用户名: 密码: 验证码:
小卫星动态传热特性分析与热控设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小卫星技术以其短研制周期、低成本、低风险的优势,成为当今航天领域研究的热点,随着卫星小型化的发展,传统的热控制技术受到了极大挑战,小卫星的低热惯性势必带来热的不稳定性。在传统卫星热控稳态设计、分析、试验的基础上,对小卫星动态传热机制、瞬态温度分析方法和瞬态试验技术进行研究,将有益于促进小卫星热控技术的发展。本文以此为背景,重点研究了以下内容:
     建立小卫星双层集总参数模型,在得到温度时均量解析解基础上,利用傅里叶变换法求解温度波动量解析解,并探讨了解析解与数值解的一致性。类比阻尼振荡系统,应用传递函分析的方法,对表征温度与热流波动量间幅值传递关系的幅值特性和相位传递关系的相位特性变化规律进行了分析。以此为基础提出了小卫星“最佳温度动态范围”热控设计方法。
     在某型微小卫星设计轨道高低温工况下,对其被动热控系统进行了设计。根据“最佳温度动态范围”热控设计方法,通过设计参数匹配计算和热控方式设计,得到了符合设计要求的热控设计方案,为该方法的应用提供例证。数值仿真对比研究了符合与两种不符合“最佳温度动态范围”的热控设计,说明其设计方法的正确性。在该方法的指导下提出“适度隔热-周体散热”热控布局设计理念,相对传统“整体隔热-集中散热”热控设计布局,在可靠性和重量上新型布局都有明显优势。
     针对稳态标定热流计导致红外加热笼模拟瞬态外热流误差大的问题,采用热流计瞬态标定的方法,并引入瞬态参数识别和控制技术,提高红外加热笼模拟平缓变化外热流的精度,采用开环输出功率调节的方法,来改善热流大幅突升或突降时的热流模拟精度。在某型微小卫星瞬态热平衡试验应用中,改进方法有效的提高了瞬态热流模拟精度。
     对某型微小卫星符合与不符合“最佳温度动态范围”的热控设计,进行了瞬态热平衡试验,对比试验结果验证“最佳温度动态范围”热控设计方法的正确性。卫星在轨温度遥测量与热分析和试验结果一致,为本文提出的热控设计方法和新型热控布局设计理念的合理可行,提供了有利证据。
     在建立瞬态热分析模型修正参数集合的基础上,以瞬态热平衡试验高温工况数据为标准,采用蒙特卡洛混合方法对某型微小卫星瞬态热分析模型进行分层修正,建立瞬态温度误差评价方法,对修正效果进行评价,并讨论了比热容参数的修正对瞬态热分析模型修正准确性的影响。通过低温、特殊工况下修正前后模型瞬态温度误差比较,以及修正后模型在热真空试验、在轨动态温度预计中的应用效果,说明修正方法的有效性。
     本文的研究为小卫星热控设计方法提供新思路,为提高瞬态热分析精度提供了新方法,为小卫星的瞬态热试验提供新的试验手段。
Micro-satellite technology is a focus of research in astronautics domain because of its short leadtime、low cost and low risk. Traditional thermal control technologies received challenge from thedevelopment of miniaturized satellite. Micro-satellite with low thermal inertia must have an instabilitytemperature. Micro-satellite thermal control technology will be benefit from the research about therules of dynamic heat transfer, analysis method of dynamic temperature and the technology ofdynamic experiment. The research content based on that of this article is summarized:
     Two-layer model with lumped parameters was built. After the analytic solutions of temperaturemean value was gained, the the analytic solutions of temperature fluaction value was aquired bymeans of Fourier transform (FFT). The uniformity between analytic solution and numerical solutionwas researched. Making an analogy with damping oscillatory system, the rules of amplitudecharacterictics and phase characterictics were researched by means of transfer function in frequencydomain, which standed for transfer relation of amplitude and phase between the heat fluaction andtemperature fluaction. Based on that, The theramal control designing method of “optimum dynamictemperature range” was brought forward.
     Under the high and low temperature conditions for designing obit parameters, the passivethermal control system of some micro-satellite was designed. The designing scheme of thermalcontrol system was gained through the computing of designing parameters and designing of thethermal control method, according to thermal control designing method of “optimum dynamictemperature range”, which gived an example for this method. Corresponding and not corresponding to“optimum dynamic temperature range” thermal control design were compared by means of numericalsimulation, the result gave evidence to the validity of designing method. Based on that, The designingidea of new thermal control layout “appropriate heat insulation-heat radiation through circumference”was raised. Maching the traditional thermal control layout “whole heat insulation-heat radiationthrough radiating surface”, new layout was superior on mass and reliability.
     The accuracy of infrared heating cage imitating dyramic heat flux was low due to heat flowmeter of steady calibration. Heat flow meter was calibrated by dynamic method, and thediscriminating and controlling of dyramic parameters was used, in order to improve the the accuracyof imitating gently changing dyramic heat flux. The way of outputing power adjusting with open-loopcontrol was used, in order to sovle the accuracy problem when dyramic heat flux changed with a largescope in a moment. The effect of improving method was proved by the result of thermal equilibriumexperiment.
     Some micro-satellite’s thermal equilibrium experiment was launched. The rules of dyramictemperatures is compared between corresponding and not corresponding to “optimum dynamictemperature range” thermal control design, it proves that thermal control designing method of“optimum dynamic temperature range” is effective. The telemetering temperature in orbit showed nodifference with the result of numerical simulation and experiment, it gave beneficial evidence to thenew thermal control designing method and new layout designing idea.
     Based on buliting the parameter assembling, dynamic thermal analysis model was revisedthrough Montecarlo mixing method layer by layer, in which the high temperature condition data ofdynamic experiment was standard. Dynamic temperature error was seted up and used to evaluate therevising effect. The influence of specific heat capacity to revising effect of dynamic thermal analysismodel was discussed. The revising method’accuracy was proved by comparing the numericalsimulation and experiment data under low temperature and special conditions. The applying effect inthermal vacuum experiment and dynamic temperature evalution in orbit also gave evidence to that.
     The research of this article supported a new thought of thermal control designing method formicro-satellite, a new imitating method to dynamic thermal equilibrium experiment, a new referenceto raise the accuracy of analysis.
引文
[1]郭多娴.中国小卫星的应用与发展[EB].中国国家航天局网站. http://www.cnsa. gov.cn.2001.
    [2]闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998.
    [3]闵桂荣,张正纲,何知朱,等.卫星热控制技术[M],北京:宇航出版社,1991.
    [4]侯增祺,胡金刚.航天器热控制技术—原理及其应用[M].北京:中国科学技术出版社,2007.
    [5] Gilmore D G. Spacecraft thermal control handbook [M]. Second Edition. E1Segundo,California: The Aerospace Corporation Press,2002.
    [6] GJB1029-90卫星热设计准则[S].1990.
    [7] ESAPSS-01-701.Data for selection of space materials[R]. Issue l Revision3January1994,265:35.
    [8] R.R.Brown. Electron-Ultraviolet Radiation Effects on Thermal Control Coatings [J]. AIAAPaper,1968, No779:1-20.
    [9] W.R. Hardgrove, TRW Space and Defense Sector. Space simulation test for thermal controlmaterials[R].16th space simulation conference,1990:267-285.
    [10].M.M.Mikhailov. Possibilities of replacing electromagnetic radiation of the sun byaccelerated electrons in testing space technology materials [J]. Journal of Advanced Materials.1996,3(6):465-470.
    [11] G.J.Dienes, G.H.Vineyard. Interscience monographs in Physics and astronomy. Volume11[M]:Radiation effects in solids,Interscience Publishers,1957:10.
    [12] M.McCargo, S.A.Greenberg, N.J.Douglas. A Study of Environmental Effects uponParticulate Radiation-Induced Absorption Bands in Spacecraft Thermal Control CoatingPigments [J]. AIAA Paper,1969, No.69-642:-11.
    [13] ASTM Designation: E512-94. Simulated Space Environment Testing of Thermal ControlMaterials with Electromagnetic and Particulate Radiation[R]. Standard Practice forCombined,1994:3.
    [14]李丹明.真空紫外环境下材料光特性退化模型[J].真空科学与技术学报,1999,Vol.19:134-138.
    [15] Chalmers DR. Solar absorptance degradation of OSR radiators on European communicationsatellites [J].AIAA Paper, AIAA-84-1700:l-7.
    [16]曾一兵,张廉正,于翘等.空间环境下有机硅热控涂层[J].宇航材料工艺,1997,(3):18-20.
    [17]张蕾,严川伟,屈庆等.有机硅热控涂层的空间环境行为[J].宇航材料工艺,2003,15(l)P:21-23.
    [18]张蕾,严川伟,屈庆等.低s有机硅热控涂层及其空间防护作用研究[J].中国空间科学技术,2003,4(2):15-22.
    [19] DonaId A.JaworskeV.Correlation of Predicted and observed optical properties of multilayerthermal control coatings [J].Thin Solid Films,1998,332:30-33.
    [20] C. Siva Kumar, A.K.Sharma, K.N.Mahendra, etal. Studies on anodic oxide coating with lowabsorptance and high emittance on aluminum alloy2024[J]. Solar Energy Materials&SolarCells,2000,60:51-57.
    [21] Donald A. JaworskeV. Optical and Calorimetric evaluation of Z-93-P and other thermalcontrol coatings [J].Thin Solid Films.1996,290-291:278-282.
    [22] D.C.Look, J.W.Hemsky,J.R.Sizelove. Residual native shallow donor in Zno [J]. PhysicsReview Letters.1999,82(12):2552-2555.
    [23] D.R.Wilkes,J.M.Zwiener, P.S.LeMaster,R.J.Mell, and E.R.Miller. Trend analysis of in-situspectral reflectance data from the thermal control surfaces Periment(TCSE)·
    [24]胡太彬,张伟. AIT环境对卫星热控白漆性能影响的试验[J].中国空间科学技术.2010,5:59-63.
    [25]丁义刚.空间综合环境对航天器热控涂层性能退化效应研究[D].北京:国防科技大学,2005.
    [26]沈自才,孔伟金,冯伟泉,等.热控涂层光学性能退化模型研究[J].物理学报,2009,58(2):860-864.
    [27] James R Gaier, John Siamidis. The effect of simulated lunar dust on the absorptivity,emissivity, and operating temperature on AZ-93and Ag/FEP thermal control surfaces [R].NASA/TM,2008,21:5492.
    [28]曾一兵,张廉正,胡连成等.俄罗斯空间有机热控涂层发展的现状及动向[J].宇航材料工艺,1999,(6):57-59.
    [29]王旭东,何世禹,杨德庄等.美国用于空间站辐射器中的热控涂层[J].宇航材料工艺,2002,(l):12-18.
    [30]何知朱,江经善,闵桂荣.《新型热控材料器件及应用》[M].宇航出版社,1988:3-6.
    [31] Donald A, Jaworske Sara, E Kline. Review of end-of-life thermal control coatingperformance [R]. NASA/TM-2008-215173,2008.
    [32] C.Alis.The thermal control design and test philosophy of the vegetation payload[C],Proceedings of the Sixth European Symposium on Space Environmental Control Systems,Noordwijk,1997.Noordwijk: ESA SP-400,1997.
    [33] D.W.Almgren, F.E.Ruccia, Arthur D.Little, et al..The Thermal Design of the SecondNavigation Technology Satellite (NTS-2), AIAA14thThermophysics Conference, Orlando,1979[C].New York: AIAA,1979.
    [34]李国强.资源-1卫星多层隔热材料在轨温度数据分析[J].航天器工程,2008,17(5):25-31.
    [35]陈金静,于伟东.轻薄柔性多层隔热材料研究进展[J].材料导报,2008,22(6):41-44.
    [36]江经善.多层隔热材料及其在航天器上的应用[J].宇航材料工艺,2000,4:17-25.
    [37] A.Muhlratzer等.使神号防热系统内部多层隔热材料[J].国外导弹与航天运载器,1992,10:50-56.
    [38]韩海鹰,黄家荣,程文龙,李辉.MLI碎片防护能力增强措施对隔热性能的影响[J].宇航学报,2010,31(1):259-263.
    [39] Michael K.Choi. Thermal Testing on High Temperature MLI and Sunshields for Solar ProbeSun-Viewing Instruments,5thInternational Energy Conversion Engineering Conference andExhibit(IECEC),St.Louis,2007[C].New York:AIAA,2007.
    [40] Thomas T.R. Probert.S.D., Thermal contact Reistance: The Directional Effect and OtherProblems[J]. Journal of Heat and Mass Transfer.1970,13:789-807.
    [41] Whitehouse D J, Handbook of surface metrology. Institute of physics, Bristol, Philadelphia,1994.
    [42] C.JMaddren, E.Marschall, Predicting thermal contact resistance at cryogenic temperature forspacecraft applications, Journal of Spacecraft and rocks[J], Vol.32, No.3, May-June1995:469-474.
    [43]任红艳等,接触热阻与接触导热填料[J],宇航材料工艺,1996(6):11~15.
    [44]沈军,马骏,刘伟强.一种接触热阻的数值计算方法[J].上海航天,2002,4:33-36.
    [45] Boiarski M, Khatri A, Kovalenko V N. Design optimization of the throttle-cycle cooler withmixed refrigerant. cryocoolers10[C]. R.G.Ross, Jr., Plenum Press, New York,1999,457-465.
    [46] Marotta E E, Fletcher L S, Thermal contact conductance for aluminum and stainless-steelcontacts[J]. J. thermophysics and heat transfer,1998,12(3):374~380.
    [47] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contactmechanics of surfaces[J]. Journal of Tribology,1990,112(4):205~216.
    [48]石零,王惠龄,赵琰,调制激光法低温接触界面层热阻研究[J].低温工程,2006,2:7-9.
    [49]郭霖,等.相变材料热管性能的试验研究[C].第10届全国热管会议,2006.
    [50] P.D.邓恩,D.A.雷伊.热管[M].北京:国防工业出版社,1982.
    [51] Yu Z, Hallinan K,Bhagat W. Electrify drodynamically augmentedmicro heat pipes[J]. Journalof thermophysics and heat transfer (S0887-8722),2002,16(2):180-186.
    [52] Zhiquan,Y,Kevin,P. Temperature control of electrohydrodynamic micro heat pipes[J].Experimental thermal and fluid science (S0894-1777),2003,(27):867-875.
    [53]华诚生.热管辐射器设计、试验及其在通信广播卫星上的应用[J].航天器工程,1997,6(1,2):43-51.
    [54] Park J.H.A study on thermal performance of heat pipe for optimum placement for satelliteequipment[J]. ETRI Journal,1997,19(2):59-70.
    [55]邵兴国,向艳超,谭沧海.嫦娥一号卫星热控设计中热管的应用及验证[J].航天器工程,2008,17(1):63-67.
    [56]张程宾,施明恒,陈永平.微/微小型热管研究的现状与展望[J].建筑热能通风空调,2008,27(2):18-23.
    [57] M.Groll, W.D.Münzel,W.Supper.Development of a Liquid-Trap Heat Pipe Termal Diode[J].J.Spacecraft,1979,16(4):195-202.
    [58] G.Fleischman,A.Basiulis,J.Gottschlich.Advanced Heat Pipe Components for High PowerSpacecraft Thermal Management,28thAerospace Sciences Meeting, Reno,1990[C].Washington:AIAA,1990.
    [59] Bong-Hun Kim,G.P.Peterson.Experimental Study of a Reversible Loop Heat Pipe[J]. Journalof Thermophysics and Heat Transfer,2005,19(4):519-526.
    [60]赵小翔, CPL技术在FY-1C卫星中的应用[J],上海航天,2001(2):44-50.
    [61]培克曼G,吉利Pv著.蓄热技术及其实际应用[M].机械工业出版社,北京,1989
    [62] Wilson J L, Lawson BM. Investigation into venting and non-venting technologies for thespace station freedom extravehicular activity life support system[R]. SAE-901319,1990.
    [63]赵朝义.舱外航天服用相变储热器的实验研究与数值模[D].北京:北京航空航天大学,1999.
    [64]彭元,华建文.空间用辐射式热控百叶窗的设计[J].科学技术与工程,2008,8(13):3455-3459.
    [65]史建中,曾一兵,刘文言.发射率可调型智能热控涂层的发展现状[J].宇航材料工艺,2007,5:1-3,12.
    [66] Chandrasekhar P, Zay B.J, et al.Conducting polymer(CP)infrared elctrochromics in spacecraftthermal control and military applications[J].Synthetic Metals,2003,135-136:23-24.
    [67]吴春华,邱家稳.锰酸镧掺杂可变发射率热控器件研究进展[J].真空与低温,2005,4:194-196.
    [68]张利,何兴伟,黄志光,等.空间低温热开关技术的研究进展[J].红外,2008,29(7):15-19.
    [69]张文千.航天器用记忆合金热开关的设计与理论分析[J].真空与低温,2009,15(1):41-44.
    [70] Naes L, Nast T.Self-Actuated Thermal Switch for Operation with Redundant MechanicalRefrigerators[J]. Advances in Cryogenic Engineering,1986,31:925-932.
    [71]王熙元,陈学康,曹生珠,韩闯.卫星静电热开关辐射散热器热性能分析[J].真空与低温,2009,15(1):25-29.
    [72] Jonas Sadunas,Ben Baginski,and Daniel MCCarthv.P91-1ARGOS Spacecraft ThermalControl. AIAA93-2846.1993:3-8..
    [73]文耀普.航天器热控技术的现状和发展趋势[C].届空间热物理会议.安徽,黄山.2000.北京,中国宇航学会,2000:6-13.
    [74]过九镕.通信卫星的热控制技术[J].空间科学技术,1990(1):45-51.
    [75]沈琮.卫星公用平台热控系统的适应性发展[C]第五届空间热物理会议.安徽,黄山.2000.北京,中国宇航学会,2000:1-4.
    [76]麻慧涛,高晓明,杜卓林.环境减灾-1A、1B卫星热设计与飞行验证[J].航天器工程.2009,18(6):88-92.
    [77]张桂兰,周佐新.中星22号通信卫星热设计[J].航天器工程,2002,11(1):29-32.
    [78]李万林.DFH-2A通信卫星热控系统的设计改进[J].航天器工程,1993(1):43-46.
    [79]江经善.实践四号卫星热设计及其实施[J].航天器工程,1995,4(2):46-51.
    [80]江经善.实践五号热控分系统的研制[C].第五届空间热物理会议.安徽,黄山.2000.北京,中国宇航学会,2000:46-53.
    [81] Gerhard Heller. Thermal Control of the Explorer Satellites[J]. ARS Journal.1959,31(4)344-350.
    [82]高晓明,李劲东.中国海洋一号卫星热控分系统和在轨性能评估[J].航天器工程.2003,12(3):120-127.
    [83] Masayuki Nakagawa,Eihisa Morikawa,Yoshisada Koyama.Development of thermal controlfor phased array antenna[C].21st International Communications Satellite SystemsConference and Exhibit.2003
    [84] Han Hwangbo and Wone-Chul Kim. Design of thermal control subsystem for Koreasat3Communications Satellite[C]. AIAA99-3555.1999.
    [85]潘增富.中巴资源一号卫星(FM1)热控分系统在轨飞行性能研究[J].航天器工程.2004,13(2):26-31.
    [86] H. T. Nuyenx and T. J. Grantxx.Stability analysis of proportional control heater circuits inGPS-IIF satellite thermal control[C].41st Aerospace Scinences Meeting and Exhibit.2003.
    [87]张加迅,宁献文.分舱耦合体系下的新型卫星热控平台技术[J],航天器工程,2008,17(2):53-58.
    [88] Theodore D. Swanson, Gajanana C. Birur. NASA thermal control technologies for roboticspacecraft[J], Applied Thermal Engineering.2003,23:1055–1065.
    [89]黄家荣,范含林,徐济万.神舟载人飞船热控分系统设计和在轨性能评估[J].航天器工程.
    [90]侯欣宾邵兴国徐丽等.嫦娥一号卫星热设计与分析[J].航天器工程.2006,15(4):21-26.
    [91]陈昌亚,侯建文,朱光武.萤火一号卫星关键技术与设计特点[J].空间科学技术.2009,29(5):456-461.
    [92] Theodore D. Swanson. Thermal Control System of the Purdue University Space ShuttlePayload [J].J. Spacecraft.1984.382:384.
    [93] D.Swanson, NASA/Goddard thermal control technology roadmap-2002[J],13th AnnualSpacecraft Thermal Control Workshop, Aerospace Corporation, El Segundo, CA, March2002.
    [94] G. Birur, JPL advanced thermal control technology roadmap,13th Annual Spacecraft ThermalControl Workshop, Aerospace Corporation, El Segundo, CA, March2002.
    [95]翁建华,潘增富,闵桂荣.空间任意形状凸面的轨道空间外热流计算方法.中国空间科学技术.1994,4(2):11-17.
    [96]翁建华,潘增富,闵桂荣.镜反射凹面及相互可视表面的轨道外热流计算.中国空间爱你科学技术.
    [97]赵立新.轨道空间外热流计算的一种新方法[J].光学精密工程.1995,3(6):80-85.
    [98] A.W.Creynolds, Formulas for Estimating Strayradiation Levels in Well Buffled OpticalSystem.SPIE,1980.257:39-49.
    [99] Toussaint M. Verification of the Thermal Mathematical Model for Artifical Satellite: A NewTest Philosophy[R], AIAA-67-304,1967.
    [100]翁建华.卫星热网络修正方法及其试验研究[D].中国空间技术研究院,1995
    [101]王晓明,李运泽,王浚.卫星热控系统实时仿真研究[J].系统仿真学报.2007,19(19):4530-4533.
    [102]马伟,宣益民,韩玉阁.卫星系统热特性分析[J].航天器工程.2009,18(2):48-54
    [103] Gruhlke M. Computer aided thermal analysis of a technology demonstration satellite [D].Naval Postgraduate School, Monterey, California,2003.
    [104] Ishimoto T, Pan H M. Thermal Network Correction Techniques[R]. AIAA70-821,1970.
    [105]李劲东.卫星热网络模型修正技术进展及其改进方法研究[J].中国空间科学技术,2004,3:29-32.
    [106] Herrera F L. Stochastic approach to spacecraft thermal control subsystem[R].SAE2000-01-2484[2000,7]. http://www.sae.org/technical/papers/2000-01-2484.
    [107]杨沪宁,钟奇.航天器热模型蒙特卡罗法修正论述[J].航天器工程,2009,18:53-58
    [108] Mareschi V, Perotto V,Gorlani M.Thermal test correlation with stochastic technique[R].SAE2005-01-2855[2005,7].http://www.sae.org/technical/papers/2005-01-2855.
    [109]刘娜,程文龙,钟奇,等.基于蒙特卡罗法的卫星热模型敏感性分析研究.航天器工程[J],2009,18:102—107
    [110]程文龙,刘娜,钟奇等.卫星稳态热模型参数修正方法研究[J].宇航学报,2010,1:270-275.
    [111] GJB1027-90卫星环境试验要求[S].1990.
    [112] GJB1027-90卫星热平衡试验方法[S].1990.
    [113] MIL-STD-1543B(USAF)“Reliability Program Requirements for Space and Launch”[S].1988.
    [114] MIL-STD-1540C “Test Requirements for Launch Vehicles, Upper Stages and Spacevehicles”[S].1993.
    [115] ECSS-E-10-03A, Space engineering-testing[S].European Cooperation ECSS for SpaceStandardization,2002-02-15.
    [116]黄本诚,马有礼.航天器空间环境试验技术[M].北京:国防工业出版社,2002.
    [117] Ziemke R A. Infrared heater used in qualification testing of international space stationradiators[R].NASA,TM-2004-212332,2004.
    [118] Fan Y F,Gong L H,Xu X D,et al.Cryogenic system with sub-cooled liquid nitrogen forcooling HTS power cable[J].Cryogenics,2005(45):272-276.
    [119]杨晓宁.热真空试验用红外加热笼的热设计[J].航天器环境工程,2004,13(3):19-24.
    [120]杨晓宁,孙玉玮.红外加热笼边缘效应对卫星表面热流均匀性的影响研究[J].航天器环境工程.2006,23(4):222-226.
    [121]季琨,张丽新.卫星真空热试验用红外加热笼抗热干扰设计[J].航天器环境工程.2009,26(3):236-238.
    [122]贾阳,徐丽,刘强等红外加热笼模拟航天器瞬变外热流的方法研究[J].中国空间科学技术.2001,(2):54-61.
    [123]贾阳,杨晓宁.飞船红外加热笼设计方法研究[J].航天器工程.2004,13(2):52-56.
    [124]徐丽,贾宏.外热流的瞬态模拟中绝热型热流计的应用[J].航天器环境工程.2006,12(1):40-47.
    [125]马有礼,刘锋等.卫星瞬态热流红外模拟技术研究[J].中国空间科学技术.1991,56-63.
    [126]林来兴·分布式空间系统和航天器编队飞行辨析[J].航天器工程,2008,17(4)
    [127]高彬,小卫星技术的发展现状及其军事应用前景[J].天津通信技术.2003,2(2):6-9.
    [128] Scharf D P. Future technology directions-precision formation flying mission andtechnologies[R]. NASA JPL Tech Paper,2008.
    [129] Leitner J·Spacecraft formation flying-An overview of mission and technology challenges[C].AAS07-031,2007.
    [130] Schart D P. Future technology directions precision formation flying mission andtechnologies[R]. NASA JPL Tech Paper,2008.
    [131] Steven H D, Rodden J, Morten P, et al. Validating a formation flying control system designthe GRACE project experience[C]. ASS OO-O14,2000.
    [132] Horan S, et al. Three corner sat constellation[C].SSC99-4-7, preceeding of13thAIAA/usuconference on Small Satellites,1999.
    [133] Deininger W D, Noecker M C, Wiemer D J, et al. Space technology-3: Mission overview andspacecraft concept description[J]. Acta Astronautica,2003(52),455-465.
    [134] Aung M, Ahmed A, Wette M, et al. An overview of formation flying techology developmentfor TPF mission[C].2004IEEE Aerospace Conf Proc:2667-2679.
    [135] Barnhart D J, Vladimirova T, Sweeting M N, et al. Very-small-satellite design for distributedspace mission [J]. Spacecraft and Rockets,2007,44(6).
    [136]林来兴.编队飞行卫星三位定位系统的动力学和控制策略[J].航天控制,2008,26(3)
    [137]徐济万.小卫星应用与热控系统研究[M].卫星研制文选丛书《卫星热控系统》.上海:上海卫星工程研究所,2002.
    [138]潘增富.微小卫星热控关键技术研究[J].航天器工程2009,16(2):16-20.、
    [139]向四桂,沈怀荣.微型航天器热控系统设计[J].装备指挥技术学院学报,2002,(13)5:44-46.
    [140]李运泽,宁献文,王晓明等.纳卫星轨道热环境仿真[J].系统仿真学报2007,19(14):3165-3168.
    [141]丁延卫.纳型卫星热控系统设计与仿真[J].系统仿真学报.2006,18(1):169-172.
    [142] Baturkin Volodymyr. Micro-satellites thermal control-concepts and components [J].ActaAstronautica,2005,56(1-2):161-170.
    [143] Maurice Martin, Howard Schlossberg etc.University Nanosatellite Program[C]//IAFSymposium, Redondo Beach, CA, April19-21,1999.
    [144] V. Kostenko, V. Baturkin, N. Grechina, et al., Cryogenic System for the VideospectrometricComplex (VSC) Cooling in Project “PHOBOS”, preprint, Space Research Institute, Academyof Sciences of the USSR, Pr-1409,1988, p.39.
    [145] J. Vojta, S. Zhuk, V. Baturkin, Thermocontrol system concept of Magion small subsatellitesof Intreball Mission, Digest of the First International Symposium of the InternationalAcademy of Astronautics (IAA), Berlin, November4–8,1996, pp.380–383.
    [146]李运泽宁献文王晓明等纳卫星散热面与隔热层的联合设计模型与算法北京航空航天大学学报2007,33(4):414-417.
    [147]丁延卫,尤政.现代微小卫星及其热控制[J].光学精密工程,2004,12(3):23-26.
    [148] F.lura.B.Biering, H.G.Lotzke, H.Studemund et al. Bird Microsatellite Thermal ControlSystem-5Years of Operation in Space[R]. Digest of the3rd IAA International Symposium“Small Satellites for Earth Observation”.Berlin, April,2001.
    [149] K. Badari Narayana, V. Venkata Reddy. Thermal design and performance of HAMSAT[J].Acta Astronautica.2007,60:7–16.
    [150] Isabel P, Angel S, Carmen G, Gustavo A. Analytical study of the thermal behaviour andstability of a small satellite [J]. Applied Thermal Engineering,2009,29:2567-2573.
    [151]麻慧涛,钟奇,范含林,文耀普.微型卫星热控技术研究航天器工程2006,15(2):6-13.
    [152]刘佳,李运泽,常静等.微小卫星热控系统的研究现状及发展趋势.航天器环境工程.2011,28(1):77-82.
    [153] Klett J, Mcmillan A D, Stinton D. Modeling geometric effects on properties of graphite foams[C]. The26th Annual Conference on Ceramic, Metal and Carbon Composites, Material, andSructures, Cocoa Beach, Florida, January2002.
    [154] Donya M D, Theodore S, Robert O, et al.Development of the variable emittance thermal suitefor the Space Technology5microsatellite[M]. American Institute of physics,2002:204-210.
    [155] Paris A D, Birur G C, Green A A. Development of MEMS microchannel heat sinks formicro/nano spacecraft thermal control[C]//2002ASME International Mechanical EngineeringCongress and Exposition. New Orleans, LO, United States: American Society of MechanicalEngineers,2002:25-31.
    [156]杨娟,李运泽.参数自定模糊PI控制在纳卫星热控系统中的应用[J].空间科学学报2009,29(4):438-442.
    [157]杨娟,李运泽.纳卫星PID主动热控制及其仿真研究[J].系统仿真学报.2008,20(3):811-813.
    [158] Butcher M R. Spacecraft Thermal Design: Particular Problems With Small Satellites[J], J.Aeros. Eng.,1999,213(4):245-253.
    [159] Sven M, Manfred K, Norbert L. Nanosatellite and Microsystem Technology capabilities,limitations and applications. Acta Astron.,2005,39(4):799-808.
    [160]邵宝东,孙兆伟基于MEMS的微槽道冷却系统在微纳卫星热控系统中的应用[J].上海航天,2006,4:34-38.
    [161]李运泽,宁献文.应用EHD热管的微小卫星主动热控建模与仿真[J].系统仿真学报,2007,19(3):681-682.
    [162] Birur G C, Sur T W, Paris A D,et al. Micro/nano spacecraft thermal control using aMEMS-based pumped liquid cooling system[J]. SPIE Micromachining and Microfabrication,2001,21-24.
    [163] Varatharajoo R, Kahle R, Fasoulas S. Approach for combining Spacecraft Attitude andThermal Control Systems[J]. Journal of Spacecraft and Rockets,2003,40(5):657-664.
    [164] Varatharajoo R, Ajir R, Ahmad T. Hybrid Spacecraft Attitude Control System [J]. Journal ofMulitiphysics,2007,1(2):221-230.
    [165] Maynard R S. Fluidic Momentum Controller: U.S.[R],1998:776-541.
    [166] Lurie B J, Schie J A, Iskenderian T C. Fluid-loop Reaction System:U.S.[R],1991:5026008.
    [167] Lurie B J, Schier J A. Liquid-ring Attitude-control System For Spacecraft. NASA Tech Briefs.1990:14(9):82-90.
    [168]耿云海,单晓微,陈雪芹等.基于泵式流体回路的小卫星姿控/热控一体化执行机构设计[J].航空学报2012,33(1):147-155.
    [169]张世杰,曹喜滨,单晓微等.航天器热控制和液体动一体化执行机构,中国,2010:200910091063.
    [170]李运泽,魏传锋,袁领双等.卫星热控系统的动态特性建模与仿真[J].北京航空航天大学学报,2005,31(3):372-374.
    [171] C. Arduini, G. Laneve, S. Folco, Linearized techniques for solving the inverse problem in thesatellite thermal control[J], Acta Astronautica43(1998)473–479.
    [172]胡寿松,自动控制原理[M],科学出版社.2001.
    [173]胡海岩,孙久厚,陈怀海.机械振动与冲击.航空工业出版社.2002.
    [174]李庆扬,王能超,易大义.数值分析[M].清华大学出版社.2001.4.
    [175]翁建华,潘增富.航天器热网络模型及其系数修正方法[J].中国空间科学技术,1995,15:10-15.
    [176] Molina M, Ercolifinzi·MonteCarlo techniques for ther-mal analysis of space vehicles:practical examples of robustness determination in preliminary design [C]//X Ⅷ CongressoNazionale AIDAA·Volterra, Italy,2005.
    [177]裴鹿成,雷达反射截面积王仲奇.蒙特卡罗方法及其应用[M].北京:海洋出版社,1998.50-54.
    [178]龚曙明.应用统计学[M].北京:清华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700