用户名: 密码: 验证码:
引入辐射能信号的锅炉燃烧检测及优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火电厂炉内燃烧检测的手段和方法,受制于炉内强烈的燃烧行为。由于无法克服的传统热量信号对燃料扰动的滞后,采用新的控制理论和先进算法,来尝试提高机组负荷控制及燃烧优化控制的品质,效果并不明显。利用数字图像处理技术,通过对火焰图像的深度挖掘,从炉膛燃烧的火焰图像中提取辐射能信号作为中间桥梁,利用辐射能信号快速反映炉内燃烧工况的特性,把燃烧率和风煤比关联起来,将其引入到机组负荷控制和燃烧优化控制回路,是一种全新的策略。
     本文分析了炉内燃烧监测及燃烧优化控制的现状,以燃烧火焰图像为出发点,全面分析了辐射能信号的应用进展,依据炉膛辐射能信号的检测原理,独立设计了300MW火电机组炉内燃烧图像的实时检测系统,并对其硬件配置及软件进行了分解设计。
     提出了基于多测点、三维空间辐射图像的炉膛辐射能信号检测方法,得到了12只火焰图像探测器依不同加权和所提取的辐射能信号,并从原理上对其提取机理进行了分析,与传统热量信号进行了比较。
     在定量描述辐射能信号在机组热力系统的关联作用的基础上,从热力过程的动态特性出发,通过炉内的辐射能表征,探讨了辐射能信号在热力过程中的变化规律,通过对燃料量扰动、二次风量和摆角等一系列实验,获得了炉膛辐射能信号的动态变化特性,得到炉内的辐射传热、烟气侧对流换热与炉膛燃烧强度的关系,并以此进行了仿真,证明了辐射能信号引入到机组控制的可行性。
     针对传统的机炉协调控制的缺陷,提出将辐射能信号引入到机组负荷控制的策略,将辐射能信号引入到协调炉侧的调节系统中参与燃料控制的内回路过程调节,使燃料量主令信号提前响应燃烧扰动,提高了机组负荷和主蒸汽压力调节的品质。
     在分析炉膛辐射能信号与风煤比关联作用的基础上,在锅炉送风自动调节系统中,设计并投入以辐射能为寻优目标的锅炉氧量寻优控制。在给煤率保持稳定的工况下,启动锅炉燃烧配风自寻优功能,以辐射能信号最大为目标,自动寻找最佳的燃烧配风量,机组整体效率提高了1%,NOx排放平均减少12%以上,具有良好的经济效益和环保价值。
     引入辐射能信号到DCS相关控制回路的设想,是对传统机炉协调控制及锅炉燃烧优化控制在概念上的拓展。通过本文的研究,有效地解决了从炉侧热量信号到机侧实发功率控制响应中的“快-慢-快”向“快-快”转移的技术难题,对于燃烧及相关回路的优化调节,提供了一个非常有效的手段。
Test method of combustion is strongly restricted by combustion behavior in coal-fired power plant boiler furnace. It is not obvious to improve the quality of load and combustion control at adopting new control theories and advanced algorithm, due to the lag of traditional caloric signal with the disturbance of coal quality or quantity. By digital image processing technique and deep excavation of flame image, obtained principle of Radiant Energy Signal(RES or E) is put forward. This is a new control strategy at inducing E into load and oxygen control circuit, which E gotten from combustion flame images is as a bridge.
     In this paper, present condition of boiler combustion monitoring and its optimizing control is analyzed. A set of flame image monitoring system in a 300MW coal-fired power plant has been designed according to the synthetic method of reference thermometric in boiler furnace. Hardware and software of the system are also designed at that time.
     The comparison between E and traditional caloric value signal is carried out. According to the principle and characteristic of synthetic method, a kind of monitoring method about E is put forward based on multipoint and three-dimensional flame images, which is obtained from a dozen of CCD cameras by weighted sum of different installed position and their parameter settings.
     On the basis of quantitative described correlation of E in thermodynamic system, the change regularity of E is researched, with the regulating capacity of the disturbance of total coal, secondary air register and tilt angle. At the same time, the dynamic characteristic of E is gotten, among the relationship of E with heat transfer in furnace and heat convection in flue gas. It is feasible to introduce E into load control circuit in simulation study.
     A new coordinate control model on inducing E, where it is against the defect of traditional coordinated control system, is put forward as a command signal, due to the fact that the burning rate may be rapidly responded combustion in furnace. This new control strategy in inner circuit of fuel, by using RES, instead of calorific value signal and pressure signal, is useful for increasing the dynamic characteristics of stabilization of load and pressure.
     Traditional combustion control strategy has been meliorated by inducing radiant energy signal(E) into oxygen control circuit on the basis of analyzing the association between E and air/coal ratio. Through modification and in-situ operation, the control property under the optimized air/coal ratio can always hold the E in high-level and response combustion condition correctly. The new industrial scheme is proved to improve the efficiency of unit about 1%, reduced discharge of pollution (NOx) above 12%. It is an ideal concept for economy and environmental protection.
     It is a stretch in concept to traditional coordinated control system at introducing RES into duct pilot in this paper. Through the research of this paper, the technical puzzle from“fast-slow-fast”to“fast-fast”, which is more quick response to the disturbance of fuel as opposite to caloric value signal, has been resolved. It provides an available method of optimized combustion accommodation implemented here.
引文
[1]《文汇报》:经济观察. 2006.10.23, No.179, pp13.
    [2] BP与国家发展和改革委员会能源局、国家统计局工业交通司.《BP世界能源统计2005》和《中国能源统计年鉴2004》. 2005.6.
    [3]《瞭望》新闻周刊:党中央将节约能源资源提升到新的战略高度.中共中央政治局第二十三次集体学习资料. 2005.7, No.27.
    [4]徐伟,周璟.我国电力工业现状分析.苏州丝绸工学院学报. 2000, 6: 76-81.
    [5]王璋保.节能—我国能源可持续发展的重要组成部分.工业加热. 2001, 2:1-5.
    [6]曾汉才主编.燃烧与污染.武汉:华中理工大学出版社, 1992.
    [7]岑可法.洁净煤技术的研究与发展.动力工程. 1997, 17(5):15-20.
    [8]白先忠著,陆重庆译.现代与未来的燃煤技术.中国电力, 1995, 28(3):55-59.
    [9] A. Williams. Modeling of Coal Combustion in Low NOx. Journal of Flames and Fuel. 1994, 73(7): 1006-1016.
    [10]江登飞.增强环保意识促进环保科技发展.矿业. 1994, 12:86-89.
    [11]侯君实,王有禹.能源环保与电子技术.冶金能源. 1994, 3:3-6.
    [12] X. Querol, J. L. Ferandez-Turie and A. Lopez-Soler. Trace element in coal and their behavior during combustion in a large power station. Fuel. 1995, 74(3): 331-343.
    [13]王磊,宁大同.区域能源—工业经济—环境系统协调发展灰色决策.北京师范大学学报(自然科学版). 1995, 3:134-139.
    [14]章明耀.关于我国发展先进燃煤发电技术的建议.动力工程. 1994, 14(2):1-8.
    [15]李蕾.控制空气污染的对策和发展战略.环境保护. 1995, 7(1):5-7.
    [16]张慧琴.中国火电发展环境效益初探.中国能源. 1995, 13(3):47-49.
    [17]曾汉才.煤的洁净燃烧与环境保护.湖北电机工程学会锅炉专业委员会专题报告. 1994, 3.
    [18]赵宗让摘译.通过锅炉燃烧优化控制NOx排放.锅炉技术. 1995, 10:24-25.
    [19]姜克携.国内外电力工业发展现状.中国能源. 1994, 4:20-24.
    [20] T.Hirano,S.Ishizukea,T.Tusuruda,T.Hasegawa and S.Mochida. The Potential of Visualization for Studies on Flames and Furnaces. Fuel. 1994, 73(11):1697-1709.
    [21] S.M.Tieng, C.C.Lin, Y.C.Wang and T.Fujiwara. Effect of Composition Distribution on Holographic Temperature Measurement of a Diffuse Flame. Measurement Science Technology. 1996, 21(7):477-488.
    [22] T.Dyakowski. Process Tomography Applied to Multi-phase Flow Measurement. Measurement Science Technology. 1996, 21(7):343-3537.
    [23] L.S.Yuen, E.Peters, R.P.Lucht.Presure. Dependence of Laser-Induced Fluorescence form Acetone. Applied Optics. 1997, 36(15):3271-3277.
    [24]刘维亚译.用火焰图像识别技术诊断煤粉炉燃烧.华中电力. 1991, 1:68-72.
    [25] M. Shimoda, A. Sugano, T. Kimura, et al. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame. IEEE Trans. Energy Conversion. 1990, 5(4):640-645.
    [26] Y. Huang, Y. Yan, G. Riley. Vision-based Measurement of Temperature Distribution in a 500-kW Furnace Using the Two-color Method. Measurement. 2002, 28:175-183.
    [27] G. Lu, Y. Yan. Temperature profiling of pulverized coal flames using multi-color pyrometric and digital imaging techniques. IEEE Transactions on Instrumentation and Measurement. 2006, 55(4):1303-1308.
    [28] G. Lu, Y. Yan, and M. Colechin. A digital imaging based multifunctional flame monitoring system. IEEE Trans. on Instrum. and Meas.. 2004, 53(4):1152-1158.
    [29] Collins.S. Advanced flame monitors take on combustion control. Power. 1993, 10: 75-77.
    [30] Mitsubishi Heavy Industrials, Ltd. Specification of flame detector. 1997.
    [31]吴占松.发光火焰的图像处理及其在燃烧检测中的应用:[博士学位论文].清华大学. 1988.
    [32]薛飞.基于辐射图像长的火焰温度场测量研究:[博士学位论文].浙江大学. 1999.
    [33]薛飞,李晓东等.基于面阵CCD的火焰温度场测量方法研究.中国电机工程学报. 1999, 19(1):39-41,66.
    [34]王飞,薛飞等.运用彩色CCD测量火焰温度场的试验研究及误差分析.热能动力工程. 1998, 13(2):81-84.
    [35]卫成业,严建华等.利用面阵CCD进行火焰温度分布测量(I)——二维投影温度场的测量.热能动力工程. 2002, 17(1):58-61.
    [36]余岳峰,赵铁成,徐伟勇.煤粉燃烧火焰的三色法温度测量.上海交通大学学报. 2000, 34(9):1257-1260.
    [37]王式民,吕震中,麻庭光.图像处理技术在全炉膛火焰监测中的应用.动力工程. 1996, 16(6):68-72.
    [38]苏红雨.电站锅炉炉膛温度分布测量仪的研制.计量学报. 2000, 21(1):134-140.
    [39]周怀春,娄新生等.炉膛火焰温度场图像处理试验研究.中国电机工程学报. 1995, 15(5):295-300.
    [40]盛锋,周怀春等.基于针孔成像模型的炉膛辐射能成像快速法.华中理工大学学报. 2000, 28(5):95-97.
    [41]盛锋,周怀春等.基于图像处理及辐射传热逆问题求解的二维炉膛温度场重建.中国电机工程学报. 1999, 19(10):1-5.
    [42]娄春,韩曙东等.一种煤粉燃烧火焰辐射成像新模型.工程热物理学报. 2002, 23 (增刊):93-96.
    [43] Zhou HC, Han SD, Lou C et al. A new model of radaitive image formation used in visualization of 3-D temperature distributions in large-scale furnaces. Numerical Heat Transfer, B. 2002, 42(3): 243-258.
    [44] Zhou HC, Sheng F, Han SD et al. A fast algorithm for calculation of radiative energy distributions received by pinhole image-formation process from 2D rectangular enclosure. Numerical Heat Transfer Applications. 2000, 38(7): 757-773.
    [45] Zhou HC, Sheng F, Han SD et al. Reconstruction of Temperature Distribution in a 2-D Absorbing-Emitting System from Radiant Energy Images. JSME International Journal, Series B. 2000, 43(1): 104-109.
    [46] Zhou HC, Sheng F, Han SD et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies. Journal of Quantitative Spectroscopy and Radiative Transfer. 2002, 72: 361-383.
    [47]韩曙东,周怀春,盛锋,等.基于具有明显测量误差的辐射图像的二维炉膛温度分布重建和快速特征识别研究.中国电机工程学报. 2000, 20(9): 67-71.
    [48]盛锋.基于辐射成像逆问题求解的温度场重建方法研究:[博士学位论文].华中理工大学. 2000.
    [49]韩曙东.大型燃煤锅炉炉膛温度场重建逆问题研究:[博士学位论文].华中科技大学. 2002.
    [50]刘浩,周怀春,娄春,等.燃煤锅炉炉膛断面温度场可视化实验研究.热科学与技术. 2003, 2(3):250-254.
    [51]吴峰,艾育华,娄春,周怀春.蜡烛火焰三维温度场重建实验研究.工程热物理学报. 2003, 24(5):894-896.
    [52]曾佳,娄春,程强,等.大型电站锅炉炉内三维燃烧温度场可视化实验研究.工程热物理学报. 2004, 25(3):523-526.
    [53] Lou C, Zhou HC. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation. Combustion and Flame. 2005, 14(3): 97-105.
    [54] Zhou HC, Lou C, Cheng Q et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute. 2005, 30: 1699-1706.
    [55]张师帅.基于辐射能信号反馈的锅炉燃烧与机组负荷控制:[博士学位论文].华中科技大学. 2002.
    [56] Soteris A.Kalogiou. Applications of artificial neural network for energy systems. Applied Energy. 2000, 67(1/2):17-35.
    [57] Tokio Ohta. Energy systems and adaptive complexity. Applied Energy. 2000, 67(1/2):3-16.
    [58] Mohamed B.Grad. Design and simulation of a new energy conscious system. Applied Energy. 2000, 65(1/4):355-366.
    [59] V.R.Tarnawski. Modeling approaches to predicting thermal conductivity of soils at high temperature. Int.J.Energy Res. 2000, 24(5):403-423.
    [60] F.Valenciaga. An adaptive feedback linearization strategy for variable speed wind energy conversion systems. Int.J.Energy Res. 2000, 24(2):151-161.
    [61] YiGuo, David.J.Hill, Youyi Wang. Nonlinear decentralized control of large-scale power systems. Automatic. 2000, 36(9):1275-1289.
    [62] K.Jastrom, R.D.Bell. Drum-boiler dynamics. Automatic. 2000, 36(3):363-378.
    [63] C.Bonivento, L.Marconi, R.Zanasi. Output regulation of nonlinear systems by sliding mode. Automatic. 2001, 36(3): 535-542.
    [64] C.Ham. Nonlinear learning control of a class of nonlinear systems. Automatic. 2001, 37(3):419-428.
    [65] I.D.Landau. Recursive identification algorithms for continuous-time nonlinear plants operating in closed loop. Automatic. 2001, 37(3):469-475.
    [66] C.Wu, V.Nikulshin. Method of thermo-economical optimization of energy intensive systems with linear structure on graphs. Int.J.Energy Res.. 2000, 24(7):615-623.
    [67] Irene Lasiecka, Blaise Morton. Control Problems in industry. Automatic. 2000, 36(3):481-483.
    [68] Kocaarslan. Application of Adaptive Control Concept in A 750MW Coal Fired Power Plant. 12th Triennial World Congress. Sydney, Australia. 1993, 711-718.
    [69] G.Irwin. Neural Network Modeling of A 200MW Boiler System. IEE Proceedings Control Theory Application. 1995, 142(6): 529-536.
    [70] R.Kulessky, G.Nudelman, et al. Thermal Power Plant Dynamics Identification. Proceeding of the American Control Conference. San Diego, California. 1999:843-847.
    [71] U.Holmberg, S.Valentinotti, et al. An identification-for-control procedure with robust performance. Control Engineering Practice. 2000, 8:1107-1117.
    [72] Vlad Ionescu. Generalized Popov theory applied to state-delayed systems. Automatic. 2001, 37(1):91-97.
    [73] Abdallah Al-shehri. A simple forecasting model for industrial electric energy consumption. Int.J.Energy Res.. 2000, 24(8):719-726.
    [74] Vincent D.Blondel, John N.Tsitsiklis. A survey of computational complexity results in systems and control. Automatic. 2000, 36(9):1249-1274.
    [75] C.Kambhampati, J.D.Mason, K.Warwick. A stable one-step-ahead predictive control of non-linear systems. Automatic. 2000, 36(4):485-495.
    [76] Alessandro Astolfi, Patrizio Colaneri. Trading robustness with optimality innonlinear control. Automatic. 2001, 37(12):1961-1969.
    [77] Anders Stenman, Fredrik Gustafsson. Adaptive smoothing methods for frequency-function estimation. Automatic. 2001, 37(5):675-685.
    [78] M.Staroswiecki, G.Comtet-Varga. Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatic. 2001, 37(5):687-699.
    [79] H. Nakamura and M. Uchida. Optimal regulation for thermal power plants. IEEE Control Systems Magazine, 1989, 91(1): 33-38.
    [80] K. J. Astrom and K. Eklund. A simplified non-linear model of a drum boiler-turbine unit. International Journal of Control, 1972, 16(1): 145-149.
    [81] E. D. Neuberger and J. W. Komer. Closed loop O2 control is key to efficient combustion control. Control and Instrumentation, 1978, 7(1):73-86.
    [82] M.P.Ramenskii and A.D.Griga. A Method for Optimizing the Reduction of Nitrogen Oxide Emissions. Thermal Engineering. 2000, 47(7): 649-652.
    [83] Cheres E. Small and medium size drum boiler models suitable for long term dynamic response. IEEE Tran. On Energy Conversion. 1990, 5(4):686-692.
    [84] Lu S, Hogg B W. Predictive coordinated control for power-plant steam pressure and power output. Control Engineering Practice. 1997, 5(1):79-84.
    [85] Abdennour A B. An autonomous control system for boiler-turbine units. IEEE Trans. On E.C.. 1996, 11(2):401-406.
    [86]李遵基.热工自动控制系统.北京:中国电力出版社. 1997.
    [87]罗万金.电厂热工过程自动调节.北京:水利电力出版社. 1990.
    [88]中国动力工程学会主编.火力发电设备技术手册[第三卷:自动控制].北京:机械工业出版社. 2001.
    [89]朱匡一,张祥林. 350MW机组协调及燃烧控制系统的改进.华东电力. 1989, 1:18-22.
    [90]李希武.直接能量平衡法协调控制系统分析.中国电力. 2000, 33(6):65-69.
    [91]徐胜荣.计算机图像处理.杭州:浙江大学出版社. 1990.
    [92]郑昶,曹在基. DEB协调控制系统.动力工程. 1989, 4:1-9.
    [93]王东风,韩璞,曾德良.单元机组协调控制系统发展和现状.中国电力. 2002,35(11):69-73.
    [94]罗作桢.机炉协调控制系统评述.自动化博览. 1998, 18(4):3-7.
    [95]刘伟,孙学勤.机炉能量直接平衡控制策略论述.云南电力技术. 2000, 28(3):1-3,9.
    [96]李遵基.苏联210MW机组协调控制系统分析.华北电力学院学报. 1990, 4:13-20.
    [97]张法文.直流炉单元机组自动调节系统.北京:水利电力出版社. 1986.
    [98]郑昶.协调控制系统机组实时能力识别限幅.动力工程. 1991, 11(5):31-41.
    [99]曾德良.基于速率优化的智能协调控制系统的研究和应用:[博士学位论文].保定:华北电力大学. 1999.
    [100]田亮,曾德良,刘鑫屏,刘吉臻. 500MW机组简化的非线性动态模型.动力工程. 2004, 24(4):522-525.
    [101]陈宇,刘吉臻,张阔.电站锅炉燃烧稳定性诊断模型的研究.华北电力大学学报. 2005, 32(2):50-53.
    [102]赵文杰,刘吉臻,刘延泉.基于T-S模型的非线性系统控制方法.华北电力大学学报. 2003, 30(3):48-52.
    [103]赵征,曾德良,田亮,刘吉臻.基于数据融合的氧量软测量研究.中国电机工程学报. 2005, 25(7):7-12.
    [104]田亮,刘鑫屏,赵征,刘吉臻.一种新的热量信号构造方法及实验研究.动力工程. 2006, 26(4):499-502.
    [105]韩忠旭,张智,齐小红.机炉协调多变量受控系统线性增量形数学模型分析.中国电机工程学报. 2005, 25(7):24-29.
    [106]韩忠旭.增量式函数观测器的概念及其状态反馈控制系统的应用.中国电机工程学报. 2004, 24(4):210-216.
    [107]刘志远,吕剑虹,陈来九.基于RBF神经网络的单元机组负荷系统建模研究.控制与决策. 2003, 18(5):637-640.
    [108]李益国,沈炯,吕震中,等.基于单向解耦的火电机组负荷最优预见控制方法.动力工程. 2004, 24(5):664-668.
    [109]姚峻,高磊,等. 900MW超临界机组协调控制及AGC策略的研究与应用.中国电力. 2005, 38(8):62-65.
    [110]沙友平,王利国,管春雨.超临界机组典型系统的控制策略.中国电力. 2006, 39(3):82-85.
    [111]朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用.中国电机工程学报. 2005, 25(7):34-40.
    [112]沈炯.火电单元机组协调控制系统的自整定:[博士学位论文].东南大学. 1993.
    [113]沈炯,金林,陈来九.火电单元机组负荷预见控制系统仿真研究.中国电机工程学报. 1999, 19(3):14-17.
    [114]于达仁,徐志强,翁一武,等. DEB的新认识-增益调度控制.热能动力工程. 1999, 14(9):379-381.
    [115]陈来九.单元机组协调控制系统策略.火电厂热工自动化. 1993, 6(1):1-5.
    [116]沈炯,顾峻,吕震中,等.新型均衡燃烧控制系统的设计及应用研究.中国电机工程学报. 2000, 20(10):80-83.
    [117]滕卫明,王春利,高海东,等.应用于机炉协调控制的能量平衡与主汽压力调节相结合的控制策略.热力发电. 2005, 6:42-44.
    [118]侯子良.中国火电厂自动化发展趋势及对策.中国电力. 1999, 32(10):41-45.
    [119] P.H.Jenkins and A.H.Williams. Self-optimizing Combustion Control of an Oil-fired Power Station Boiler. IEE Proceedings. 1981, 128(2): 843-849.
    [120] Muzio, L.J.,Eskinazi, D.and Green,S.F. Acoustic Pyrometry: New Boiler Diagnostic Tool. Power Engineering. 1989, 11:49-52.
    [121]周昊,朱洪波,曾庭华,等.基于人工神经网络的大型电厂锅炉飞灰含碳量建模.中国电机工程学报. 2002, 22(6):96-100.
    [122]王满家.能量平衡法及在线热效率的研究与应用.中国电力. 1995, 28(12):38-41.
    [123]周昊,朱洪波,曾庭华,等.基于遗传算法的燃煤锅炉热效率优化.中国电机工程学报. 2002, 22(7):125-128.
    [124]韩昭沧.燃料与燃烧.北京:冶金工业出版社(第二版). 1993:179-183.
    [125]周怀春,韩才元.煤粉燃烧火焰颜色定量分析实验研究.中国电机工程学报. 1993, 13(1):44-49.
    [126]卫成业.人工神经网络在火焰图像比色测温法中的应用.热力发电. 2001, 2:28-30.
    [127]常瑞丽,王飞,黄群星,等.煤粉炉内辐射能信号光谱分布特性试验研究.发电设备. 2006, 2:81-84.
    [128]常瑞丽,王飞,黄群星,等.电站煤粉锅炉火焰监测与燃烧诊断优化控制研究.能源工程. 2006, 4:10-13.
    [129]王新军.火焰可视化及燃烧智能诊断研究:[硕士学位论文].浙江大学. 2002.
    [130]杨大锚,刘禾,李晟.炉内辐射能的测量理论分析和试验研究.现代电力. 2006, 23(4):53-56.
    [131]陈伟荣,崔巍,等.基于辐射能信号的机组负荷及燃烧控制优化.华东电力. 2006, 34(7):79-82.
    [132]马涛,徐向东,王鑫鑫.基于辐射能信号的锅炉燃烧调节系统研究.电站系统工程. 2004, 20(1):52-54.
    [133]马涛,徐向东,王鑫鑫.基于辐射能检测的智能燃烧进化优化系统研究.热能动力工程. 2004, 19(3):281-284.
    [134]黄勇理,瞿坦,周怀春,等.炉内辐射能检测及燃烧补偿控制装置设计.自动化与仪表. 2000, 15(1):21-25.
    [135]徐明厚,郑楚光,等.燃煤锅炉燃烧过程与NOx排放的模型与数值计算.工程热物理学报. 2001, 22(2):249-253.
    [136] Bertucco L., Fichera A., Nunnari G.. A cellular neural networks approach to flame image analysis for combustion monitoring. Proceedings of 6TH IEEE International Workshop on Cellular Neural Networks and Their Applications. pp.455-459, 2000.
    [137] P.B.Brisley, G. Lu, Y. Yan, S. Cornwell. Three dimensional temperature measurement of combustion flames using a single monochromatic CCD camera. IEEE Transactions on Instrumentation & Measurement. 2005, 54(4):1417-1421,.
    [138] R. Chellappa, B. Girod, et al.. The past, present, and future of image andmultidimensional signal processing. IEEE Signal Processing Magazine. The image and multidimensional signal processing technical committee, pp.21-58, 1998.
    [139] H.C. Bheemul, G. Lu, and Y. Yan. Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame. IEEE Trans. Instrum. Meas.. 2005, 54(3):1073-1078.
    [140] W. Phillips, M. Shah, and N. Da Vitoria Lobo. Flame recognition in video. Fifth IEEE Workshop on Applications of Computer Vision. 4-6 Dec. 2000 pp.224-229.
    [141] O.A. Plumb and R.F. Richards. Development of an Economical Video Based Fire Detection and Location System. Washington State University, July 1996.
    [142] R.D. Cutting and I. McC. Stewart. Furnace temperature profiles: measurement by spectroscopic methods. Applied Optics. 1975, 14(11):2707-2711.
    [143] Woon Bo Baek, Sung Jin Lee, et al. Flame image processing & analysis for optimal coal firing of thermal power plant. 2001 IEEE ISIE, Pusan, Korea, Vol.2, pp.928-931, 2001.
    [144] K. Ohtake and K. Okazaki. Optical CT measurement and mathematical prediction of multi-temperature in pulverized coal combustion field. International Journal of Heat and Mass Transfer. 1998, 31(2):397-405.
    [145]王补宣,李天铎,吴占松.图像处理技术用于发光火焰温度分布测量的研究.工程热物理学报. 1989, 10(4):446-448.
    [146] Z.S.Wu and M.Nakayama. A New Method to Measure Three Dimensional Temperature Distribution of Pulverized Coal Flame. Proceedings of 2nd International Symposium on Coal Flame, Oct. 7-10, Beijing, 1991:799-804.
    [147]朱林忠,周昊,岑可法.引入等效相对热值的锅炉燃烧控制系统.中国电机工程学报. 2002, 22(12):156-160.
    [148]马平,朱燕飞,牛征.基于神经网络的主汽温控制系统.华北电力大学学报. 2001, 28(2):52-55.
    [149]孙建平,梅华,杨振勇.应用模糊预测控制实现主汽温控制.华北电力大学学报. 2003, 30(2):49-52.
    [150]于湘涛,刘红军,王晓慧,李锋.基于内模PID控制的火电厂主汽温控制系统.自动化技术与应用. 2003, 22(7):50-52.
    [151]刘徽,吴宏伟,王耀青.在线调节风煤比的智能燃烧优化控制系统设计.电站系统工程. 1996, 12(12):46-56.
    [152]肖文武,陶欣欣,白顺义.主汽温模糊控制算法在镇海电厂#5机组上的应用.自动化博览. 2004, 21(2):28-29.
    [153] S. Matsumura, K. Ogata, S. Fujii, H. Shioya. Adaptive control for the steam temperature of thermal power plants. Proceedings of the 1998 IEEE. International Conference on Control Applications. Trieste, Italy, 1-4 Sep. 1998, pp.1105-1109.
    [154] Tommy Moelbak. Advanced control of superheater steam temperatures-an evaluation based on practical applications. Control Engineering Practice. 1999, 7(1):1-10.
    [155] Hong Zhao, John Guiver, et al. A nonlinear industrial model predictive controller using integrated PLS and neural net state-space model. Control Engineering Practice. 2001, 9(3):125-133.
    [156] Kwang Y. lee, Robert M.Edwards, Takashi Hiyama. Combined research and curriculum development for power plant intelligent distributed control. Transactions on Energy Conversion. 1999, 14(3):817-823.
    [157] Raul G. R., Kwang Y. Lee. Fuzzy coordinated control of a power unit. Power Engineering Society 1999 Winter Meeting, IEEE Volume 1, 1999, 31 Jan.-4 Feb. pp.134-139.
    [158]张师帅,周怀春,等.采用辐射能反馈信号的火电单元机组负荷控制系统仿真研究.中国电机工程学报. 2001, 21(2):85-88.
    [159]李阳春,卫成业,罗志浩,蒋静坪.以炉膛辐射能信号为中间被调量的串级模糊调节策略研究.中国电机工程学报. 2001, 21(6):80-83,89.
    [160]于达仁,范轶,徐志强.炉膛辐射能信号和热量信号的信息融合方法.中国电机工程学报. 2003, 23(4):158-161,171.
    [161]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社. 2005.
    [162] Kurihara et al.. A combustion diagnosis method for pulverized coal boilers using flame recognition technology. IEEE Trans. On Energy Conversion. 1986, 1(2): 99-103.
    [163] S.Collins. Advanced flame monitors take on combustion control. Power. 1993, 10:75~77
    [164] Correia D P, Ferrao P, Calderira-Pires A. Advanced 3D emission tomography flame temperature sensor. Combustion Science and Technology. 2001, 16(3):1-24.
    [165]高伟主编. 300MW火力发电机组丛书(第四分册)-计算机控制系统.北京:中国电力出版社. 2000.
    [166]王耀青,刘微.在线调节风/煤比实现经济燃烧控制.中国电力. 1997, 30(2): 14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700