of m-switched systems using Lyapunov-like functions. In proceedings of conference on American Control Conference. 1991, 1679-1684.
    108刘玉忠,赵军.具有m个开关系统的渐近稳定性.控制理论与应用. 2001, 18(5): 745-747.
    109 L. Hetel, J. Daafouz, C. Iung. Stabilization of arbitrary switched linear sys-tems with unknown time-varying delays. IEEE Transactions on Automatic Control. 2006, 51(10): 1668-1674.
    110 S. Pettersson. Analysis and design of hybrid systems. Ph. D. Dissertation, Chalmers university of technology, Goteborg, Sweden. 1999.
    111 S. Pettersson. Synthesis of switched linear systems. Proceedings of the 42nd IEEE Conference on Decision and Control. 2003: 5283-5288.
    112 Z. Ji, L. Wang, X. Guo. On controllability of switched linear systems. IEEE Transactions on Automatic Control. 2008, 53(3): 796-801.
    113 G. Xie and L.Wang,“Controllability and stabilizability of switched linear systems,”Systems and Control Letters. 2003, 48(2): 135-155.
    114 Z. Sun, S. S. Ge. Analysis ans synthesis of switched linear control systems. Automatica. 2005, 41(2): 181-195.
    115 Z.Sun, S. S. Ge , T. H. Lee. Reachability and controllability criteria for switched linear systems. Automatica. 2002, 38(5): 775–786.
    116 J. C. Geromel, P. Colaneri, P. Bolzern. Dynamic Output Feedback Control of Switched Linear Systems. IEEE Transactions on Automatic Control. 2008, 53(3): 720-733
    117赵胜芝,赵军,张庆灵,付俊.不确定非线性切换系统的H∞鲁棒控制.控制理论与应用. 2006, 23(4): 606-610.
    118付主木,费树岷,龙飞,丛屾.不确定切换系统的动态输出反馈鲁棒H∞控制.东南大学学报(自然科学版). 2007, 37(1): 153-158.
    119 P. Shi, E. K. Boukas. H∞control for Markovian jumping linear systems with parametric uncertainty. J. Optim. Theory Appl.. 1997, 95(1): 75-99.
    120 E. Feron. Quadratic stabilizability of switched system via state and output feedback. MIT Technical Report CICS- P-468. 1996.
    121 G. S. Zhai. Quadratic stabilizability of discrete2time switched systems via state and output feedback. Proceedings of the 40th IEEE Conference on De-cision and Control,Orlando, Florida. 2001, 2165-2166.
    122 Z. J. Ji, L. Wang, G. M. Xie. Stabilizing discrete-time switched systems via observer-based static output feedback. IEEE International Conference on Systems, Man and Cybernetics. 2003, 2545-2550.
    123 Z. G. Li, C. Y. Wen, Y. C. Soh. Observer-based stabilization of switching lin-ear systems. Automatica. 2005, 41(2) : 181-195.
    124宋政一,聂宏,赵军.具有时变时滞的离散切换系统基于观测器的H∞控制.控制与决策. 2007, 22(4): 373-377.
    125陈松林,姚郁,张瑞.线性切换系统基于观测器的切换镇定.吉林大学学报(工学版).2006, 36(1): 87-91.
    126陈松林,姚郁,张瑞.线性切换系统基于观测器的输出反馈镇定.哈尔滨工程大学学报. 2007, 28(2): 189-193.
    127 P. Peleties, R. A. DeCarlo. Asymptotic stability of m-switched systems us-ing Lyapunov-like functions. Proceedings of American Control Conference. 1991: 1679-1684.
    128 M. S. Branicky. Studies in hybrid systems: modeling, analysis, and control. Massachusetts Institute of Technology, Ph. D. dissertation. 1995.
    129孙常春,靖新,闫红梅,邢双云.线性切换系统的状态观测器设计.沈阳建筑大学学报(自然科学版). 2007, 23(1): 166-169.
    130段广仁.线性系统理论(第二版).哈尔滨工业大学出版社. 2004.
    131 X. G. Yan, S. K. Spurgeon, C. Edwards. Decentralised sliding mode control for nonminimum phase interconnectedsystems based on a reduced-order compensator. Automatica. 2006, 42(10): 1821-1828.
    132 L. Wu, C. Wang, Q. Zeng. Observer-based sliding mode control of a class of uncertain nonlinear neutral delay systems. Journal of Franklin Institute. 2008, 345(3): 233-253.
    133 L. Wu, C. Wang, H. Gao, L. Zhang. Sliding mode H∞control for a class of uncertain nonlinear state-delayed systems. Journal of System Engineering and Electronics. 2006, 17(3): 576-585.
    134 B. G. Iulia, B. Mohamed. Switched output feedback stabilization of dis-crete-time switched systems. Proceedings of the 45th IEEE Conference on Decision and Control, 2006, CDC. 2006: 2667-2672.
    135 B. G. Iulia. Robust switched static output feedback control for discrete-time switched linear systems. Proceedings of the 46th IEEE Conference on Deci-sion and Control 2007, CDC. 2008: 4986-4992.
    136 J. Geromel, P. Colaneri, P. Bolzern. Dynamic output feedback control of switched linear systems. IEEE Transactions on Automatic Control. 2008, 53(3): 720-733.
    137付主木,费树岷,龙飞,丛屾.不确定切换系统的动态输出反馈鲁棒H∞控制.东南大学学报(自然科学版). 2007, 37(1): 1553-1558.
    138林相泽,李世华.一类切换系统极限环的反馈镇定研究.控制与决策. 2007, 22(9): 1073-1076.
    139 X. G. Yan, C. Edwards, S. K. Spurgeon. Decentralized robust sliding mode control for a class of nonlinear interconnected systems by static output feedback. Automatica. 2004, 40(4): 613-620.
    140 R. A. Decarlo, M. S. Branicky, S. Petterson, B. Lennartson. Perspectives and results on the stability and stabilizability of hybrid systems, Proc. IEEE 88. 2000, 1069-1082.
    141 Y. Sun, L. Wang, G. Xie. Necessary and sufficient conditions for stabilization of discrete-time planar switched systems. Nonlinear Analysis, Theory, Methods and Applications. 2006, 65(5): 1039-1049.
    142 L. Hetel, J. Daafouz, C. Iung. Stability analysis for discrete time switched systems with temporary uncertain switching signal. Proceedings of the 46th IEEE Conference on Decision and Control 2007. CDC. 2008: 5623-5628.
    143 Y. Zhang, G. Duan, L. He. Robust stability of a class of uncertain dis-crete-time switched systems with time-delay. 1st International Symposiumon Systems and Control in Aerospace and Astronautics. 2006: 849-852.
    144 D. Du, B. Jiang, S. Zhou. Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay. International Journal of Systems Science. 2008, 39(3): 305-313.
    145 C. Wong, C. Chen. Design of fuzzy control systems with a switching grey prediction. IEEE International Conference on Fuzzy Systems, v1, IEEE World Congress on Computational Intelligence, 1998: 567-571.
    146 C. Wong, C. Chen. Simulated annealing approach to switching grey predic-tion fuzzy control system design. International Journal of Systems Science. 1998, 29(6): 637-642.
    147张军,裴润,刘福才,裴辛哲.离散不确定时滞系统的鲁棒模型预测控制.哈尔滨工业大学学报. 2003, 35(4): 450-453.
    148 B. Shields, E. Barth, M. Goldfarb. Predictive control for time-delayed switching control systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2006, 128(4): 999-1004.
    149 P. Mhaskar, N. H. El-Farra, P. D. Christofides. Robust predictive control of switched systems: Satisfying uncertain schedules subject to state and control constraints. International Journal of Adaptive Control and Signal Processing. 2008, 22(2): 161-179.
    150 P. Mhaskar, N. H. El-Farra, P. D. Christofides. Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Transactions on Automatic Control. 2005, 50(11): 1670-1680.
    151 P. Mhaskar, N. H. El-Farra, P. D. Christofides. Stabilization of switched nonlinear systems using predictive control . Proceedings of the 2004 American Control Conference (AAC). 2004: 560-565.
    152 Z. Tadanao, Y. Akira, I. Muneaki. Model predictive control based switching of multimodal controllers in switched systems. IEEJ Transactions on Indus-try Applications. 2007, 127(4): 420-427.
    153刘志林,裴润,康尔良,慕香永.具有确定切换序列约束的时滞切换系统预测控制.吉林大学学报(工学版). 2008, 38(2): 454-459.
    154周建锁,刘志远,裴润.约束非线性系统的滑模预测控制方法.控制与决策. 2001, 16(2): 207-210.
    155 C. Kwan. Further results on variable output feedback controllers. Trans onAutomatic Control. 2001, 46(9): 1505-1508.
    156 J. Kim, D. Cho. Discrete-time variable structure control using recursive switching function. in Proc. American Control Conference, Chicago, 2000: 1113-1117.
    157 Y. Eun, J. Kim, K. Kim, D. Choi. Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Trans. Control Systems Technology. 1999, 7(4): 414-423.
    158 N. N. Krasovskii,E. A. Lidskii. Analytical design of contlollers in systems with random attributes. Automation and Remote Control. 1961, 22: 1021-1025.
    159 Y. Ji, H.J.Chizech. Controllability, observability and discrete-time Mark-ovian jump linear quadratic control. International Journal of Control. 1988, 48(2): 481-498.
    160 Y. Ji, H. J. Chlzech. Controllability, stabiliZability, and continuous-time Markovian Jump linear quadratic control. IEEE Transaction on Automatic Control. 1990, 35(7): 777-788.
    161 R. A. Ramos, L. Li, V. A. Uqrinovskii, H. R. Pota. Design of switching damping controllers for power systems based on a Markov jump parameter system approach. Proceedings of the 45th IEEE Conference on Decision and Control 2006, CDC. 2006: 4014-4019.
    162 Q. Jiang, H. Xi; B. Yin. Optimization of Semi-Markov switching state-space control processes for network communication systems. Proceedings of the 26th Chinese Control Conference, CCC 2007. 2007: 707-711.
    163 M. Athans. Command and control (C2) theory: A challenge to control sci-ence. IEEE Transactions on Automatic Control. 1987, AC-32: 286-293.
    164 A. R. Bergen. Stability of systems with randomly time-varying parameters. IRE Transaction on Automatic Control. 1960, CT-7: 265-269.
    165 B. S. Darkhovskii, V. S. Leibovich. Statistical stability and output signal moments of a class systems with random variation of structure. Automat. Remote Contr.. 1971, 32(10): 1560-1567.
    166 M. Mariton. Jump linear quadratic control with random state discontinuities. Automatic. 1987, 23(2): 237-240.
    167 M. Mariton. Detection delays,false alarm rates and the reconfiguration of control systems. International Journal of Control. 1989, 49(3): 981-992.
    168 L. Gao, Y. Wu. Exponential stability of discrete time-varying purturbed Markov switched systems with impulsive jump. Proceedings of the World Congress on Intelligent Control and Automation (WCICA). 2006, 319-323.
    169 L. Gao, Y. Wu. A LMI-based approach for robust stabilization of uncertain linear continuous time singular Markov switched systems with time delays. 2006 Chinese Control Conference Proceedings, CCC 2006. 2007: 844-849.
    170 V. Dragan, T. Morozan. Stabilization of discrete-time linear systems with Markov switching in the presence of delays in transmission of the date. Second International Conference on Innovative Computing, Information and Control, ICICIC 2007, 2008: 4428029.
    171 L. Gao, Y. Wu. A design scheme of variable structure H∞control foruncertain singular Markov switched systems based on linear matrix inequality method. Nonlinear Analysis: Hybrid Systems. 2007, 1: 306-316.
    172孙慧敏. Markov切换系统的鲁棒控制.南京理工大学博士论文. 2006.
    173 Y. Niu, D. W. C. Ho, X. Wang. Sliding mode control for Ito stochastic sys-tems with Markovian switching. Automatica. 2007, 43(10): 1784-1790.
    174 P. Shi, Y. Xia, G. P. Liu, D. Rees. On Designing of Sliding-Mode Control for Stochastic Jump Systems. IEEE Transactions on Automatic Control. 2006, 51(1): 97-103.
    175 M. Mariton. Jump Linear Systems in Automatic Control. New York: Marcel Dekker. 1990.
    176 E. K. Boukas, Z. K. Liu, P. Shi. Delay-dependent stability and output feed-back stabilization of Markov jump ystems with time-delay. IEE Proc Con-trol Theory Appl. 2002, 149(5): 379-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700