用户名: 密码: 验证码:
分形理论及其在多孔介质和纳米流体热导率上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先对分形几何和热传输性质的基本理论作了简要的综述,然后主要研究了弯曲度分形维数的分析解模型、两相和三相多孔介质有效热导率的一般模型和纳米流体有效热导率。
     在本文第二部分,建立了弯曲度分形维数DT的分析解模型,该模型表示为孔隙率和介质微结构参数的函数,在该模型中没有经验常数。通过与实验作比较,证实了该模型的正确性。该模型的建立对于深刻理解多孔介质输运性质(渗透率、热传导和扩散)的机理有重要的指导意义。
     在第三部分中,基于多孔介质具有统计自相似的特征和热-电类比模拟技术,本文建立了两相多孔介质热导率的一般模型。将谢尔宾斯地毯的边长选定为13,通过改变颗粒尺寸C (=3, 5, 7和9)的大小模拟孔隙率范围在0.14~0.80的多孔介质。多孔介质有效热导率可以表示为孔隙率(与阶数n相关),面积比,组成成分热导率之比和接触热阻的函数。本模型有效热导率的计算方法简单。与其他模型相比,本模型中参数较少,且每个参数都有明确的物理意义。在孔隙率为0.14~0.80的较大范围内,本模型的预测与其它模型和实验数据都吻合得很好。接着,将两相多孔介质热导率的一般模型推广到三相(未饱和)多孔介质热导率的一般模型,该分形几何模型也是基于电—热模拟方法和多孔介质统计自相似特性。在该模型中仍将谢尔宾斯地毯的边长选定为13,通过改变颗粒尺寸C (= 5, 7和9)的大小模拟孔隙率范围在0.14~0.60的多孔介质。本模型有效热导率的计算方法简单。三相(未饱和)多孔介质有效热导率可以表示为孔隙率(与阶数n相关)、面积比( Ant / A)、微结构尺寸(L和C)、组成成分热导率之比和饱和度的函数。本模型中参数较少,且每个参数都有明确的物理意义。在孔隙率0.14~0.60的范围内,本模型的预测值与实验数据吻合的很好。
     本文第四部分对纳米流体导热系数进行了初步的理论研究。在考虑到纳米颗粒尺寸的分形分布和纳米颗粒在液体中做布朗运动导致对流换热的基础上,采用Monte Carlo方法和分形几何理论,本文建立了纳米流体有效热导率的分形模型。建立的模型表示成纳米颗粒热导率、基础液体的热导率、纳米颗粒尺寸、随机数、纳米颗粒体积份额和温度的函数。模型预测值与实验数据相比较,两者很好地相吻合。此外,在综合考虑液膜层和纳米颗粒凝聚的基础上提出了一个新的纳米流体等效热导率的理论模型。该模型等效热导率的大小与纳米流体的一些参数(颗粒和基础液体的热导率、纳米颗粒尺寸、纳米颗粒的体积份额和液膜层的厚度)紧密相关。将模型预测值与实验值进行比较,发现两者很好地相吻合,从而证实了本模型的有效性。
First, the fractal geometry theory and heat transfer in porous media are addressed. The focuses of this dissertation are involved in developing an analytical model for tortuous fractal dimension, a generalized model for the thermal conductivity of two-phase and three-phase porous media and the thermal conductivity of nanofluids.
     In Chapter 2, an analytical expression for the fractal dimension for tortuous capillaries in porous media is derived and found to be a function of porosity and microstructures of porous media. There is no empirical constant in the proposed fractal dimension. The present model for the fractal dimension is verified by a comparison with the available analogy model. The present model may have the potential and significance on fractal analysis of transport properties (such as the permeability, dispersion, thermal and electrical properties) in porous media.
     In Chapter 3, a generalized model for the thermal conductivity of two phase porous media is derived based on the self-similarity existing in porous media and thermal-electrical analogy technique. In this model, the geometry model, Sierpinski carpet, is chosen to approximate the statistically self-similar porous media. The Sierpinski carpets with the same side length L=13 and different cutout sizes C (=3, 5, 7 and 9) and the different fractal dimensions are adopted to model the real porous media in a wide range of porosities, 0.14~0.80. The present model for the thermal conductivity of porous media is found to be a function of the porosity (related to stage n of Sierpinski carpet), the ratio Ant / A of areas, the ratioβof component thermal conductivities, contact thermal resistance t + and microstructures L and C. This model has the least parameters, Ant / A and t +, compared to the other models and every parameter in this model has clear physical meaning. The model predictions are compared with the existing experimental data and other models’, and the results show that the present model presents a good agreement with the existing experimental data in a wide range of porosities, 0.14~0.80. Furthremore, the proposed thermal conductivity model for two-phase porous media is then extended to analyze unsaturated/three-phase porous media. The Sierpinski carpets with side length L = 13 and cutout sizes C = 5, 7 and 9, respectively, depending on the porosity concerned. The recursive formulae are presented and expressed as a function of porosity, ratio of areas, ratio of component thermal conductivities, and saturation. The model predictions are compared with those of available experimental data, and good agreement between them in a wider range of porosities 0.14~0.60 is obtained.
     The effective thermal conductivity of nanofluids is studied in Chapter 4. First, the Monte Carlo simulations combined with the fractal geometry theory are performed. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle’s sizes and the effective thermal conductivity model are derived, in which the effect of the micro-convection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles and the temperature, as well as random number. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data. Then, by taking into account the nanolayer and nanoparticles’aggregation, a new model for the effective thermal conductivities of nanofluids is proposed. This model is expressed as a function of the thickness of nanolayer, the nanoparticle size, the nanoparticle volume fraction and thermal conductivities of suspended nanoparticles and base fluid. The theoretical predictions on the effective thermal conductivities of nanofluids are shown to be in good agreement with the available experimental data. The validity of the proposed model is thus verified.
引文
[1] Mandelbrot B B. The Fractal Geometry of Nature, San Francisco, Freeman, 1982
    [2] Feder J. Fractals. Plenum Press, New York, 1988
    [3] Sahimi M. Flow and Transport in Porous Media and Fractured Rocks. Germany, VCH Verlagsgesellshaft mbH, 1995
    [4] Hutchinson J. E. Fractals and self similarity. Indiana University Math. J., 1981,30: 713~747
    [5]张济忠.分形[M.].北京:清华大学出版社,1995.
    [6]张志三.漫谈分形[M.].湖南:湖南教育出版社,1993.
    [7]黄昀.分形维数和分形凝聚.物理,1986,15(5):269-274
    [8]戴锅生.传热学[M.].北京:高等教育出版社,1991.
    [9]杨世铭,陶文铨(第三版).北京:高等教育出版社,1998.
    [10]许国良,王晓墨,邬田华等.工程传热学.北京:中国电力出版社, 2005
    [11] Adler P M, Thovert J -F. Real porous media: local geometry and macroscopic properties. Appl. Mech. Rev., 1998, 51(9): 537~585
    [12] Adler P M. Transports in fractal porous media. J. of Hydrology, 1996, 187: 195~213
    [13] Thovert J F, Wary F, Adler P M. Thermal conductivity of random media and regular fractals. J. Appl. Phys., 1990, 68(8): 3872~3883
    [14]郁伯铭.多孔介质输运性质的分形分析研究进展.力学进展, 2003, 33(3): 333~346
    [15] Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett., 1985, 54: 1325~1328
    [16] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. of Tribology, 1990, 112: 205~216
    [17] Yu B M(郁伯铭), Li J H. Some fractal characters of porous media. Fractals, 2001, 9(3):365~372
    [18] Yu B M(郁伯铭). Comments on“Reexamination of correlations for nucleate sitedistribution on boiling surface by fractal theory”. J. Thermal Sci., 2002, 11(4): 383~384
    [19]谢和平.粘土介质的分形孔隙和分形粒子.力学进展,1993, 23(2): 145~164
    [20]张志三.漫谈分形.湖南教育出版社,1993: 110~111
    [21]刘式达,刘式适.分形和分维引论.气象出版社,1993: 17~20
    [22] Ramakrishnan B, Pitchumani R. Fractal permeation characteristics of performs used in liquid composite molding. Polym Comp, 2000, 21(2): 281~296
    [23] Krohn C E and Thompson A E., Fractal sandstone pores: automated measurements using scanning-electron-microscope images. Phys. Rev. B, 1986, 33: 6366~6374
    [24] Smidt J M and Monro D M, Fractal modeling applied to reservoir characterization and flow simulation. Fractals, 1998, 6: 401~408
    [25] Yu B M and Cheng P, A fractal permeability model for bi-dispersed porous media. Int. J. Heat and Mass Transfer , 2002, 45: 2983~2993
    [26] Feng Y J, Yu B M, Zou M Q and Zhang D M, A generalized model for the effective thermal conductivity of porous media based on self-similarity. J. Phy. D: Appl. Phys., 2004, 37: 3030~3040
    [27] Wheatcraft S. W. and Tyler S. W., An explanation of scale-dependent dispersitvity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res., 1988, 24: 566~578
    [28] Zhang B. Q. and Liu X. F., Effects of fractal trajectory on gas diffusion in porous media. AIChE J., 2003, 49: 3037~3047
    [29] Yu B. M., Fractal character for tortuous streamtubes in porous media. Chin. Phys. Lett., 2005, 22: 158~160
    [30] Yu B. M. and Li J. H., A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett., 2004, 21: 1569~1571
    [31] Feng Y J and Yu B M. Fractal dimension for tortuous streamtubes in porous media. Fractals, (accepeted)
    [32]陈善雄,陈守义,砂土热导率的实验研究.岩土工程学报,1994, 16: 47~53
    [33]陈福,徐志明,杨善让,散体热导率的实验研究.东北电力学院学报, 1997, 17: 1~5
    [34] Abu-Hamdeh N H, Khdair A I, Reeder R C., A comparison of two methods used to evaluate thermal conductivity for porous media. Int. J. Heat and Mass Transfer, 2001, 44: 1073~1078
    [35] Woodside W and Messmer J H, Thermal conductivity of porous media.Ⅱ.consolidates rocks, J. Appl. Phys., 1961, 32: 1699~1706
    [36] Crane R A, and Vachon R I, A prediction of the bounds on the effective thermal conductivity of granular materials Int. J. Heat Mass Transfer, 1977, 20: 711~723
    [37] Mourzenko V V, Thovert J -F, Adler P M. Percolation and conductivity of self-affine fractures. Phys. Rev. E, 1999, 59(4): 4265~4284
    [38]李小川,施明恒,张东辉,非均匀多孔介质有效热导率分析.工程热物理学报,2006, 27: 644-646
    [39] Kaviany M. Principles of Heat Transfer in Porous Media. Springer-Verlag, New York, 1995
    [40] Hadley G R, Thermal conductivity of packed metal powers. Int. J. Heat and Mass Transfer, 1986, 29: 909~920
    [41] Verma L S, Shrotriya A K, Ramvir S and Chaudhary D R, Thermal conduction in two-phase materials with spherical and non-spherical inclusions. J. Phys. D: Appl. Phys., 1991, 24: 1729~1737
    [42] Hu X -J, Du J. -H, Lei S. -Ye, et al., A model for the thermal conductivity of unconsolidated porous media based on capillary pressure-saturation relation. Int. J. Heat and Mass Transfer, 2001, 44: 247~251
    [43] Hunt M L, Tien C L., Non-Darcian convective in cylindrical packed beds. ASME J. Heat Transfer, 1988, 110(2): 378~384
    [44] Adler P M, Thovert J -F. Fractal porous media. Transport in Porous Media, 1993, 13: 41~78
    [45] Thomposn A H, Katz A J, Krohn C E. The microgeometry and transport properties of sedimentary rock. Advances in Phys., 1987, 36(5): 625~694
    [46] Adler P M. Transport processes in fractals-I. Conductivity and permeability of a Leibniz packing in the lubrication limit. Int. J. Multiphase Flow, 1985, 11(1): 91~108
    [47] Adler P M. Transport processes in fractals-II. Stocks flow in fractal capillary networks. Int. J. Multiphase Flow, 1985, 11(2): 213~239
    [48] Adler P M. Transport processes in fractals-III. Taylor dispersion in two examples of fractal capillary networks. Int. J. Multiphase Flow, 1985, 11(2): 241~253
    [49] Adler P M. Transport processes in fractals-IV. Nonlinear flow problems in fractal capillary networks. Int. J. Multiphase Flow, 1985, 11(6): 853~871
    [50]赵晓通,杨善让,徐志明等,粒径均匀散体导热系数的分形描述.工程热物理学报, 1999, 20(4):477~481
    [51]陈永平,施明恒,基于分形理论的多孔介质导热系数研究.工程热物理学报,1999, 20(5):608~612
    [52] Cheng Y P, Shi M H, Determination of effective thermal conductivity for real porous media using fractal theory. J. Thermal Science, 1999, 8(2): 102~107
    [53] Pitchumani R, Yao S C., Correlation of thermal conductivities of unidirectional fibrous composites using local fractal technique. ASME J. Heat Transfer, 1991, 113(4): 788~796
    [54] Pitchumani R., Evaluation of thermal conductivities of disordered composite media using a fractal model. ASME J. Heat Transfer, 1999, 121(1): 163~166
    [55] Yu B. M. and Cheng P, Fractal model for the effective thermal conductivity of bidispersed porous media. J. Thermophys. Heat Transfer, 2002, 16(1): 22-29
    [56] Hsu C T, Cheng P and Wong K W, A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media. Journal of Heat Transfer, 1995, 117: 264~269
    [57] Krupiczka R.. Analysis of thermal conductivity in granular materials. Int. Chem. Engng, 1967, 7: 122~129
    [58] Zehnder P, Schlunder E U., Thermal conductivity of granular materials at moderatetemperatures (in German). Chemie. Ingr.-Tech, 1970, 42: 933~941
    [59] Ma Y T, Yu B M, Zhang D M and Zou M Q, A self-similarity model for effective thermal conductivity of porous media. J. Phys. D: Appl. Phys., 2003, 36: 2157~2164
    [60] Yu B M and Yao K L, Critical percolation probalities for site problem on Sierpinski Carpets. Z. phys. B: Condenses Matter, 1988, 70: 209~212
    [61] Nozad I, Carbonell R G and Whitaker S, Heat Conduction in Multiphase Systems-II. Chemical Engineering Science, 1985, 40: 857~863
    [62] Misra K, Shrotriya A K, Singh R and Chaudhary, Porosity correction for thermal conduction in real two-phase systems. J. Phys. D: Appl. Phys., 1994, 27: 732~735 [63 Brailsford A D and Major K G, The thermal conductivity of aggregates of several phases, including porous materials. Brit. J. Appl. Phys., 1964, 15: 313~319
    [64] Park S and Hartley J G, Predicting effective thermal conductivity of unbonded and bonded silica sands. J. Appl. Phys., 1999, 86: 5263~5269
    [65] Gori F and Corasaniti S, Theoretical prediction of the soil thermal conductivity at moderately high temperatures. J. Heat Transfer, ASME 2002, 124: 1001~1008
    [66] Gori F and Corasaniti S, Experimental measurements and theoretical prediction of the thermal conductivity of two- and three-phase water/olivine systems, Int. J. Thermophys. 2003, 24: 1339~1353
    [67] Singh, A K, R Singh. D R Chaudhary, Prediction of effective thermal conductivity of moist porous materials. J. Phys. D: Appl. Phys., 1990, 23:698~702
    [68] Ma Y T, Yu B M, Zhang D M and Zou M Q. Fractal geometry model for effective thermal conductivity of three-phase porous media. J. Appl. Phys., 2004, 95: 6426~6434
    [69] Feng Y J, Yu B M, Zou M Q, et al. A generalized model for the effective thermal conductivity of three-phase porous media based on self-similarity. J. Porous. Media, 2007 (Accepted)
    [70] Verma L S, Shrotriya A K, Singh R and Chaudhary D R, Prediction and measurement of effective thermal conductivity of three-phase systems. J. Phys. D, 1991, 24: 1515~1526
    [71] Tarnawski V R and Leong W H. Thermal conductivity of soils at very low moisture content and moderate temperatures. Transport in porous media, 2000, 41: 137~147
    [72] Sepaskhah, A. R. and Boersma, L., Thermal conductivity of soils as a function of temperature and water content. Soil Sci. Soc. Am. J. 1979, 43: 439~444
    [73] Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles, in: D.A.Siginer, H.P.Wang(Eds.), Developments and Applications of Non-NemtonianFlows, in: FED,vol.231/MD, vol.66, ASME, New York, 1995, 99~103.
    [74] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al 2O3, SiO 2, and TiO 2ultrafine particles, 1993, Netsu bussei 4: 227
    [75] Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J., Lee, S. Ehanced thermal conductivity through the development of nanofluids, In: Komarneni, S., Parker, J. C. Wollenberger, H.J.(Eds.), Nanophase and Nanocomposite MaterialsⅡ.MRS, Pittsburg, PA, 1997, pp.3~11
    [76] Wang X, Xu X. and Choi, U. S. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermalphysics and Heat Transfer, 1999, 13: 474~480
    [77] Lee S, Choi S U S, Li S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer, 1999, 121: 280~289
    [78] Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Letts., 2001, 78(6): 718~720
    [79]李强,宣益民.纳米流体热导率的测量.化工学报, 2003 , 54(1): 42~46.
    [80]李强,宣益民.纳米流体对流换热的实验研究.工程热物理学报, 2003, 23(6): 721~723.
    [81]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析.应用基础与工程科学学报, 2003, 11(2): 167~173
    [82] Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J.Heat Transfer, 2003, 46: 2665~2672
    [83]谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探[J ] .物理学报, 2003, 6(6): 1444 ~1449.
    [84]谢华清;吴清仁;王锦昌;奚同庚;刘岩,氧化铝纳米粉体悬浮液强化导热研究。硅酸盐学报,2002,30(3): 272~276
    [85] Maxwell, J C, A Treatise on Electricity and Magnetism (Dover, New York, 1954) 3rd ed.Vol.1, p.435
    [86] Hamilton R L, and Crosser O K, Thermal conductivity of heterogeneous tow-component systems, I & EC Fundamentals 1962, 1: 187~191
    [87] Jeffrey D J, Conduction through a random suspensions of spheres, Proc. Roy. Soc. London, 1973, Ser. A 335: 355~367
    [88] Davis R H, Thermal conductivity of mixture with spherical inclusions, Int. J. Thermophysics, 1986, 7: 609~620
    [89] Lu S, Lin H, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity, J. Appl. Phys., 1996, 79: 6761~6769
    [90] Keblinski P, Phillpot S R, Choi S U S, Eastman J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer 2002, 45: 855~863
    [91] Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanopart. Res. 2003, 5: 167~171
    [92] Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model, J. Nanopart. Res. 2004, 6: 355~361
    [93] Xue Q. Z. Model for effective thermal conductivity of nanofluids Phys. Lett. A, 2003, 307: 313~317
    [94] Xuan Y., Li Q. and Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J., 2003, 49: 1038~1043
    [95] Xuan Y., Li Q. Heat transfer Enhancement of nanofluids. Int. J. Heat Fluid Flow, 2000, 21: 58~64
    [96] Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T, Das S K. Model for Heat Conduction in Nanofluids. Phys. Rev. Letts., 2004, 93: 144301.
    [97] Xie Huaqing, Fujii Motoo, Zhang Xing. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, Int. J. Heat Mass Transfer, 2005, 48: 2926~2932
    [98] Leong K.C., Yang C. and Murshed S. M. S. A model for the thermal conductivity of nanofluids– the effect of interfacial layer J. Nano. Res., 2006, 8: 245~254
    [99] Jang S P, Choi S U S. Role of Brownian motion in the enhance thermal conductivity of nanofluids. Appl. Phys. Lett., 2004, 84: 4316~4318.
    [100] Prasher R, Bhattacharya P, Phelan P E. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Letts., 2005, 94: 025901
    [101] Prasher R, Bhattacharya P, Phelan P E. Brownian-motion-based convective-convective model for the effective thermal conductivity of nanofluids J. Heat Transfer, 2006, 128: 588~595
    [102] Ren Yajie, Xie Huaqing, Cai An. Effective thermal conductivity of nanofluids containing spherical nanoparticles. J. Phys. D: Appl. Phys., 2005, 38: 3958~3961
    [103] Hong K S, Hong Tae-Keun, Yang Ho-Soon. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phys. Letts., 2006, 88: 031901
    [104] Xu J, Yu B M, Zou M Q and Xu P. Model for heat convection in nanofluids. J. Phys. D: Appl. Phys., 2006, 39: 4486~4490
    [105] Feng Y J, Yu B M, Xu P and Zou M Q. Thermal conductivity of nanofluids by Monte Carlo simulations, Phys. Rev. E (Submitted)
    [106] Acrivos A. and Taylor T. D. Heat and mass transfer from single spheres in stokes flow. Phys. Fluids, 1962, 5: 387~394
    [107] Havlin S. and Ben-Avraham D. Diffusion in disordered media. Adv. Phys., 1987, 36: 695~798
    [108] Das S K, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 2003, 125: 567~574
    [109] Xie H Q, Wang J C, Xi T J, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing alumina particles, J. Appl. Phys. 2002,91: 4568~4572
    [110] Brodkey R. S.,Kim, D. S., and Sidner, W., Fluid to particle heat transfer in a fluidized bed and to a single particles. Int. J. Heat Mass Transfer, 1991, 34: 2327~2337
    [111] Yu C J, Richter A G, Datta A, Durbin M K and Dutta P. Molecular layering in a liquid on a solid substrate: An X-ray reflectivity study. Physica B, 2000, 283: 27~31
    [112] Prasher R., Phelan P. E. and Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluids) Nano Lett., 2006, 6: 1529~1534
    [113] Prasher R., Evans W., Meakin P., Fish J., Phelan P. and Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett., 2006, 89: 143119
    [114] Feng Y J, Yu B M, Xu P and Zou M Q. The effective thermal conductivity of nanofluids based on nanolayer and nanoparticles’aggregation. J. Phys. D: Appl. Phys., (In Proofs)
    [115] Schwartz, L.M., E.J. Garboczi & D.P. Bentz. Interfacial transport in porous media: Application to DC electrical conductivity of mortars. J. Appl. Phys., 1995, 78: 5898~5908
    [116] Xue L., P. Keblinski, S.R. Phillpot, S.U.S. Choi and J.A.Eastman. Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J. Heat Mass Transfer, 2004, 47: 4277~4284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700