用户名: 密码: 验证码:
福建尤溪丁家山铅锌矿矿床成因、成矿机理及成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁家山铅锌矿区地处闽中地区南部,东南地洼区浙闽地穹系绍广地洼列南平地洼内。受区域环境内多类型沉积建造、多期次构造、岩浆活动及多类型变质作用的影响,区内地质情况较为复杂。
     目前关于研究区矿床成因类型存在接触交代变质型和与双峰式火山岩有关的块状硫化物矿床(VMS型)两种截然不同的认识,双方争议焦点集中在矿区赋矿围岩原岩类型、成矿作用类型、成矿时代、成矿物质来源、控矿因素等关键性问题上。
     矿区主要赋矿围岩为上元古界马面山群龙北溪组上段石榴子石透辉石绿帘石系列变质岩,综合变质岩产状、主要造岩矿物的组构及分布特征、岩石化学、岩相学、稀土元素化学等方面的系统化原岩恢复表明其原岩为形成于新元古代的浅(滨)海陆棚相—浅海台地相的粉砂质泥岩、钙质泥质粉砂岩、泥质钙质粉砂岩及泥灰岩等富钙质沉积岩类,而不是以往研究中认为的双峰式火山岩类。
     精细化矿物场填图结果显示赋矿围岩内石榴子石、透辉石、绿帘石等造岩矿物和矿体内主要金属矿物具有切层分布特征,各类矿物富集中心沿NE、NW向排布,矿物体积百分数等值线整体沿NE向展布,与研究区西部燕山期串珠状花岗岩岩株体分布走向一致,说明矿区成岩、成矿热源——燕山期钙碱性—碱性重熔型钾长花岗岩自矿区中部NE、NW向断层交叉处(Ⅲ-1、Ⅲ-2号矿体交汇处)侵入后,主要沿规模较大的NE向断层向SW方向运移。
     同成矿期石英流体包裹体Rb-Sr等时线证实矿区成矿时代为(146.15±3.95)Ma,属侏罗纪晚期,为燕山运动早期第三阶段;Pb、 S、H、O同位素及岩体、矿体、围岩稀土元素组成系统化研究证明成矿物质具有多来源特征。其中Pb、Zn由燕山期花岗岩和上元古界马面山群龙北溪组地层共同提供,而S主要由燕山期花岗岩提供,成矿流体由大气降水和岩浆水混合组成。成矿期石英内原生流体包裹体均一法测温结果、闪锌矿-方铅矿矿物对地质温度计计算结果及磁黄铁矿成因矿物学研究结果显示矿区成矿温度在200℃-350℃之间;闪锌矿(六方磁黄铁矿+黄铁矿)地质压力计计算结果显示矿区成矿压力在0.197~0.409GPa之间,与燕山期花岗岩Q-Ab-Or温度压力三相图投影得出的侵入压力0.2-0.3GPa基本一致。以上证据综合证实矿区内与成矿直接相关的变质作用为发生在燕山早期第三阶段的钙碱性—碱性重熔型钾长花岗岩与上元古界马面山群龙北溪组上段经加里东期区域变质的粉砂质泥岩、钙质泥质粉砂岩、泥质钙质粉砂岩及泥灰岩等富钙质岩间的接触交代变质作用。
     矿区成矿受燕山期钙碱性-碱性重熔型钾长花岗岩、上元古界马面山群龙北溪组富钙质地层和断层、背斜褶皱及角度不整合等构造因素联合控制。其中岩体和地层是发生接触交代变质作用的基本物质条件,为成矿提供Pb、Zn、S等物质和部分成矿流体;断层、背斜褶皱及角度不整合等构造因素为岩体的侵入、成矿热液的运移和矿物质卸载、沉淀开辟空间,其中北东向断层的控矿意义更为关键。
     丁家山矿区成矿系统结构要素与VMS型矿床和SEDEX型矿床截然不同,属于挤压构造成矿系统(大类)下属的与燕山期花岗质岩浆有关的接触交代变质成矿系统类。位于上元古界马面山群龙北溪组上段、上侏罗统长林组及二者间角度不整合接触面上的矿体为同一成矿系统在不同矿化网络节点上的产物。
Dingjiashan Pb-Zn ore district in central Fujian province is located in Southeast tiwa region, Zhemin geodome system, Shaoguang tiwa series. Geological conditions in study area are very complex because of heavily influenced from many types of sedimentary formation, many times of structural activity, magmatism and metamorphism.
     There are two views on metallogenesis, one is contact metasomatic metamorphism ore deposit and the other one is massive sulfide ore deposit related to bimodal volcanic rocks (VMS). The focus of contention is original rock types of wall rock, metallogenesis type, mineralogenetic epoch, metallogenic material sources, controlling factors, and so on.
     Main wall rock in Dingjiashan Pb-Zn ore district is metamorphic rock composed by garnet, diopside, and epidote in Neoproterozoic Mamianshan formation Longbeixi group upper. Synthesis studies is used to recover the original rock of wall rock inclouding metamorphic rock attitude, mineral association, texture and structure, characteristic of distribution, petrochemistry, petrography, REE chemistry, and so on. The result confirms that wall rock of Pb-Zn ore body in study area are pararocks, original rock of them are calcareous rocks, like silty mudstones, calcium shale siltstone, shale calcium siltstone, marlstone and so on, but not bimodal volcanic rocks mentioned in previous research. These rocks are neritic (littoral) shelf facies-neritic platform facies.
     The result of Mineral mapping reveals that essential rock-forming minerals in wall rock and essential metallic minerals in ore body are all cut stratums, enrichment points of them distribute along Northeast and Northwest. The overall disposition of minerals volume percentage contour lines is northeast, which is consistent with the trend of Yanshanian granite in Upper Jurassic Changlin group. It confirms that the heat source of diagenesis and metallogenesis is Yanshanian calc alkalic-alkalic remelted granite. It intruded into the junction of NE fault and NW fault (the junction of ore body Ⅲ-1and Ⅲ-2) in the central of Dingjiashan Pb-Zn district and flowed to SW along NE fault.
     Rb-Sr isochron of fluid inclusion in quartz indicates the mineralogenetic epoch is (146.15±3.95) Ma, it was late Jurassic and third stage of early Yanshanian. It is found that there are many metallogenic material sources through systematic research on isotope like Pb, S, H and O, REE composition of granite, ore body and wall rock. Pb and Zn is supplied by Yanshanian granite and Neoproterozoic Mamianshan formation Longbeixi group. S is supplied by Yanshanian granite. Ore-forming fluid is composed by magmatic water and atmospheric water. Ore-forming temperature is200℃~350℃, which is confirmed by gas-liquid inclusions homogenization temperature, the result of sphalerite-galena geothermometer and pyrrhotite genetic mineralogy. Ore-forming pressure get from sphalerite (hexagonal pyrrhotite+pyrite) geobarometer is0.197~0.409GPa, which is close to0.2~0.3Gpa, the pressure of Yanshanian granite get from Q-Ab-Or temperature and pressure three phase diagram. There are many differences between Dingjiashan Pb-Zn ore district and VMS and SEDEX ore deposits. The metamorphism which is directly bound up with metallogenesis is contact metasomatic metamorphism between Yanshanian granite and the regional metamorphiced calcareous rock in Neoproterozoic Mamianshan formation Longbeixi group upper.
     There are three control factors to ore body, Yanshanian calc alkalic-alkalic remelted granite, calcareous rock in Neoproterozoic Mamianshan formation Longbeixi group upper and many kinds of structures like fault, anticline and angular unconformity. Yanshanian granite and calcareous rock in Neoproterozoic Mamianshan formation Longbeixi group upper supply material to contact metasomatic metamorphism, like Pb, Zn, S and a part of ore-forming fluid. Structures open up roads to granite and ore-forming fluid. Finally, these structures become to the spaces for ore bodies. NE faults are the most important ore-controlling structures.
     It is entirely different between VMS, SEDEX type ore deposits to Dingjiashan Pb-Zn ore district metallogenic system elements. Dingjiashan Pb-Zn ore district is contact metasomatic metamorphism metallogenic system related to Yanshanian granite, which belongs to compression structure metallogenic system. Ore bodies in Neoproterozoic Mamianshan formation Longbeixi group upper, Upper Jurassic Changlin group and angular unconformity between them are products of one metallogenic system but on different Mineralization network points.
引文
[1]KEN SALAZAR, Marcia K. Mc Nutt. Mineral Commodity Summaries[R]. Washington:United States Government Printing Office,2010. http://www.doc88.com/p-90422129420.html
    [2]雷力,周兴龙,文书明,等.我国铅锌矿资源特点及开发利用现状[J].矿业快报,2007,(9):1-4.
    [3]闽西地质队.丁家山、峰岩、关兜等矿点评价报告[R].三明市:福建省地质矿产勘查开发局,1977.
    [4]周兵,顾连兴.论梅仙块状硫化物矿床的特征及成矿地质环境[J].矿床地质,1999,18(2):99-109.
    [5]叶水泉,倪大平,吴志强.福建省梅仙式块状硫化物矿床[J].火山地质与矿产,1999,20(3):172-180.
    [6]陈小华.福建省丁家山铅锌矿床地质特征及成因[J].福建地质,2000,19(2):57~65.
    [7]李文渊.块状硫化物矿床的类型、分布和形成环境[J].地球科学与环境学报,2007,29(4):331-344.
    [8]Stephen J. Poercey, Jan M. Peter, James K. Mortensen. A special issue devoted to continental margin massive sulfide deposits and their geodynamic environments [J]. Economic Geology,2008,103(1):1-4.
    [9]王玉奇.Sedex型矿床与VMS型矿床对比研究[J].资源环境与工程,2009.23(3):259~262.
    [10]Frankin J M, Sangster D F, Lydon J W. Volcanic-assccitaed massice sulfide deposites[J]. Economic Geology,1981, (75th Anniv):485-627.
    [11]J. Francheteau, H. D. Needham, P. Choukroune etal. Massice deep-sea sulphide ore deposits discovered on the East Pacific Rise[J]. Nature, 1979,277(15):523-528.
    [12]Ohmoto H, Skinner B J. The Kuroko and related volcanggenic massive sulfide deposit[J]. Economic Geology,1983, (5):604.
    [13]Lydon J W. Ore deposit models 14, Volcanogenic massive sulfide deposit [J]. Geoscience Canada,1988,83(1):43-66.
    [14]Spooner E T C, Chapman H. J, Semwing J D, Strontium isotopic contarnination and oxidation during ocean floor hydrothermal metamorphism of pohiolitic rocks of the Troodos Masiff, Cyprus[J]. Geochim et Cosmochim Acta,1977b,41:873-890.
    [15]Solomon M. "Volcanic" massive sulphide deposits and the host rock-a review and an axpkanation[A], In:Wolf K A ed. Handbook of strata-bound and stratiform ore deposits (Ⅱ:Regional studies and specific deposots) [C]. Amsterdarn:Elsevier Scientlfic publishing company,1976,21-50.
    [16]安伟,曹志敏,郑建斌,等.古代与现代火山成因块状硫化物矿床研究进展[J].地球科学进展,2003,1(5):773~782.
    [17]Hezig P M, Hanningtong M D. Polymetallic Massive Sul-fides at the Modern Seafloor:A Review[J]. Ore Geologica Review,1995,10: 95-115.
    [18]胡文瑄,顾连兴,徐克勤,等.论华南块状硫化物矿床成矿规律与找矿方向[J].地质论评,1994,40(6):513~519.
    [19]顾连兴,胡文瑄,倪培,等.再论大陆地壳断裂拗陷带中的华南型块状硫化物矿床[J].高校地质学报,2003,9(4):592-608.
    [20]徐克勤,王鹤年,周建平,等.论华南喷流-沉积块状硫化物矿床[J].高校地质学报,1996,2(3):241-256.
    [21]姜福芝.双峰式火山岩与块状硫化物矿床[J].矿床地质,2001,20(4):331-338.
    [22]何金祥,徐克勤,顾连兴,等.南岭与下扬子区块状硫化物矿床特征的对比[J].南京大学学报,1995,31(4):625-634.
    [23]崔志华,许英霞,于淑艳.块状硫化物矿床的形成环境、类型与成矿机制[J].河北理工大学学报(自然科学版),2010,32(4):123-126.
    [24]刘晓东,周涛发.块状硫化物矿床地质地球化学特征与形成机理[J].合肥工业大学学报,1999,22(4):42-47.
    [25]王玉奇.Sedex型矿床与VMS型矿床对比研究[J].资源环境与工程,2009,23(3):259~262.
    [26]肖新建,倪培.论沉积喷流(Sedex)成矿与沉积-改造成矿之对比[J].地质找矿论丛,2000,15(3):238-244.
    [27]李金高,王全海,郑明华,等.西藏Sedex型矿床富矿盆地性质对成矿元素的制约作用[J].沉积与特提斯地质,2001,21(4):11-20.
    [28]王登红.块状硫化物的地球化学找矿标志[J].地质科技情报,1994,13(2):81~86.
    [29]别风雷,候增谦,李胜荣,等.川西呷村超大黑矿型矿床成矿流体稀土元素组成[J].岩石学报,2000,16(4):575~580.
    [30]别风雷,李胜荣,孙岱生,等.川西呷村黑矿型多金属矿床热液体系[J].矿物学报,2000,20(2):233-241.
    [31]候增谦,渡边徹郎.古代与现代海底黑矿型块状硫化物矿床矿石化学比较研究[J].地球化学,1996,25(2):228-241.
    [32]李佑国,候增谦.四川呷村VMHS矿床:从矿石化学分析到地球化学模型[J].矿床地质,2001,20(2):119-128.
    [33]吕庆田,候增谦,赵金花,等.四川呷村火山成因块状硫化物矿床的综合找矿模式[J].矿床地质,2001,20(4):313-322.
    [34]王可.青海锡铁山块状硫化物铅锌矿床成因探讨[J].矿物岩石,1993,13(1):76-83.
    [35]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床[M].北京:地质出版社,1990.
    [36]董树义.山东沂南金矿床成因与成矿规律和成矿预测[D].北京:中国地质大学,2008:6.
    [37]Donald M. Burt. Mineralogy and petrology of skarn deposits[J]. Rendiconti societa Italiana di mineralogia e petrologia, 1977,33(2):859-873.
    [38]M. T. Einaudi, D. M. Burt. A special issue decoted to skarn deposits: Introduction-Tterminology, classification, and composition of skarn deposits [J]. Economic Geology,1982,77(4):745-754.
    [39]Donald M. Burt. Skarn deposit-Historical bibliography through 1970[J]. Economic Geology,1982,77:755-763.
    [40]Lawrence D. Meinert. Skarn and skarn deposits [J]. Geoscience Canada, 1992,19(4):145-162.
    [41]程家龙,赵永鑫,柳丰华.矽卡岩型矿床的成矿作用和地球化学研究综述[J].地质找矿论丛,2009,24(4):329-334.
    [42]吴言昌.论岩浆矽卡岩:一种新类型矽卡岩[J].安徽地质,1992,(1):649-656.
    [43]赵斌,赵劲松,张重泽,等.岩浆成因矽卡岩的实验证据[J].科学通报,1993,38(21):1986~1989.
    [44]曾志刚.老君山成矿区变质成因矽卡岩的地质地球化学特征[J].矿物学报,1999,19(1):48-55.
    [45]王长明,张寿庭,邓军,等.内蒙古黄岗梁锡铁多金属矿床层状矽卡岩的喷流沉积成因[J].岩石矿物学杂志,2007,26(5):409~417.
    [46]Meinert L D, Lentz D R, Newberry D J. A special issue devoted to skarn deposits[J]. Economic geology,2000,95:1173-1183.
    [47]Berg R. Tungsten skarn mineralization in a regional metamorphic terrain in northern Norway:a possible metamorphic ore deposit[J]. Mineral deposits,1991,26:281-289.
    [48]涂光炽.中国层控矿床地球化学(第一卷)[M].北京:科学出版社,1984,1-69.
    [49]常印佛,刘学圭.关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例[J].矿床地质,1983,2(1):11-20.
    [50]Stanton R L. Stratiform ores and metamorphic processes_Some thoughts arising from Broken Hill [J]. Broken Hill conference,1983:11-28.
    [51]廖宗廷,马婷婷,李玉加.永平矿区层状矽卡岩的成因及成矿意义[J].同济大学学报,2001,29(11):1322-1326.
    [52]刘玉平,李朝阳,刘家军.都龙矿床含矿层状矽卡岩成因的地质地球化学证据[J].矿物学报,2000,20(4):378~384.
    [53]吕文德,赵春和,孙卫志,等.河南栾川地区矽卡岩型铅锌矿床地质特征—南泥湖钼矿外围找矿问题[J].地质调查与研究,2005,28(1):25~31.
    [54]姚鹏,顾雪祥,李金高,等.甲马铜多金属矿床层控矽卡岩流体包裹体特征及成因意义[J].成都理工大学学报(自然科学版),2006,33(3):285-293.
    [55]姚鹏,李金高,顾雪祥,等.从REE和硅同位素特征探讨西藏甲马矿床层控矽卡岩成因[J].岩石矿物学杂志,2006,25(4):305-313.
    [56]田建涛,喻亨祥,扬准,等.矽卡岩成因及成矿作用研究进展综述[J].中国科技信息,2005,(23):107.
    [57]Einaudi M T, Meinert L D, Newberry R T. Skarn deposits[J]. Economic Geology.2008,75th Anniv:317-391.
    [58]黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,1(3-4):105-111.
    [59]Kuscu I, GencalioGnu-Kuscu G, Sarac C, et al. An approach to geochemical characterization of productive versus barren granitoids in terms of iron in Cent ral Turkey [J]. Journal of Asian Earth Sciences,2004,24:2311-2325.
    [60]Zulfiqar Ahmed, Mustafa M Hariri. Formation and mineral chemist ry of a calcic skarn from Al-Madhiq, SW Saudi Arabia[J]. Chemie der Erde, 2006,66:187-201.
    [61]田建涛,喻亨祥,李军,等.夕卡岩成因及成矿作用研究进展综述[J].工程论坛,2005,23:107.
    [62]Lanfranchini M E, Barrio R E, Etcheverry R 0. Geology and chemistry of the El Abuelo Calcic Fe-skarn and related Cu-(Ag)-bearing hydrothermal vins, Chubut povince, Sout hern Argentina[J]. Exploration and Mining Geology,2007,16 (324):145-158.
    [63]陈衍景,秦善,李欣.中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式[J].北京大学学报(自然科学版),1997,33(4):456-466.
    [64]赵斌.中国主要矽卡岩及矽卡岩型矿床[M].北京:科学出版社,1989.
    [65]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006:78.
    [66]南京大学地质学系.地球化学[M].北京:科学出版社,1979:309~315.
    [67]赵一鸣.夕卡岩研究的某些重要新进展[J].矿床地质,2002,21(2):113-120.
    [68]程家龙,赵永鑫,柳丰华.矽卡岩型矿床的的成矿作用和地球化学研究综述[J].地质找矿论丛,2009,24(4):329~334.
    [69]Miguel Gaspar, Charles Knaack, Lawrence D Meinert,et al. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit [J]. Geochimica et Cosmochimica Acta,2008,72:185-205.
    [70]Yiming Zhao, Yinan Zhang, Chengsi Bi. Geology of gold-bearing skarn deposits in the middle and lower Yangtze River Valley and adjacent regions [J]. Ore Geology Reviews,1999,14(3):227-249.
    [71]L. D. Meinert. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Economic Geology,2003,98(1): 147-156.
    [72]Timothy Baker, Esme Van Achterberg, Chris G. Ryan, et al. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J], Geology,1995,32(2):117-120.
    [73]沈渭洲.稳定同位素地质[M].北京:原子能出版社,1987.
    [74]翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1992.
    [75]赵一鸣,林文蔚,毕承思,等.中国含金矽卡岩矿床的分布和主要地质特征[J].矿床地质,1997,16(3):193-203.
    [76]Meinert L D. Application of skarn deposit zonztion models to mineral exploration[J]. Explor Mining Geol,1997,6(2):185-208.
    [77]Lawrence D. Meinert, Gregory M. Dipple. World skarn deposit[J]. Society of Economic Geologists, Inc,Economic Geology 100th anniversary Volume,:2005:299-336.
    [78]Bj(?)rn JaMagveit, Roy A. Wogelius, Donald G. Fraser. Zonation patterns of skarn garnets:Records of hydrothermal system evolution[J]. Geology February,1993,21(2):113-116.
    [79]Lawrence D. Meinert, Kristopher K. Hefton, David Mayes, et al. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya[J]. Economic Geology,1997,92 (5): 509-534.
    [80]HuanZhang Lu, Yimao Liu, ChanGnie Wang, et al. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology,2003,98 (5):955-974.
    [81]翟裕生.论成矿系统[J].地学前缘,1999,(1):13-28.
    [82]翟裕生.成矿系统及其演化—初步时间到理论思考[J].地球科学,2000,25(4):333~339.
    [83]翟裕生,王建平,邓军,等.成矿系统与矿化网络研究[J].矿床地质,2002,21(2):106-112.
    [84]翟裕生,王建平,邓军,等.成矿系统时空演化及其找矿意义[J].现代地质,2008,2(2):143~150.
    [85]陈衍景,肖文交,张进江.成矿系统:地球动力学的有效探针[J].中国地质,2008,35(6):1059-1073.
    [86]翟裕生,王建平,彭润民,等.叠加成矿系统与多成因矿床研究[J].地学前缘,2009,16(6):282~290.
    [87]彭小军,魏道芳,刘学通.区域成矿系统模式分析[J].华南地质与矿产,2008,(2):1~8.
    [88]翟裕生.成矿系统研究与找矿[J].地质调查与研究,2003,26(3):129-135.
    [89]翟裕生.地球系统、成矿系统到勘查系统[J].地学前缘,2007,14(1):172-181.
    [90]张维权.闽西北变质火山岩的地球化学性质[J].福建地质,1986,(2):36-50.
    [91]王鹤年,孙承辕.闽中地区绿片岩的微量元素地球化学[J],高校地质学报,1998,4(4):383-392.
    [92]靳松,张利,钟增球,等.浙闽地区华夏地块新元古代变沉积岩[J].地球科学-中国地质大学学报,2008,33(6):764-774.
    [93]靳松,张利,钟增球,等.浙闽地区新元古代变火山岩系岩石地球化学特征及其地质意义[J].矿物岩石,2008,28(1):97-105.
    [94]吴建设,黄仁生.福建省尤溪峰岩铅锌银矿资源潜力及找矿方向探讨[J].中国地质,2001,28(12):13-18.
    [95]黄仁生.福建尤溪梅仙矿田铅锌银矿床特征及找矿方向[J].福建地质,2006,26(4),211-221.
    [96]周斌,顾连兴,张文兰,等.福建尤溪梅仙矿床闪锌矿中黄铜矿交生体的交代成因[J].地质评论,1999,45(1):15-18.
    [97]吴志强.福建省梅仙铅锌银矿田地质特征和成因模式[J].矿产与地质,2003,17(5):606-609.
    [98]张达,吴淦国,高天钧,等.闽中地区金属矿床成矿作用及区域成矿模式[J].矿床地质,2006,25(增刊):387~390.
    [99]张术根,石得凤,韩世礼,等.福建丁家山铅锌矿区磁黄铁矿成因矿物学特征研究[J].矿物岩石,2011,31(3):11-17.
    [100]石得凤,张术根,韩世礼.矿物学填图在福建丁家山铅锌矿成因研究中的应用[J].岩石矿物学杂志,2012,3(2):243~251.
    [101]国家地震局广州地震大队.中国大地构造图(按地洼说及递进说编制)[Z].北京:地图出版社,1977.
    [102]郑声俭,黄泉祯,严炳铨.福建省侵入岩岩石谱系单位划分[M].福建:厦门大学出版社,2000.
    [103]陈汉林,曾华生,杨树锋,等.闽北早古生代岛弧火山岩的岩石地球化学特征[J].矿物学报,1994,14(2):186~194.
    [104]韦德光,揭育金,黄廷淦.福建区域地质构造特征[J].中国区域地质,1997,16(2):162~170.
    [105]彭省临,陈子龙.论华南古断拉谷与多因复成铜多金属矿床的关系[J].中南矿冶学院学报,1991,22(5):493-499.
    [106]福建省地质矿产局.福建区域地质志[M].北京:地质出版社,1985:547.
    [107]江苏省有色金属华东地质勘查局805队.福建省尤溪县梅仙丁家山矿床深部及其外围铅锌矿普查工作报告[R].南京市:江苏省有色金属华东地质勘查局,2007.
    [108]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989.
    [109]地质矿产部情报研究所.找矿矿物学与矿物学填图[M].福州:福建科学技术出版社,1987.
    [110]陈光远,孙岱生.成因矿物学与找矿矿物学[M].北京:地质出版社,1987.
    [111]地质矿产部情报研究所.含矿区的矿物学填图与方法[M].北京:冶金工业出版社,1989.
    [112]任英忱,程敏清,朱作山,等,山东招远-掖县地区蚀变型金矿找矿评价中用黄铁矿晶体形貌填图的初试[J].地质找矿论丛,1986,2(1):61-69.
    [113]李胜荣,陈光远,邵伟,等.石英环带结构填图有效性研究——以胶东乳山金矿为例[J].矿物学报,1994,4(14):378-382.
    [114]国家辉.摊间山金龙沟金矿区找矿矿物学填图应用效果[J].贵金属地质,1998,4(7):258~268.
    [115]刘星.矿物学填图揭示金矿脉的隐蔽分带性——以玲珑金矿52号脉为例[J].矿物学报,1992,3(12):227-234.
    [116]连长云,章革,元春华.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J].矿床地质,2005,6(21):621-637.
    [117]林景仟.岩石化学[M].北京:地质出版社,1991:257.
    [118]贺同兴,卢良兆,李树勋,等.变质岩岩石学[M].北京:地质出版社,1980:164.
    [119]张祥信.闽中地区新元古代马面山群的形成及构造变形演化研究[D].北京:中国地质大学地球科学与资源学院,2006
    [120]叶大年,金成伟.X射线粉末法及其在岩石学中的应用[M].北京:科学出版社,1984:289-294.
    [121]Arnold. R. G.. Mixtures of hexagonal and monoclinic pyrrhotite and the measurement of the metal content of pyrrhotite by X-ray diffraction[J]. Amer. Geol,1966,51:1221-1227.
    [122]Arnold R. G.. Equilibrum relations between ptrrhotite and pyrite from 325℃ to 743℃ [J]. Economic Geology,1962,57:72-90.
    [123]Yund. R. A. Hexagonal and monoclinie pyrrotites[J]. Economic Geology,1969,64:420-423.
    [124]Arnold. R. G.. Pyrrhotite phase relations below 304±6℃ at<1 atm total pressure[J]. Economic Geology,1969,54:405-419.
    [125]王大伟,S.D.Scott.闪锌矿地质压力计原理及其应用[J].《地质评论》,1988:277-281.
    [126]M. Shimizu, H. Shimazaki. Application of the sphalerite geobarometer to Some skarn-type ore deposits[J]. Mineralium Deposita,1981 (1):45-50.
    [127]北京有色冶金设计研究院.福建省尤溪县丁家山铅锌矿矿石物质组成研究报告[R].北京:北京有色冶金设计研究院,1998.
    [128]Takanori Nakano, Takashi Yoshino, Hidehiko Shimazaki, et al. Pyroxene composition as an indicator in the classification of skarn deposits[J]. Economic Geology,1994,89 (7):1567-1580.
    [129]丰成友,张德全,佘宏全,等.福建主要铅锌矿床类型及其与锰质矽卡岩化的关系[J].矿床地质,2006,25(增刊):341-344.
    [130]Araujo S M, Fawcett J, ScottS D . Metamorphhism of hydrothermally altered rocks in a volcanogenic massice sulfide deposit:the Palmeiropolis, Brazil, example[J]. Revista Brasileira de Geociencias,1995,25(3):173-184.
    [131]狄永军,吴淦国,张达,等.闽中地区铅锌矿床辉石成分特征及其成因意义[J].矿床地质,2006,25(2):123-134.
    [132]Meinert L D. Skarn zonation and fluid evolution in the Groundhogmine, central Mining Disrrict, New Mexico[J], Economic Geology,1987,82 (3):523-545.
    [133]赵一鸣.矽卡岩矿床研究的某些重要新进展[J].矿床地质,2002,21(2):113-136.
    [134]Nakano T. Pyroxene geochemistry as an indicator for skarn metallogenesis in Japan[A]. In:Lentz D R, ed. Mineralized intrusion-related skarn systems[C]. Min. Assoc. Can. Short Course 26,1998,147-167.
    [135]Morimoto N. Nomenclature of pyroxenes [J]. Canadian Mineralogist. 1989,27:143-156.
    [136]朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社,1998:224-226.
    [137]华东地质勘查局矿产勘查开发院.福建中部前寒武纪地层中梅仙式铅锌 (银)矿床找矿预测研究报告[R].南京:江苏华东地质调查集团有限公司,1995.
    [138]袁海华.同位素地质年代学[M].重庆:重庆大学出版社,1987:49.
    [139]中国有色金属工业总公司华东地质勘探局807队,福建省尤溪县梅仙铅锌矿普查地质报告[R].南京:中国有色金属工业总公司华东地质勘探局,1993.
    [140]刘华东.福建黄地铅锌矿地质特征及成因探讨[J].江西有色金属,2008,22(1):11~15.
    [141]林仟同,龚萍.闽西北地区中生代花岗岩类成矿作用探讨[J].福建地质,2002,21(2):74-84.
    [142]丰成友,丰耀东,张德全,等.闽中梅仙式铅锌银矿床成矿物质来源的硫、铅同位素示踪及成矿时代[J].地质学报,2007,81(7):90-96.
    [143]沈其韩.推荐一个系统的矿物缩写表[J].岩石矿物学杂志,2009,28(5):495-500.
    [144]魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1987.
    [145]张儒瑗,从柏林.矿物温度计和矿物压力计[M].北京:地质出版社,1983:245.
    [146]武汉地质学院.岩浆岩岩石学[M].北京:地质出版社.1985:147.
    [147]刘玉平,李朝阳,谷团,等.都龙锡锌多金属矿床成矿物质来源的同位素示踪[J].地质地球化学,2000.28(4):75~82.
    [148]陈振胜.热液体系水-岩作用过程中氢氧同位素行为[J].大地构造与成矿学,1997,2(1):51-61.
    [149]华仁民,吴佩红,陈克荣.江西银山多金属矿床水-岩反应及成矿流体来源的讨论[J].高校地质学报,1995,1(2):37~44.
    [150]余金杰.VMS矿床热液蚀变成矿系统[J].地球学报,1999,20(增刊):420-425.
    [151]曾文乐,郭湖生.桃山铀矿田成矿系统及矿化网络[J].矿床地质,2010,29(2):343-351.
    [152]韦德光,揭育金,黄廷淦.福建省区域地质构造特征[J].中国区域地质,1997,16(2):162~170.
    [153]水涛,徐步台,梁如华,等.中国浙闽变质基底地质[M].北京:科学出版社,1988:30-31.
    [154]朱裕生.论矿床成矿模式[J].地质评论,1993,39(3):216~222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700