用户名: 密码: 验证码:
界面断裂韧性与膜基结合性能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涂层与基体的结合性能是膜基结构系统的重要力学性能之一,其表征评价方法多种多样,但目前还没有一种方法可适用于所有的膜基系统。对于致密性较差、且存在较多缺陷的热喷涂层而言,可采用能量法评价体系,即通过界面裂纹扩展能量释放率与应力相角表征热喷涂层与基体的结合性能。相对于载荷法得到的膜基脱离所需临界载荷值,建立在断裂力学基础上的能量法评价结果具有更清晰的物理意义,且更适合表征复合应力状态下的界面结合性能。本文在国家自然科学基金(No. 50601018)和上海市纳米专项基金(No. 0359nm005)资助下,对MoB-CoCr热喷涂层与2Cr13钢基体结合性能进行了系统地研究,对能量法评价体系进行了有益尝试和探讨,主要研究结果如下:
     采用能量法评价体系时,必须首先知晓涂层的弹性模量,才能采用力学模型计算出界面断裂韧性,而对涂层弹性模量的测量需根据涂层组织结构和性能特点合理地选择测量方法。本文采用纳米压痕法、弯曲法、屈曲法对2Cr13钢和Al块体材料、(Ti,Al)N和Ti薄膜以及MoB-CoCr热喷涂层的弹性模量进行了系统的研究。研究中我们发现,对于宏观上组织结构和性能均匀的块状样品,纳米压痕法和弯曲法均可取得满意的结果。然纳米压痕法测试结果反映的是测试微区的力学性能,对微区组织结构相当敏感,分散性大,且在大压入载荷/深度条件下还受基底材料的影响。对于(Ti,Al)N薄膜/316L不锈钢基体样品,只有当压入深度<10 %膜厚时,基底材料的影响才能忽略,所测得弹性模量值才是可信的,否则为膜层与基底材料共同作用的综合弹性模量。弯曲法测试范围大,测试结果反映的是试样整体的力学性能,数据重复性好。因此,对致密度较差、且存在大量缺陷的MoB-CoCr热喷涂层,弯曲法更适合测量其弹性模量。由于孔隙的存在会降低涂层样品的整体刚度,在局部致密处采用纳米压痕法所测得的弹性模量通常高于反映涂层整体性能的弯曲法所测的弹性模量值。至于屈曲法,则在厚度非常薄的薄膜测量中更具优势。本文利用屈曲法对沉积在107硫化橡胶表面厚度仅100 nm Ti薄膜的弹性模量进行测量,得到弹性模量值为127 GPa。
     针对MoB-CoCr涂层与2Cr13钢结合性能测量,本文在三点弯曲和四点弯曲试验基础上,设计两套研究方案。三点弯曲试验使用单面涂层试样,并利用涂层弯曲变形产生的拉应力促使裂纹从涂层表面萌生并扩展到膜基界面上。四点弯曲试验使用sandwich结构试样,外层基体中有一预制缺口,且缺口底部靠近膜基界面。四点弯曲试验通过缺口处集中的应力(正应力)作用于界面,促使界面裂纹萌生扩展。利用有限元模型对三点弯曲和四点弯曲试验过程模拟,计算出系统能量的变化及裂纹尖端应力场,结合断裂理论计算出能量释放率与应力相角,完成对涂层与基体结合性能的评价。本文的弹塑性模型分析模型将金属基体塑性变形所耗散的能量考虑到能量释放率的计算模型中,相对于过去传统的四点弯曲法弹性分析模型,更适合于热喷涂层/金属基体系统。两种研究方案对MoB-CoCr与2Cr13钢结合性能评价结果相近似:三点弯曲试验得到能量释放率为73 J/m~2、应力相角为36.8 o;四点弯曲试验得到能量释放率为76 J/m~2、应力相角为37.1 o。
     由于涂层与基体材料的物性参数不同,在制备过程中涂层内总存在有残余应力。涂层中残余应力会影响裂纹扩展行为及界面断裂韧性,进而影响能量法结合性能评价。本文通过cohesive单元有限元模型模拟了裂纹在涂层中存在残余应力的条件下沿界面扩展过程,发现残余应力会影响裂纹萌生及扩展所需外力、裂纹长度、挠曲涂层的位移及系统消耗的能量。在利用这些参量评价界面结合性能时,评价的结果必然受到残余应力的影响。
     本文根据弹性力学,解出涂层中存在残余应力条件下圆形界面裂纹扩展能量释放率的解析表达式。该表达式将加载区作为有一定半径的圆形区域,避免了以往将加载区近似为点所带来的较大计算误差,较点载荷近似模型应用范围更广。此外,该表达式将残余应力引入到分析模型中,更适合分析涂层中有残余应力的情况。利用该表达式和有限元模型,对不同残余应力条件下的能量释放率进行数值分析,结果显示残余应力对能量释放率的影响呈非线性特征,其影响程度受加载区及界面裂纹几何尺寸的影响。
Interfacial adhesion is one of the most important mechanical properties for coating/substrate system. In the past, a number of techniques were developed and applied to different coating / substrate systems. However, none of them can produce results under all conditions and each technique has intrinsic limitations. Among those techniques, energy evaluation system is based on well-known fracture theory and can be applied to study the bond strength of thermal spray coating in porous nature on the metallic substrate. Compared to those techniques that evaluate the adhesion with critical load needed to detach the coating, the energy evaluation system has advantages of clear analysis model and application in mixed-mode loading conditions. Under the support of national science foundation (No. 50601018) and shanghai Nano-foundation (No. 0359nm005), this work systemically studies the interfacial adhesion measurement of a MoB-CoCr coating/2Cr13 steel system. The main results include:
     The elastic modulus of the coating is required for fractural analysis of interfacial toughness by energy evaluation system. There are lots of techniques can be used to determine the modulus. Bit different results are often obtained by different techniques for one coating. In order to obtain reasonable result, the microstructure and performance of the coating should be considered in the selection of the measurement. The work studies the applications of the nanoindentation, bending and buckling techniques for bulk materials (2Cr13 steel and Al), films ((Ti,Al)N film and Ti film) and coating (MoB-CoCr thermal spray coating). For those samples with large thickness and homogenous mechanical properties such as 2Cr13 steel and Al bulk samples, the satisfied results that agree with the results of standard tensile test can be achieved by nanoindentation and bending techniques. However the results of the nanoindentation only reflect the mechanical properties of small volume and are sensitive to the microstructure in the local indentation region. If the indentation depth is relatively large compared to coating thickness, the results are also influenced by the mechanical properties of substrate materials. For (Ti,Al)N film, reliable results without influence of the substrate can be obtained when the indentation depth is smaller than one tenth of the coating thickness. In large indentation depth condition, the determined elastic modulus is the combined modulus of coating and substrate. The results of bending test reflect the integral properties of the overall sample structure, because whole sample experiences deformation in the bending test. For thermal spray coating in porous nature, bending technique is more appropriate to determine its elastic modulus if the integral mechanical properties of the sample are the objective. The modulus of the thermal spray coating determined by bending technique is smaller than that determined by nanoindentation, because the porous nature of the thermal spray coating. For the film of rather small thickness, buckling technique exhibits excellent performance. In the work, the buckling technique successfully determined the elastic modulus of Ti film, which was 100nm in thickness and covered on 107 vulcanized rubber, as 127 GPa.
     Two new techniques were designed for studying the interfacial adhesion of MoB-CoCr coating on 2Cr13 steel. One is based on three-point bending test, which uses single-faced coating samples. During the bending, the crack is induced by the tensile stresses in the surface of coating, followed by extending to the interface. The other is based on four-point bending test, which uses sandwich structured samples. A notch is prefabricated in one substrate covered coating, and the bottom of the notch is near the interface. During the bending, the normal stress in the interface is arisen by the stress concentration in the notch region, and results in the initiation and extension of interfacial crack. Using finite element analysis (FEA), the cracking processes in the bending tests are simulated for calculating the stress field at the crack tip and the consumed energy. With the data extracted by the simulation, the critical energy release rate and phase angle are determined for evaluating the interfacial adhesion. Compared to other reported techniques, the cracking ways and mechanical analysis models of those two techniques are different. Especially the dissipated energy by plastic deformation in steel is considered in the calculation. Therefore our designed techniques are more suitable for the thermal spray coating/metallic substrate system. Using those two techniques, a MoB-CoCr coating/2Cr13 steel substrate system was studied. The energy release rates and phase angle are respectively determined as 73 J/m~2 and 36.8 o by 3PB test, 76 J/m~2 and 37.1 o by 4PB test
     Due to the mismatch physical performance between the coating and substrate such as thermal expansion coefficient, the residual stresses always exist in the coating/substrate system. The presence of the residual stresses influence the cracking and interfacial toughness. The cohesive element FEA simulation shows that the residual stresses influence the load needed to induce the initiation and extension of the crack, the length and deflection of the delaminated coating, and the energy consumed in the cracking. Therefore the fracture analysis for evaluating the interfacial adhesion based on those mechanical quantities is also influenced by the residual stresses.
     A new close-form solution on energy release rate was obtained for analyzing the effects of the residual stress. Compared to other reported solutions, our work exhibits two features. One is the loading spot is a circular region with certain radius. Another is the extension of the crack is under the interactive action of the external force and residual stresses. Therefore our solution has wider range of application than the point loading model and is more suitable for studying the condition that the coating is in presence of residual stresses than free residual stresses model. Numerical analysis using the solution and FEA model shows that the influences of the residual stresses on the interfacial toughness present non-linear features and the degree to which the residual stresses influence the energy release rate varies with the geometry of the loading spot and interfacial crack.
引文
[1] Mittal K.L., Adhesion Measurement of Thin Films, Thick Films, And Bulk Coatings [M]. 1976, Philadelphia: American Society for testing and materials.
    [2] Mittal K.L., Adhesion Measurement of films and Coatings. Volume 2 [M]. 2001, Utrecht; The Netherlands ; Boston: VSP.
    [3] Volinsky A.A., Moody N.R., Gerberich W.W., Interfacial toughness measurements for thin films on substrates [J]. Acta Materialia, 2002. 50(3): 441-466.
    [4] Valli J., Makela U., Applications of the scratch test method for coating adhesion assessment [J]. wear, 1987. 115: 215-221.
    [5] Sinha S.K., 180 Years of scratch testing [J]. Tribology International, 2006. 39(2): 61.
    [6] Bull S.J., Rickerby D.S., Matthews A. et al., The Use of Scratch Adhesion Testing for the Determination of Interfacial Adhesion: The importance of Frictional Drag [J]. Surface and Coating Technology, 1988. 36: 503-517.
    [7] Burnett P.J., Rickerby S., The relationship between hardness and scratch adhesion [J]. Thin Solid Films, 1987. 154: 403-416.
    [8] Steinmann P.A., Tardy Y., Hintermann H.E., Adhesion testing by the scratch test method:the influence of intrinsic and extrinsic parameters on the critical load [J]. Thin Solid Films, 1987. 154: 333-349.
    [9] Nledengvist P., Hogmark S., Experiences from scratch testing of tribological PVD coatings [J]. Tribology International, 1997. 30(7): 507-516.
    [10] Buijnsters J.G., Shankar P., van Enckevort W.J.P. et al., Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing [J]. Thin Solid Films, 2005. 474(1-2): 186-196.
    [11] Bull S.J., Berasetegui E.G., An overview of the potential of quantitative coating adhesion measurement by scratch [J]. Tribology International, 2006. 39(2): 99-114.
    [12] Li J., Beres W., Scratch test for coating/substrate systems - A literature review [J]. Canadian Metallurgical Quarterly, 2007. 46(2): 155-173.
    [13] Shen W., Mi L., Jiang B., Characterization of mar/scratch resistance of coatings with a Nano-indenter and a scanning probe microscope [J]. Tribology International, 2006. 39(2): 146-158.
    [14] Ben Tkaya M., Zidi M., Mezlini S. et al., Influence of the attack angle on the scratch testing of an aluminium alloy by cones: Experimental and numerical studies [J]. Materials & Design, 2008. 29(1): 98-104.
    [15] Browning R.L., Lim G.T., Moyse A. et al., Quantitative evaluation of scratch resistance of polymeric coatings based on a standardized progressive load scratch test [J]. Surface and Coatings Technology, 2006. 201(6): 2970-2976.
    [16] Chang S.-Y., Huang Y.-C., Analyses of interface adhesion between porous SiO2 low-k film and SiC/SiN layers by nanoindentation and nanoscratch tests. Microelectronic Engineering, 2007. 84(2): 319-327.
    [17] Chang, S.-Y., Tsai H.-C., Chang J.-Y et al., Analyses of interface adhesion between porous SiOCH low-k film and SiCN layers by nanoindentation and nanoscratch tests[J]. Thin Solid Films, 2008. 516(16): 5334-5338.
    [18] Duan, D.L., Lewis A., Bowen R. et al., Evaluation of adhesion between coating and substrate by a single pendulum impact scratch test [J]. Thin Solid Films, 2006. 515(4): 2244-2250.
    [19] Jaworski R., Pawlowski L., Roudet F. et al., Characterization of mechanical properties of suspension plasma sprayed TiO2 coatings using scratch test [J]. Surface and Coatings Technology, 2008. 202(12): 2644-2653.
    [20] Durst K., Guen M., Investigation of the sliding contact properties of WC-Co hard metals using nanoscratch testing [J]. Wear, 2007. 263(7-12): 1602-1609.
    [21] Sergici A.O., Randall N.X., Scratch testing of coatings [J]. Advanced materials and processes, 2006. April: 41-43.
    [22] Fischer-Cripps A.C., Nanoindentation [M]. 2002, New York: Springer.
    [23] Je J.H., Gyarmatic E., Naoumidis A., Scratch Adhesion Test of Reactively Sputtered TiN Coatings on A Soft Substrate [J]. Thin Solid Films, 1986. 136: 57-67.
    [24] Wu F.-b., Duh J.-g., Scratch behavior and in situ acoustic emission analysis of PVD chromium nitride coatings on mild steel with electroless nickel interlayers [J]. Surface and Coatings Technology, 2003. 162(1): 106-112.
    [25] Tang, W., Weng X.L., Deng L.J. et al., The effect of plating on magnetron sputtering: Residual stress and scratch behavior of Au/NiCr/Ta multi-layers [J]. Applied Surface Science, 2006. 253(4): 2222-2225.
    [26] Sousa, F.J.P., Tridapalli Daniel, Pereira M. et al., Evaluation of measurement uncertainties for a scratching tester[J]. Measurement, 2006. 39(7): 594-604.
    [27] Barletta M., Gisario A., Rubino G. et al., Influence of scratch load and speed in scratch tests of bilayer powder coatings [J]. Progress in Organic Coatings, 2009. 64(2-3): 247-258.
    [28] Labdi S., Jellad A., Maciejak O., Loading rate effect on lateral force measurements on nanostructured Ti and TiN thin films [J]. Surface and Coatings Technology, 2006. 201(1-2): 113-119.
    [29] Ichimura H., Ishii Y., Effects of indenter radius on the critical load in scratch testing. Surface and Coatings Technology, 2003. 165(1): 1-7.
    [30] Johnson K.L.,徐秉业、罗学富、刘信生、宋国华、孙学伟译,接触力学[M]. 1992,北京:高等教育出版社.
    [31] Jiang H., Browning R., Fincher J. et al., Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins [J]. Applied Surface Science, 2008. 254(15): 4494-4499.
    [32] B.J?nsson, Hogmark S., Hardness Measurements of Thin films [J]. Thin Solid Films, 1984. 114: p. 257-269.
    [33] Chicot D., Lesage J., Absolute hardness of films and coatings [J]. Thin Solid Films, 1995. 254(1-2): 123-130.
    [34] Hoy R., Sivel V.G.M., Kamminga J.D., et al., Failure during scratch testing of thick and thin CrN coatings examined using focused ion Beam [J]. Surface and Coatings Technology, 2005. 200(1-4):.149-152.
    [35] Holmberg K., Laukkanen A., Ronkainen H., et al., A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces [J]. Wear, 2003. 254(3-4): 278-291.
    [36] Lacombe R., Adhesion Measruement Methods: Theory and Practice[M]. 2006, Boca Raton: CRC.
    [37] Bonaldo E., Barros J.A.O., Lourenco P.B., Bond characterization between concrete substrate and repairing SFRC using pull-off testing[J]. International Journal of Adhesion and Adhesives, 2005. 25(6): 463-474.
    [38] Greenhalgh E., Lewis A, Bowen R et al., Evaluation of toughening concepts at structural features in CFRP--Part I: Stiffener pull-off [J]. Composites Part A: Applied Science and Manufacturing, 2006. 37(10): 1521-1535.
    [39] Sun Z., Wan K.-T., Dillard D.A., A theoretical and numerical study of thin film delamination using the pull-off test [J]. International Journal of Solids and Structures, 2004. 41(3-4): 717-730.
    [40] Turunen M.P.K., Marjami P, Paajanen M. et al., Pull-off test in the assessment of adhesion at printed wiring board metallisation/epoxy interface[J]. Microelectronics Reliability, 2004. 44(6): 993-1007.
    [41] Anderson T.L., Fracture Mechanics:Fundamentals and Applications[M]. 1995, Boca Raton; Ann Arbor; London; Tokyo: CRC.
    [42] Hutchinson J.W., Suo Z., Mixed model cracking in layered materials[J]. Advances in applie d mechanics, 1992. 29: 63-191.
    [43] Dauskardt R.H., Lane M. Ma Q. et al., Adhesion and debonding of multi-layer thin film structures[J]. Engineering Fracture Mechanics, 1998. 61(1): 141-162.
    [44] Li H., Khor K.A., Cheang,P., Adhesive and bending failure of thermal sprayed hydroxyapatite coatings: Effect of nanostructures at interface and crack propagation phenomenon during bending[J]. Engineering Fracture Mechanics, 2007. 74(12): 1894-1903.
    [45] Shaviv R., Roham S., Woytowitz P., Optimizing the precision of the four-point bend test for the measurement of thin film adhesion[J]. Microelectronic Engineering, 2005. 82(2): 99-112.
    [46] Yokozeki T., Ogasawara T., Aoki T., Correction method for evaluation of interfacial fracture toughness of DCB, ENF and MMB specimens with residual thermal stresses[J]. Composites Science and Technology, 2008. 68(3-4): 760-767.
    [47] Charalambides G., Lund J., Evans A. G. et al., A test specimen for determining the fracture resistance of bimaterial interfaces[J]. Journal of applied mechanics, 1989. 111: 77.
    [48] Wang B., Siegmund T., A modified 4-point bend delamination test[J]. Microelectronic Engineering, 2008. 85(2): 477-485.
    [49] Ren F.Z., Liu P., Jia S.G. et al., Adhesion strength of Ni film on Ti substrate characterized by three-point bend test, peel test and theoretic calculation[J]. Materials Science and Engineering: A, 2006. 419(1-2): 233-237.
    [50] Jensen H.M., Thouless M.D., The blister test for interface toughness measurement [J]. Engineering Fracture Mechanics, 1991. 40(3): 475-486.
    [51] Jensen H.M., M.D.Thouless, Effects of Residual Stresses in The Blister Test[J]. International Journal of Solids and Structures, 1993. 30(6): 779-795.
    [52] Jensen H.M., Analysis of mode mixity in blister test[J]. International Journal of Fracture, 1998. 94(1): 79-88.
    [53] Castaing, P., Lemoine L., Gourdenne A., Mechanical modelling of blisters on coated laminates I -- theoretical aspects[J]. Composite Structures, 1995. 30(2): 217-222.
    [54] Castaing P., Lemoine L.,Gourdenne A., Mechanical modelling of blisters on coated laminates II -- experimental analysis[J]. Composite Structures, 1995. 30(2): 223-228.
    [55] Wan K.-T., A novel blister test to investigate thin film delamination at elevated temperature[J]. International Journal of Adhesion and Adhesives, 2000. 20(2): 141-143.
    [56] Xiao L.H., Su, X.P., Wang, J. H. et al., A novel blister test to evaluate the interface strength between nickel coating and low carbon steel substrate[J]. Materials Science and Engineering: A, 2009. 501(1-2): 235-241.
    [57]任凤章,鞠新华,周根树等,鼓泡法薄膜力学性能测试的研究现状[J].稀有金属材料与工程, 2001. 30(5): 321-325.
    [58]简小刚,孙方宏,陈明等,鼓泡法定量测量金刚石薄膜膜基界面结合强度的实验研究[J].金刚石与磨料磨具工程, 2003. 136(4): 1-4.
    [59]简小刚,陈明,孙方宏等,基于内涨鼓泡实验的金刚石膜附着强度精确定量评价[J].稀有金属材料与工程, 2004. 33(12): 1299-1303.
    [60] Fischer-Cripps A.C., The IBIS Handbook of Nanoindentation[M]. 2005: Fischer-Cripps Laboratories Pty Ltd.
    [61] Poon B., Rittel D., Ravichandran G., An analysis of nanoindentation in elasto-plastic solids[J]. International Journal of Solids and Structures, 2008. 45(25-26): 6399-6415.
    [62] Poon B., Rittel D., Ravichandran G., An analysis of nanoindentation in linearly elastic solids[J]. International Journal of Solids and Structures, 2008. 45(24): 6018-6033.
    [63] Wei P.J., Tsai P.W., Lin J.F., Micro-contact analysis for the initial contact in nanoindentation tests[J]. Tribology International, 2008. 41(12): 1247-1254.
    [64] An T., Wen M., Hu C.Q. et al., Interfacial fracture for TiN/SiNx nano-multilayer coatings on Si(100) characterized by nanoindentation experiments[J]. Materials Science and Engineering: A, 2008. 494(1-2): 324-328.
    [65] Oyen M.L. and Cook R.F., A practical guide for analysis of nanoindentation data[J]. Journal of the Mechanical Behavior of Biomedical Materials. In Press, Corrected Proof.
    [66] Zhao M., Xiang Y., Jessica X. et al., Determining mechanical properties of thin films from the loading curve of nanoindentation testing[J]. Thin Solid Films, 2008. 516(21): 7571-7580.
    [67] Lukes J., Mares T., Otahal S., Nanoindentation - the tool for material identification of biological tissues[J]. Journal of Biomechanics, 2008. 41(Supplement 1): 513-513.
    [68] Fu G. and Cao L., On the fundamental relations used in the analysis of nanoindentation data[J]. Materials Letters, 2008. 62(17-18): 3063-3065.
    [69] Li X. Bhushan B., A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002. 48(1): 11-36.
    [70] Marshall D.B. G.Evans A., Measurement of adherence of residually stresses thin films by indentation. I Mechanics of interface delamination[J]. Journal of applied physics, 1984. 56(10): 2632-2638.
    [71] Rossington C., Evans A.G., Marshall D.B. et al., Measurements of adhesrence of residually stresses thin films by indentation. II. Experiments with ZnO/Si[J]. Journal of applied physics, 1984. 56(10): 2639-2644.
    [72] Matthewson M.J., Adhesion Measurement of Thin Films by Indentation[J]. Applied Physics Letter, 1986. 49(21): 1426-1428.
    [73] Cordill M.J., Bahr D.F., Moody N.R. et al., Recent developments in thin film adhesion measurement[J]. IEEE Transactions on Device and Materials Reliability, 2004. 4(2): 163-168.
    [74] Kriese, M.D., Gerberich W.W., Moody N.R., Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics[J]. Journal of Materials Research, 1999. 14(7): 3007-3018.
    [75] Kriese, M.D., Gerberich W.W., Moody N.R., Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W[J]. Journal of Materials Research, 1999. 14(7): 3019-3026.
    [76] De Boer M.P., Gerberich W.W., Microwedge indentation of the thin film fine line—I. Mechanics[J]. Acta Materialia, 1996. 44(8): 3169-3175.
    [77] De Boer M.P., Gerberich W.W., Microwedge indentation of the thin film fine line--II. Experiment[J]. Acta Materialia, 1996. 44(8): 3177-3187.
    [78] Kim J., Ryba E., The effect of polyol OH number on the bond strength of rigid polyurethane on an aluminum substrate[J]. Journal of Adhesion Science & Technology, 2001. 15(14): 1747-1762.
    [79] M?der, E., Gao S., Prospect of nanoscale interphase evaluation to predict composite properties[J]. Journal of Adhesion Science & Technology, 2001. 15(9): 1015-1037.
    [80] Raghavendran, V.K., Drzal L.T., Askeland P., Effect of surface oxygen content and roughness on interfacial adhesion in carbon fiber-polycarbonate composites[J]. Journal of Adhesion Science & Technology, 2002. 16(10): 1283-1306.
    [81] Roman A., Chicot D., and Lesage J., Indentation tests to determine the fracture toughness of nickel phosphorus coatings[J]. Surface and Coatings Technology, 2002. 155(2-3): 161-168.
    [82] Kim J.-J., Jeong J-H., Lee, K-R.et al., A new indentation cracking method for evaluating interfacial adhesion energy of hard films[J]. Thin Solid Films, 2003. 441(1-2): 172-179.
    [83] Chicot D., Araujo P., Horny N. et al., Application of the interfacial indentation test for adhesion toughness determination[J]. Surface and Coatings Technology, 2005. 200(1-4): 174-177.
    [84] Begley M.R., Mumm D.R., Evans A. G. et al., Analysis of a wedge impression test for measuring the interface toughness between films/coatings and ductile substrates[J]. Acta Materialia, 2000. 48(12): 3211-3220.
    [85] Hivart P., Crampon J., Interfacial indentation test and adhesive fracture characteristics of plasma sprayed cermet Cr3C2/Ni-Cr coatings[J]. Mechanics of Materials, 2007. 39(11): 998-1005.
    [86] Marot G., Demarecaux PH., Lesage J., et al., The interfacial indentation test to determine adhesion and residual stresses in NiCr VPS coatings[J]. Surface and Coatings Technology, 2008. 202(18): 4411-4416.
    [87] Yan J., Leist T., Bartsch, M. et al., On cracks and delaminations of thermal barrier coatings due to indentation testing: Experimental investigations[J]. Acta Materialia, 2008. 56(15): 4080-4090.
    [88] Volinsky A.A., Bahr D.F., Kriese M.D. et al., Nanoindentation Methods in Interfacial Fracture Testing, in Comprehensive Structural Integrity[J]. 2003, Pergamon: Oxford. 453-493.
    [89] Timoshenko S.P., Gere J.M., Theory of Elastic Stability[M]. 1961, New York,Toronto,London: McGraw-Hill.
    [90] Li X., Diao D., Bhushan B., Fracture mechanisms of thin amorphous carbon films in nanoindentation[J]. Acta Materialia, 1997. 45(11): 4453-4461.
    [91] Li X., Bhushan B., Measurement of fracture toughness of ultra-thin amorphous carbon films[J]. Thin Solid Films, 1998. 315(1-2): 214-221.
    [92] Sanchez J.M., El-Mansy S., Sun, B. et al., Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterization[J]. Acta Materialia, 1999. 47(17): 4405-4413.
    [93] Elizalde M.R., Sanchez J. M., Martinez-Esnaola, J. M. et al., Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures[J]. Acta Materialia, 2003. 51(14): 4295-4305.
    [94] Ocana I., Molina-Aldareguia J.M., Gonzalez D. et al., Fracture characterization in patterned thin films by cross-sectional nanoindentation[J]. Acta Materialia, 2006. 54(13): 3453-3462.
    [95] Zheng X,J., Deng S.F., Zhou Y.C. et al., Plate model to evaluate interfacial adhesion of anisotropy thin film in CSN test[J]. Journal of Materials Science, 2004. 39: 4013-4016.
    [96] Zheng, X.J., Zhou Y.C., Investigation of an anisotropic plate model to evaluate the interface adhesion of thin film with cross-sectional nanoindentation method[J]. Composites Science and Technology, 2005. 65(9): 1382-1390.
    [97] Chicot D., Demarecaux P., Lesage J., Apparent interface toughness of substrate and coating couples from indentation tests[J]. Thin Solid Films, 1996. 283(1-2): 151-157.
    [98] Lesage J., Chicot D., Models for hardness and adhesion of coatings[J]. Surface Engineering, 1999. 15(6): 447-453.
    [99] Freund L.B., Suresh S., Thin film materials:stress, defect formation, and surfae evolution[M]. 2003: Cambridge University Press.
    [100] Hasan M., Stokes J., Looney L. et al., Effect of spray parameters on residual stress build-up of HVOF sprayed aluminium/tool-steel functionally graded coatings[J]. Surface and Coatings Technology, 2008. 202(16): 4006-4010.
    [101] Arda L., Ataoglu S., Effect of temperature and film thickness on microstructure and residual stress for YbBCO-coated conductors[J]. Journal of Alloys and Compounds. In Press, Corrected Proof.
    [102] Clyne T.W., Buschow K.H.J, Robert W. Cahn. et al., Residual Stresses in Coated and Layered Systems, in Encyclopedia of Materials: Science and Technology[J]. 2001, Elsevier: Oxford. 8126-8134.
    [103] Noyan I.C., Withers P.J., Buschow K.H.J, et al., Residual Stresses in Microelectronics, in Encyclopedia of Materials: Science and Technology[J]. 2001, Elsevier: Oxford. 8142-8148.
    [104] Bansal, P., Shipway P.H., Leen S.B., Residual stresses in high-velocity oxy-fuel thermally sprayed coatings - Modelling the effect of particle velocity and temperature during the spraying process[J]. Acta Materialia, 2007. 55(15): 5089-5101.
    [105] Dumont P., Tornare G., Leterrier Y. et al., Intrinsic, thermal and hygroscopic residual stresses in thin gas-barrier films on polymer substrates[J]. Thin Solid Films, 2007. 515(19): 7437-7441.
    [106] Zhang X.C., Xu B.S., Wang, H.D. et al., Residual stress distributions within high-temperature coatings[J]. Surface and Coatings Technology, 2007. 201(15): 6660-6662.
    [107] Howard S.J., Tsui Y.C., Clyne T.W., The effect of residual stresses on the debonding of coatings--I. A model for delamination at a bimaterial interface[J]. Acta Metallurgica et Materialia, 1994. 42(8): 2823-2837.
    [108] Tsui Y.C., Howard S.J., Clyne T.W., The effect of residual stresses on the debonding of coatings--II. An experimental study of a thermally sprayed system[J]. Acta Metallurgica et Materialia, 1994. 42(28): 2837.
    [109]王海军,热喷涂材料及应用[M]. 2008,北京:国防工业出版社.
    [1]考特尼,材料力学行为[M]. 2004,北京:机械工业出版社.
    [2] Sadd M.H., Elasticity:Theory, Applications, and Numerics[M]. 2005, Burlington, USA: Elsevier Butterworth-Heinemann.
    [3] Anderson T.L., Fracture Mechanics:Fundamentals and Applications[M]. 1995, Boca Raton; Ann Arbor; London; Tokyo: CRC.
    [4]中华人民共和国国家质量监督检验检疫总局,金属材料室温拉伸试验方法(GB/T228-2002). 2002:中国标准出版社.
    [5]钱苗根,姚寿山,张少宗,现代表面技术[M]. 2000,北京:机械工业出版社.
    [6] Yang, Y., et al., Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films[J]. Scripta Materialia, 2008. 58(12): 1062-1065.
    [7] Son D., et al., Evaluation of fatigue strength of LIGA nickel film by microtensile tests[J]. Scripta Materialia, 2004. 50(10): 1265-1269.
    [8] Liu R., et al., A micro-tensile method for measuring mechanical properties of MEMS materials. J. MicroMech. Microeng., 2008. 16: p. 065002(7pp).
    [9] Seguineau C., et al., Micro-tensile tests on micromachined metal on polymer specimens:elasticity, plasticity and rupture [J]. DTIP of MEMS & MOEMS, 2008. 9-11: 978-2-35500-006-5.
    [10] Oliver W.C., Pharr G.M., An improved technology for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Science, 1992. 7(6): 1564-1583.
    [11] Fischer-Cripps A.C., Nanoindentation [M]. 2002, New York: Springer.
    [12] Gao Y.F., et al., Effective elastic modulus of film-on-substrate systems under normal and tangential contact[J]. Journal of the Mechanics and Physics of Solids 2008. 56(2): 402-416.
    [13] Fawcett N., A novel method for the measurment of Young's modulus for thick-film resistor material by flexural testing of coated beams[J]. Measurement Science and Technolgy, 1998. 9(12): 2023-2026.
    [14] Hollman P., et al., Tensile testing as a method for determining the Young's modulus of thin hard coatings[J]. Surface and Coatings Technology, 1997. 90(3): 234-238.
    [15] Beghini M., Bertini L., Frendo F., Measurement of Coatings' Elastic Properties by Mechanical Methods: Part 1. Consideration on Experimental Errors[J]. Experimental Mechanics, 2001. 41(4): 293-304.
    [16] Beghini M., et al., Measurement of coatings' elastic properties by mechanical methods Part 2. Application to thermal barrier coatings[J]. Experimental Mechanics, 2001. 41(4): 305-311.
    [17] Bao Y.W., et al., Evaluating elastic modulus and strength of hard coatings by relative method. Materials Science and Engineering: A, 2007. 458(1-2): 268-274.
    [18] Li H., Khor K.A., Cheang P., Young's modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings[J]. Surface and Coatings Technology, 2002. 155(1): 21-32.
    [19]徐连勇, et al.,金属基陶瓷涂层弹性模量和界面断裂韧度.焊接学报[J], 2006. 27(8): 55-58.
    [20] Hwang S.-F., et al., Young's modulus and interlaminar fracture toughness of SU-8 film on silicon wafer[J]. Mechanics of Materials, 2008. 40(8): p. 658-664.
    [21]唐达培,高庆,薄膜涂层弹性模量的表征与评价研究[J].机械科学与技术, 2007. 26(5): 552-557.
    [22] Q. Hong-Yu, Z. Li-zhu, and Y. Xiao-guang, Measurement of Young's modulus and Poisson's ratio of thermal barrier coatings. Chinese Journal of aeronautics, 2005. 18(2): 180-184.
    [23] Shi Z.F., et al., Determination of the microscale stress-strain curve and strain gradient effect from the micro-bend of ultra-thin beams[J]. International Journal of Plasticity, 2008. 24(9): 1606-1624.
    [24] Bowden N., et al., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer[J]. Nature, 1998. 393: p. 146-149.
    [25] Crosby K.M., Bradley R.M., Pattern formation during delamination and buckling of thin films[J]. Physical Review E, 1999. 59(3): R2542.
    [26] Moldovan D., Golubovic L., Buckling Dynamics of Compressed Thin Sheets (Membranes)[J]. Physical Review Letters, 1999. 82(14): 2884.
    [27] Volynskii A.L., Bazhenov S., Lebedeva O.V. et al., Mechanical buckling instability of thin coatings deposited on soft polymer substrates. Journal of materials science, 2000. 35: 547-554.
    [28] Groenewold J., Wrinkling of plates coupled with soft elastic media[J]. Physica A: Statistical Mechanics and its Applications, 2001. 298(1-2): 32-45.
    [29] Cerda E., Mahadevan L., Geometry and Physics of Wrinkling. Physical Review Letters, 2003. 90(7): 074302.
    [30] J.Yoo, P., et al., Polymer Elasticity-Driven wrinkling and Coarsening in High Temperature Buckling of Metal-Capped Polymer Thin Films[J]. Physical Review Letters, 2004. 93(3): 034301.
    [31] Huang R., Kinetic wrinkling of an elastic film on a viscoelastic substrate[J]. Journal of the Mechanics and Physics of Solids, 2005. 53(1): 63-89.
    [32] Gruttmann F., Pham V.D., A finite element model for the analysis of buckling driven delaminations of thin films on rigid substrates[J]. Computational Mechanics 2007.
    [33] Jiang W.-G., Su J.-J., Feng X.-Q., Effect of surface roughness on nanoindentation test of thin films[J]. Engineering Fracture Mechanics, 2008. 75(17): 4965-4972.
    [34] Kim C.W., Kim K.H., Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al[J]. Thin Solid Films, 1997. 307(1-2): 113-119.
    [35] Mei F.H., Shao N., Wei L., Effect of N2 partial pressure on the microstructure and mechanical properties of reactively sputtered (Ti,Al)N coatings[J].Materials Letters, 2005. 59: 2210-2213.
    [36] Chen L., Du Y., Wang S.Q., A comparative research on physical and mechanical properties of (Ti,Al)N and (Cr, Al)N PVD coatings with high Al content. International Journal of Refractory Metals & Hard Materials, 2007. 25: 400-404.
    [37] Pfeiler M., Kutschej K., Penoy M., The influence of bias voltage on structure and mechanical/tribological properties of arc evaporated Ti-Al-V-N coatings[J]. Surface & Coatings Technology, 2007.
    [38]沈宁福.金属力学性能手册[M]. 2003,北京:科学出版社.
    [39] Cai X., Bangert H., Hardness measurements of thin films-determining the critical ratio of depth to thickness using FEM[J]. Thin Solid Films, 1995. 264(1): 59-71.
    [40] Peggs G.N., Leigh I.C., Report MOM62[M]. 1983, England: UK National Physical Laboratory.
    [41] Humphreys P.J.G.J., Beanland R., Electron microscopy and analysis[M]. 2001, New York: Taylor & Francis Group.
    [42] Rouzaud, A., Barbier E., Ernoult J. et al., A method for elastic modulus measurements of magnetron sputtered thin films dedicated to mechanical applications[J]. Thin Solid Films, 1995. 270(1-2): 270-274.
    [43] Hearn E.J., Mechanics of materials 1: an introduction to the mechanics of elastic and plastic deformation of solids and structural materials[M]. 2000, Oxford. UK: Butterworth-Heinemann.
    [44] Reddy J.N., Mechaniccs of laminated composite plates and shells: theory and analysis (2rd)[M]. 2004, Boca Raton, London, New York, Washington, D.C.: CRC Press.
    [45] Borrero-Lopez O., Hoffman M., Bendavid A. et al., A simple nanoindentation-based methodology to assess the strength of brittle thin films[J]. Acta Materialia, 2008. 56(7): 1633-1641.
    [46] Sanchez J.M., Ei-Mansy S., Sun B. et al., Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterization[J]. Acta Materialia, 1999. 47(17): 4405-4413.
    [47] Moon M.W., Jensen H.M., Hutchinson J.W. et al., The characterization of telephone cord buckling of compressed thin films on substrates[J]. Journal of the Mechanics and Physics of Solids, 2002. 50(11): 2355-2377.
    [48] Lee A., Litteken C.S., Dauskardt R.H. et al., Comparison of the telephone cord delamination method for measuring interfacial adhesion with the four-point bending method[J]. Acta Materialia, 2005. 53(3): 609-616.
    [49] Faulhaber S., Mercer C., Moon M.W. et al., Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks[J]. Journal of the Mechanics and Physics of Solids, 2006. 54(5): 1004-1028.
    [50] Parry G., Cimetiere A., Coupeau C. et al., Stability diagram of unilateral buckling patterns of strip-delaminated films[J]. Physical Review E, 2006. 74: 066601.
    [51] Cordill M.J., Bahr D.F., Moody N.R. et al., Adhesion measurements using telephone cord buckles. Materials Science and Engineering: A, 2007. 443(1-2): 150-155.
    [52] Timoshenko S.P., Gere J.M., Theory of Elastic Stability[M]. 1961, New York,Toronto,London: McGraw-Hill.
    [53] Huang Z.Y., Hong W., Suo Z., Nonlinear analyses of wrinkles in a film bonded to a compliant substrate[J]. Journal of the Mechanics and Physics of Solids, 2005. 53(9): 2101-2118.
    [54] Basu S.K., Bergstreser A.M., Francis L.F. et al., Wrinkling of a two-layer polymeric coating. Journal of applied physics, 2005. 98: 063507.
    [55] Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells[M]. 1959.
    [56] Stafford C.M., Harrison C., Beers K.L. et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films[J]. Nature Materials, 2004. 3: 545-550.
    [57] Volinsky A.A., Moody N.R., Gerberich W.W., Interfacial toughness measurements for thin films on substrates[J]. Acta Materialia, 2002. 50(3): 441-466.
    [58] Li J.F., Ding C.X., Determining microhardness and elastic modulus of plasma-sprayed Cr3C2-NiCr coatings using Knoop indentation testing[J]. Surface and Coatings Technology, 2001. 135(2-3): 229-237.
    [59] Leigh, S.-H., Lin, C.-K., Berndt, C.C., Elastic response of thermal spray deposits under indentation tests[J]. Journal of American Ceramic Society, 1997. 80(8): 2093-2099.
    [60] Lima R.S., Kruge, S.E., Lamouche, G., Marple, B.R., Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings[J]. Journal of Thermally Spray Technology, 2005. 14(1): 2093-2099.
    [1] Volinsky A.A., Moody N.R., Gerberich W.W., Interfacial toughness measurements for thin films on substrates[J]. Acta Materialia, 2002. 50(3): 441-466.
    [2]中华人民共和国冶金工业部,金属弯曲力学性能试验方法(YB/T 5349-2006)[M]. 2006:中国标准出版社.
    [3] Hutchinson J.W., Suo Z., Mixed model cracking in layered materials[J]. Advances in applied mechanics, 1992. 29: 63-191.
    [4] ABAQUS, Reference manuals, version 6.5[M]. 2004: Hibbit, Karlsson and Sorensen. Providence, RI, .
    [5] Elizalde M.R., Sanche J.M., Martinez-Esnaola J.M. et al., Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures. Acta Materialia, 2003. 51(14): 4295-4305.
    [6] Anderson T.L., Fracture Mechanics:Fundamentals and Applications[M]. 1995, Boca Raton; Ann Arbor; London; Tokyo: CRC.
    [7] Laugier M.T., Palmqvist indentation toughness in WC-Co composites[J]. Journal of materials science letters, 1987. 6: 897-900.
    [8] Rybicki G.C., Pirouz P.. Indentation plasticity and frcture in silicon[J]. NASA Technical Paper, 1988. 2863.
    [9] Cook R.F., Strength and sharp contact fracture of silicon[J]. Journal of materials science, 2006. 41: 841-872.
    [10]中华人民共和国国家质量监督检验检疫总局,金属材料室温拉伸试验方法(GB/T228-2002). 2002:中国标准出版社.
    [11] Irwin G.R., Onset of fast crack propagation in high strength steel and alumimum alloys. Sagamore research conference proceedings, 1956. 2: 289-305.
    [12] De Morais A.B., Pereira A.B., Mixed mode II+III interlaminar fracture of carbon/epoxy laminates[J]. Composites Science and Technology, 2008. 68(9): 2022-2027.
    [13]匡震邦,马法尚,裂纹端部场[M]. 2001,西安:西安交通大学出版社.
    [14] Hellen T.K. On the method of virtual crack extensions[J]. Intnational Journal of Numerical Methods in Engineering, 1975. 9:187-207.
    [15] Parks D.M., The virtual crack extension method for non-linear material behavior[J]. Computer Methods in Applied Mechanics and Engineering, 1977.12:353-364.
    [16] De Moura, M.F.S.F., Fernandez M.V.C., De Morais A.B. et al., Numerical analysis of the Edge Crack Torsion test for mode III interlaminar fracture of composite laminates. Engineering Fracture Mechanics, 2009. 76(4): 469-478.
    [17] Hogberg J.L., S?rensen B.F., Stigh U., Constitutive behaviour of mixed mode loaded adhesive layer[J]. International Journal of Solids and Structures, 2007. 44(25-26): 8335-8354.
    [18] Tadepalli R., Turner K.T., Thompson C.V., Mixed-mode interface toughness of wafer-level Cu-Cu bonds using asymmetric chevron test[J]. Journal of theMechanics and Physics of Solids, 2008. 56(3): 707-718.
    [19] Jensen H.M., Thouless M.D., The blister test for interface toughness measurement[J]. Engineering Fracture Mechanics, 1991. 40(3): 475-486.
    [20] Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells[M]. 1959. New York: McGraw-Hill.
    [21] Dauskardt R.H., Lane M. Ma Q. et al., Adhesion and debonding of multi-layer thin film structures[J]. Engineering Fracture Mechanics, 1998. 61(1): 141-162.
    [22] Zienkiewicz O.C., Taylor R.L., The finite element methods (Volume 1): basis (5rd)[M]. 2005,北京:世界图书出版公司.
    [23] Jacob Lubliner, Plasticity Theory [M]. 1990. New York: Macmillan.
    [24] Shaviv R., Roham S., Woytowitz P., Optimizing the precision of the four-point bend test for the measurement of thin film adhesion[J]. Microelectronic Engineering, 2005. 82(2): 99-112.
    [1] Doerner M.F, Nix W.D, Stresses and deformation processes in thin films on substrates[J]. CRC Critical Reviews in Solid State and Materials Sciences, 1988. 14: 225-268.
    [2] Evans A.G., Hutchinson J.W., The thermomechanical integrity of thin films and multilayers[J]. Acta Metallurgica et Materialia, 1995. 43(7): 2507-2530.
    [3] Freund L.B., Suresh S., Thin film materials:stress, defect formation, and surfae evolution[M]. 2003: Cambridge University Press.
    [4] Benegra M., Lamas D.G., Fernzndez De Rapp M.E. et al., Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering[J]. Thin Solid Films, 2006. 494(1-2): 146-150.
    [5] Huang J.-H., Ma C.-H., Chen H., Effect of Ti interlayer on the residual stress and texture development of TiN thin films[J]. Surface and Coatings Technology, 2006. 200(20-21): p. 5937-5945.
    [6] Moon M.W., Jensen H.M., Hutchinson J.W. et al., The characterization of telephone cord buckling of compressed thin films on substrates[J]. Journal of the Mechanics and Physics of Solids, 2002. 50(11): 2355-2377.
    [7] Lee A., Litteken C.S., Dauskardt R.H. et al., Comparison of the telephone cord delamination method for measuring interfacial adhesion with the four-point bending method[J]. Acta Materialia, 2005. 53(3): 609-616.
    [8] Faulhaber S., Mercer C., Moon M.W. et al., Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks[J]. Journal of the Mechanics and Physics of Solids, 2006. 54(5): 1004-1028.
    [9] Parry G., Cimetiere A., Coupeau C. et al., Stability diagram of unilateral buckling patterns of strip-delaminated films[J]. Physical Review E, 2006. 74: 066601.
    [10] Cordill M.J., Bahr D.F., Moody N.R. et al., Adhesion measurements using telephone cord buckles[J]. Materials Science and Engineering: A, 2007. 443(1-2): 150-155.
    [11] Jensen H.M., Thouless M.D., The blister test for interface toughness measurement[J]. Engineering Fracture Mechanics, 1991. 40(3): 475-486.
    [12] Sanchez J.M., Ei-Mansy S., Sun B. et al., Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterization. Acta Materialia, 1999. 47(17): 4405-4413.
    [13] Elizalde M.R., Sanche J.M., Martinez-Esnaola J.M. et al., Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures. Acta Materialia, 2003. 51(14): 4295-4305.
    [14] Ocana I., Molina-Aldareguia J.M., Gonzalez D. et al., Fracture characterization in patterned thin films by cross-sectional nanoindentation. Acta Materialia, 2006. 54(13): 3453-3462.
    [15] Zheng X., Deng S.F., Zhou Y.C. et al., Plate model to evaluate interfacial adhesion of anisotropy thin film in CSN test[J]. Journal of Materials Science, 2004. 39: 4013-4016.
    [16] Zheng X.J., Zhou Y.C., Investigation of an anisotropic plate model to evaluate the interface adhesion of thin film with cross-sectional nanoindentation method[J]. Composites Science and Technology, 2005. 65(9): 1382-1390.
    [17] Ruzicka M.C., On dimensionless numbers[J]. Chemical Engineering Research and Design, 2008. 86(8): 835-868.
    [18] Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells[M]. 1959.
    [19] Volinsky A.A., Moody N.R., Gerberich W.W., Interfacial toughness measurements for thin films on substrates. Acta Materialia, 20 02. 50(3): 441-466.
    [20] ABAQUS, Reference manuals, version 6.5[M]. 2004: Hibbit, Karlsson and Sorensen. Providence, RI, .
    [21] Camanho P.P., Davila C.G., Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials[M]. NASA/TM-2002-211737, 2002.
    [22] Diehl, T., On using a penalty-based cohesive-zone finite element approach, Part I: Elastic solution benchmarks[J]. International Journal of Adhesion and Adhesives, 2008. 28(4-5): 237-255.
    [23] S?ensen B.F., Jacobsen T.K., Characterizing delamination of fibre composites by mixed mode cohesive laws[J]. Composites Science and Technology, 2009. 69(3-4): 445-456.
    [24] Zhao H.F., Chen M., Jin Y., Determination of interfacial properties between metal film and ceramic substrate with an adhesive layer[J]. Materials & Design, 2009. 30(1): p. 154-159.
    [25] Anderson T.L., Fracture Mechanics:Fundamentals and Applications[M]. 1995, Boca Raton; Ann Arbor; London; Tokyo: CRC.
    [26] Hutchinson J.W., Suo Z., Mixed model cracking in layered materials[J]. Advances in applied mechanics, 1992. 29: 63-191.
    [27] Mittal K.L., Adhesion Measurement of Thin Films, Thick Films, And Bulk Coatings[M]. 1976, Philadelphia: American Society for testing and materials.
    [28] Hutchinson J.W., Thouless M.D., Liniger E.G., Growth and Configurational Stability of Circular, Buckling-Driven Film Delaminations[J]. Acta Metallurgica et Materialia, 1992. 40(2): 295-308.
    [29] Yu H.H., He M.Y., Hutchinson J.W., Edge effects in thin film delamination[J]. Acta Materialia, 2001. 49: 93-107.
    [1] Mittal K.L., Adhesion Measurement of Thin Films, Thick Films, And Bulk Coatings [M]. 1976, Philadelphia: American Society for testing and materials.
    [2] Mittal K.L., Adhesion Measurement of films and Coatings. Volume 2 [M]. 2001, Utrecht; The Netherlands ; Boston: VSP.
    [3] Lacombe R., Adhesion Measruement Methods: Theory and Practice [M]. 2006, Boca Raton: CRC.
    [4] Turner M.R., Dalgleish B.J., He M.Y. et al., A fracture resistance measurement method for bimaterial interfaces having large debond energy [J]. Acta Metallurgica et Materialia, 1995. 43(9): 3459-3465.
    [5] Volinsky A.A., Moody N.R., Gerberich W.W., Interfacial toughness measurements for thin films on substrates [J]. Acta Materialia, 2002. 50(3): 441-466.
    [6] Zhang S., Sun D., Fu Y.Q. et al., Toughness measurement of thin films: a critical review [J]. Surface and Coatings Technology, 2005. 198(1-3): 74-84.
    [7] Cordill M.J., Bahr D.F., Moody N.R. et al., Recent developments in thin film adhesion measurement. IEEE Transactions on Device and Materials Reliability[J], 2004. 4(2): 163-168.
    [8] Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells [M]. 1959. New York: McGraw-Hill.
    [9] Charalambides G., Lund J., Evans A. G. et al., A test specimen for determining the fracture resistance of bimaterial interfaces[J]. Journal of applied mechanics, 1989. 111: 77.
    [10] Williams J.G., Energy release rates for the peeling of rlexible membranes and the analysis of blister tests [J]. International Journal of Fracture, 1997. 87: 265.
    [11] Cotterell B., Chen Z., The blister test– Transition from plate to membrane behaviour for an elastic material [J]. International Journal of Fracture, 1997. 87: 265.
    [12] Guo, S., Wan K.-T., Dillard D.A., A bending-to-stretching analysis of the blister test in the presence of tensile residual stress [J]. International Journal of Solids and Structures, 2005. 42(9-10): 2771-2784.
    [13] Xiao L.H., Sun X.P., Wang J.H. et al., A novel blister test to evaluate the interface strength between nickel coating and low carbon steel substrate [J]. Materials Science and Engineering: A, 2009. 501(1-2): 235-241.
    [14] Bagchi A., Evans A.G., Measurements of the debond energy for thin metallization lines on dielectrics [J]. Thin Solid Films, 1996. 286(1-2): 203-212.
    [15] Modi M.B., Sitaraman S.K., Interfacial fracture toughness measurement for thin film interfaces. E[J]ngineering Fracture Mechanics, 2004. 71(9-10): 1219-1234.
    [16] Ju B.-F., et al., A novel cylindrical punch method to characterize interfacial adhesion and residual stress of a thin polymer film [J]. Engineering Fracture Mechanics, 2007. 74(7): 1101-1106.
    [17] Arjun A., Wan K.-T., Derivation of the strain energy release rate G from firstprinciples for the pressurized blister test[J]. International Journal of Adhesion and Adhesives, 2005. 25(1): 13-18.
    [18] Rice J.R., Elastic fracture mechanics concepts for interfacial cracks [J]. Journal of applied mechanics, 1988. 110.
    [19] Hutchinson J.W., Suo Z., Mixed model cracking in layered materials. Advances in applied mechanics, 1992. 29: 63-191.
    [20] Sanchez J.M., et al., Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterization [J]. Acta Materialia, 1999. 47(17): 4405-4413.
    [21] Elizalde M.R., Sanchez J. M., Martinez-Esnaola, J. M. et al., Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures[J]. Acta Materialia, 2003. 51(14): 4295-4305.
    [22] Timoshenko S.P., Gere J.M., Theory of elastic stability [M]. 1961, New York,Toronto,London: McGraw-Hill.
    [23] Kinbara A., Kusano E., Kamiya T. et al., Evaluation of adhesion strength of Ti films on Si(100) by the internal stress method [J]. Thin Solid Films, 1998. 317(1-2): 165-168.
    [24] Moon M.W., Jensen H.M., Hutchinson J.W. et al., The characterization of telephone cord buckling of compressed thin films on substrates [J[. Journal of the Mechanics and Physics of Solids, 2002. 50(11): 2355-2377.
    [25] Hong S., Weihs P., Bravman J.C. et al., Measuring stiffnesses and residual stresses of silicon nitride thin films [J]. Journal of Electronic Materials, 1990. 19(9): 903-909.
    [26] Hutchinson J.W., Thouless M.D., Liniger E.G., Growth and configurational stability of circular, buckling-driven film delaminations [J]. Acta Metallurgica et Materialia, 1992. 40(2): 295-308.
    [27] Crisfield M.A., Non-linear finite element analysis of solids and structures (volume 1): essentials [M]. 2000, Baffins Lans, Chichester: John Wiley&Sons.
    [28] Crisfield M.A., Non-linear finite element analysis of solids and structures (volume 2): advanced topics [M]. 2000, Baffins Lans, Chichester: John Wiley&Sons.
    [29] ABAQUS, Reference manuals, version 6.5. 2004: Hibbit, Karlsson and Sorensen. Providence, RI, .
    [30] Anderson T.L., Fracture mechanics: fundamentals and applications [M]. 1995, Boca Raton; Ann Arbor; London; Tokyo: CRC.
    [31] Jensen H.M., Thouless M.D., Effects of residual stresses in the blister test [J]. International Journal of Solids and Structures, 1993. 30(6): 779-795.
    [32] Wan K.-T., Adherence of an axisymmetric flat punch onto a clamped circular plate: transition from a rigid plate to a flexible membrane [J]. Journal of Applied Mechanics, 2002. 69: 110-116.
    [33] Wan K.-T., Duan J., Adherence of a rectangular flat punch onto a clamped plates: transition from a rigid plate to a flexible membrane [J]. Journal of applied mechanics, 2002. 69: 104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700