用户名: 密码: 验证码:
螺旋锥齿轮传动强度精细分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮(又称为弧齿锥齿轮)作为基础传动件,广泛应用于航空、航海、汽车、拖拉机、机床等行业中,它用于传递相交轴之间的运动和动力,具有传动平稳、噪声低、承载能力高等特点,特别适用于各种高速动力传动和要求噪声低的场合。由于在高速、重载的工况下工作,螺旋锥齿轮的传动失效往往造成重大的事故。为了提高螺旋锥齿轮的传动可靠性和传动质量,对其进行轮齿接触分析和研究是非常有必要的。随着计算机技术的发展,目前已广泛采用有限元法对齿轮传动强度进行分析计算,因为有限元法能很好地处理齿轮受载后啮合接触面的力学和边界条件,从而可对齿轮传动系统作出更为准确的应力变形分析。
     传统的螺旋锥齿轮强度分析方法是把螺旋锥齿轮转换为当量圆柱齿轮,根据齿轮的失效形式分别对接触应力和弯曲应力进行计算,所得到的计算结果误差大。有限元方法对螺旋锥齿轮的实体建模大多是从其加工过程入手,建立齿面的数学模型,从而得到齿面的数据。由于此种方法需要较多的啮合原理知识和大量的数据处理工作,不易被工程技术人员所掌握。
     本论文从螺旋锥齿轮的实体造型入手,利用Pro/E软件的强大的实体造型功能,通过输入齿轮的齿数、模数、压力角、螺旋角、变位系数等几何参数建立了齿轮啮合的三维实体模型,同时进行装配;然后利用Pro/E自带的接口程序将该装配模型导入前/后处理软件MSC.Patran中,根据齿轮结构的对称性及有限元分析的特点,分别取选取三个处于接触状态的轮齿应用六面体八节点单元对其进行网格划分,生成MSC.Marc的数据文件;在MSC.Marc软件中读入该数据文件,然后添加材料特性、接触体、边界条件等建立齿轮接触有限元模型,从而完成齿轮传动从几何模型的建立、网格的划分、边界条件的确定的有限元建模过程。最后,首先以在回转曲面加切向力的方式,进行螺旋锥齿轮传动的静态接触有限元分析,与理论计算值进行对比,验证该模型的正确性;然后在静态接触分析模型的基础上,通过定义控制刚体来实现速度和动力的传递,进行螺旋锥齿轮传动的动态接触有限元分析,得出齿轮传动接触应力分布情况,为工程实践提供有效的检验手段。
Spiral bevel gear transmission is used most extensively in the industry of aviation, sailing, car, tractor, and machine tool as the base transmission part; it is used to transmit of the motion and power of concurrent axes. It has the character of stable transmission, low noise and large range power. The inactivation of the spiral bevel gear causes heavy accident, because it is used in high-speed and heavy-duty drive occasion. It is necessary to do some research of the tooth contact analysis to improve the drive reliability and quality. With the development of computer technology, the Finite Element Method (FEM) is used widely in the analysis of gear transmission intensity. The reason for it is that FEM can deal with mechanical boundary condition and the mechanics of the loaded tooth contact surface very well, and therefore it can provide an exact stress and deformation analysis for gear transmission system.
     The traditional methods to analysis the transmission strength about the spiral bevel gear is translate it into equivalence column gear, calculate the contact stress and bending stress according to the gear inaction form, so the results error is big. The FEM method to plot the three-dimensional model mostly was from the manufacturing procedure to create the mathematical mode, consequently obtain the data of the contact tooth. Because this method require lots of contact rationale knowledge and data manipulation, it is not easy to master by engineers and technicians.
     Applying the powerful entity shape function of Pro/E software, by input the parameter of the number of tooth, module, pressure angle, pitch angle and the modification coefficient to plot the three-dimensional model and assembled; and then use the interface programs to import the assemble model to the pre-process and post-process software MSC. Patran. According to symmetrical characteristic of gear and the characteristic of the FEM analysis, choose three teeth which was in contact partly, use eight node hex element to mesh it by manual labor, and generate the MSC. Marc program document; input the document, and then define the boundary condition, material property and contact body in MSC. Marc, therefore complete the FEM process from the geometrical model, net mesh and the boundary condition, then perform the static contact analysis by define the tangential force on the rotate surface, compare the results with theory calculation data, verify the FEM model; and then define control rigid body, perform dynamic contact analysis by define velocity and moment with the rigid body based on the static contact FEM model, obtain the state of the stress distribution. Supply an effective check means for the engineering practice.
引文
[1] 曾韬.螺旋锥齿轮设计与加工.黑龙江:哈尔滨工业大学出版社,1989
    [2] 薛德余.螺旋锥齿轮虚拟加工系统的研究.山东大学硕士学位论文,2005
    [3] 郑启昌.弧齿锥齿轮与准双面齿轮.北京:机械工业出版社,1988
    [4] 北京齿轮厂.螺旋锥齿轮.北京:科学技术出版社,1974
    [5] 梁桂名.新型非零传动曲齿锥齿轮技术.中国机械工程,1997(8)
    [6] 王步瀛,现代设计方法综述.北京:高等教育出版社,1985
    [7] 王裕清,武良臣.弧齿锥齿轮接触区理论与切削过程仿真.北京:煤炭工业出版社,2004:43-47
    [8] 刘桂琴,江进国,段成龙等.有限元法及其在现代机械工程中的应用.机械研究与应用,2005(02):17-18
    [9] 杨林.螺旋锥齿轮加载啮合分析.沈阳工业大学硕士学位论文,2002
    [10] 郑夕键,鄂中凯,刑俊干等.弧齿锥齿轮齿根应力的影响因素分析.沈阳建筑工程学院学报,1997(01):6-8
    [11] 方宗德.齿轮轮齿承载接触分析(LTCA)的模型和方法.机械传动,1998(02):2-4,17,53
    [12] 郝伟,张洪,郝永福.有限元法在接触问题中的应用.机械管理开发,2005(02):50-51
    [13] 于亚婷,杜平安,王振伟.有限元法的应用现状研究.机械设计,2005(03):8-11
    [14] 陶柯,杨林,金晶立.弧齿锥齿轮啮合过程的载荷分配及应力计算方法.沈阳工业大学学报,1995,17(1):56~58
    [15] 彭文生.螺旋锥齿轮动态特性的实验研究.第一届全国齿轮动力学学会会议论文集,华中理工大学,1987
    [16] 陈良玉,蔡春源,鄂中凯.弧齿锥齿轮的动态特性分析.东北工学院学报,1993,14(5):460~463
    [17] 寺内喜男,宫尾羲治,藤井亮.机论(C编).昭54,45(393):566~574
    [18] 朱孝录.齿轮传动设计手册.北京:化学工业出版社,2005
    [19] 林爱琴,黄恺.Pro/E环境下的弧齿锥齿轮三维参数化造型.辽宁工学院学报,2004(05):32-34
    [20] 徐慧鹃,王萍,王旭等.基于Pro/E野火版渐开线直齿圆锥齿轮造型设计.煤矿机械,2006(5):82-84
    [21] 李雷,黄凯.基于Pm/E的螺旋齿轮参数化设计.机床与液压,2004(11):157-158
    [22] 老虎工作室.举一反三—Pro/ENGINEER中文版机械设计实战训练,2004
    [23] 林清安.Pro/Engineer200i零件设计高级篇.北京:清华大学出版社,2001
    [24] 陈火红.Marc有限元实例分析教程,2003
    [25] 邓效忠,方宗德,魏冰阳.接触路径对弧齿锥齿轮接触应力和弯曲应力的影响.中国机械工程,2003(22):13-16
    [26] 刘刚田,赵萍,杨耀山等.弧齿锥齿轮的实体造型和有限元强度分析.矿山机械,2003(10):60-61
    [27] 郑夕键.弧齿锥齿轮齿根应力三维弹性有限元分析:东北大学硕士学位论文,1994
    [28] 李永祥,王三民,刘保国.弧齿锥齿轮的接触特性研究.机械传动,2005(04):9-11
    [29] 张申林.螺旋锥齿轮的三维弯曲应力有限元分析.西安公路交通大学学报,2000(04):122-125
    [30] 杨升华.齿轮接触有限元分析.计算力学学报,2003(02):64-69
    [31] 马爱军,周传月,王旭.Patran和Nastran有限元分析专业教程.清华大学出版社,2005
    [32] 陈火红,祁鹏.MSC.Patran/Marc培训教程和实例.科学出版社,2004
    [33] 北京齿轮厂编译.格利森锥齿轮技术资料译文集第二分册格利森锥齿轮设计及计算.机械工业出版社,1983
    [34] 天津齿轮机床研究所编译.格利森锥齿轮技术资料译文集第五分册格利森锥齿轮加工方法及轮齿接触分析.机械工业出版社,1982
    [35] Fong, Z. H.; Tsay, Chung-Biau. Mathematical model for the tooth geometry of circular-cut spiral bevel gears. Journal of Mechanisms, Transmissions, and Automation in Design, 1991, 113(2): 174~181
    [36] C. B. Tsay. Helical gears with involutes shaped teeth: geometry, computer simulation, tooth contact analysis, ASME J. Mech. Transm. Auto. Des. 1988(12): 939~946
    [37] Bible G D. Contact Stress Analysis of Spiral Bevel Gears Vsing Finite Element Analysis. ASME Trans., J. of Mechanical Design, 1995, 117(2): 235~240
    [38] 陶柯,杨林,金晶立.弧齿锥齿轮啮合过程的载荷分配及应力计算方法.沈阳工业大学学报,1995(01):56~59
    [39] 郑昌启,黄昌华,吕传贵.螺旋锥齿轮轮齿加载接触分析计算原理.机械工程学报,1993,29(4):50~54
    [40] 何敬安,匡忠信.在载荷作用下螺旋锥齿轮及准双面齿轮轮齿接触计算分析.齿轮,1986,10(5):21~25
    [41] C. B. Tsay et. Tooth Contact Analysis for Helical Gears with Pinion Circular Arc Teeth and Gear Involute Shaped and Gear Involute Shaped Teeth. Trans. Of ASME, 1989(111): 278~283
    [42] L. Ma, H. H. Y. Dynamic Analysis of a Spiral Bevel-Geared Rotor-bearing System. Journal of Sound and Vibration. 2003, 259(3): 605~624
    [43] F. L. Litcin, A.G. Wang, R. F. Handschuh. Computerized Generation and Simulation of Meshing and Contact of spiral Bevel Gears With Improved Geometry. Computer Methods in Applied Mechanics and Engineering. 1998, 158(1-2): 35~64
    [44] 刘光磊.弧齿锥齿轮传动动态接触性能研究,西北工业大学博士论文,2000
    [45] MSC.Software中国.2002.MSC.Marc接触分析培训教程(第二版)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700