用户名: 密码: 验证码:
欧美山杨杂种扦插生根的理化与分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扦插是林木无性繁殖的主要方式,主要针对一些利用种子繁殖比较困难的植物材料,以及具有优良特性的杂交种。对于一些扦插生根困难和高杂种优势的优良树种,扦插生根率低是制约利用扦插进行无性系林业发展的瓶颈。迄今对林木扦插生根的研究虽然已在生理生化的水平上取得一定进展,但扦插生根是一个复杂的生物学过程,仅从生理、生化水平进行研究并不能揭示其生根根本机理,因此需要从多个方面对扦插生根机理进行研究。
     本研究以欧美山杨杂种嫩枝微扦插技术研究为基础,对欧美山杨杂种扦插生根的形态解剖、生理生化进行了研究。并在此研究基础上,通过对欧美山杨杂种生根过程中不同时期的基因组进行Solexa测序、生物信息学分析,剖析插穗生根的分子机理,挖掘扦插生根过程中不定根发育相关的基因及其功能。探索生根相关基因与表型之间的相关关系,为利用基因工程育种手段改良林木提供科学依据,研究具有重要的科学意义和应用价值。本论文主要结果如下:
     1扦插生根过程形态解剖研究:欧美山杨杂种属于皮部诱导生根类型,根原基起源于韧皮部的薄壁细胞,愈伤组织的形成与扦插不定根的发生无直接关系,愈伤组织发达的插穗不再生根。
     2扦插生根过程生理学研究:IAA、ABA、ZR、GA3在欧美山杨杂种根原基的诱导和不定根的伸长阶段起着重要的作用,IAA、ZR、GA3三种激素协同参与了扦插不定根的形成过程。在扦插生根过程中根原基的诱导和形成阶段,PPO、POD含量升高,而在不定根伸长生长阶段PPO和POD含量下降。欧美山杨杂种插穗可溶性糖、蛋白质含量在扦插生根过程中总体呈下降趋势。
     3扦插生根的分子机理研究:插穗不定根发育是一个复杂的生物学过程,通过对欧美山杨杂种扦插生根过程中的两个时期材料进行Solexa全基因组测序,参照数字化基因表达谱差异基因检测方法筛选出表达差异基因21508个,以毛果杨基因组数据库为基础,整合多个公共数据库中杨树分子生物学资源对筛选到的差异表达基因进行相关的生物学功能注释,并列举和分析了部分可能对扦插过程中不定根发育研究有重要意义的基因。对差异表达基因进行GO分析和Pathway显著性富集分析,这些序列包括了新陈代谢、信号途径、物质运输、抗性相关、生长发育、能量代谢、细胞周期等基因。研究还获得大量功能未见报道的新基因,说明在欧美山杨杂种扦插形成不定根过程中还有许多基因水平的变化不清楚。这些研究为杨树不定根发育相关基因的克隆提供依据,也为进一步开展插穗不定根分子发育生物学研究奠定了基础。
Cutting is the main form of vegetative reproduction of forest, and the key to breed quality varieties is rooting technique. For some forestry species with roots hard, low rooting cutting rate is bottleneck that restricted use of cuttings for clonal forestry development. So far the research on forests rooting have some progresses in the physiological and biochemical levels, but rooting is a complex biological process, and the study only from the physiological and biochemical level can not reveal the underlying mechanism, so we need the comprehensive study of mechanism of rooting from many aspects.
     Based on Populus tremula×P.tremuloides micro-cutting technology, rooting anatomical, physiological, biochemical and molecular mechanism were studied. The investigation of molecular mechanism was through on European and American roots in the different periods of Solexa genome sequencing, bioinformatics analysis, analysis of the molecular mechanism of rooting, finding related genes and their functions in the process of cutting and adventitious rooting. It also provided the scientific basis for the breeding using genetic engineering by exploring the correlation between rooting related genes and phenotypic. The research has important scientific significance. The result of this paper is as follows:
     1 Morphological and anatomical studies of rooting:Europe and America hybrid aspen belong to cortex inducted rooting, and root primordia was originated from the phloem parenchyma cells. The callus formation was not directly related to the occurrence of adventitious roots cutting, and the developed cutting of callus was rooted no longer.
     2 Research on physiology of rooting process:IAA, ABA, ZR, GA3 played an important role in the stage of induction and adventitious root primordia elongation for hybrid aspen. IAA, ZR, GA3 were involved in the collaborative formation process of adventitious roots. In the stage of root primordial induction and formation, activities of PPO, POD, IAAO were increased, while in the stage of adventitious root elongation, activities of PPO and POD were decreased. IAAO activity maintained in a high level. Soluble sugar and protein content of hybrid aspen were decreased in the process of rooting in the total.
     3 The molecular mechanism of cutting rooting:Adventitious root development of cuttings is a complex biological process. Through the Europe and America hybrid aspen rooting during the two periods of material conducte Solexa genome sequencing,21508 differential expression genes were selected referred to digital detection of differential gene expression profiles. Based on populus trichocarpa genome database and integrated a number of public databases in molecular biology resources, the selection of aspen to the differentially expressed genes was studied with related to biological functional annotation. Furthermore, some of the significant genes for the development of adventitious root cuttings were cited and analyzed. The genes expressed differentially were related to metabolism, signaling pathways, material transport, resistance-related, growth and development, energy metabolism, cell cycle genes and so on by conducting GO and Pathway analysis of enriched significantly. Our study also received a large number of new gene which had not been reported, indicating that the functions of many genes during the formation of adventitious roots for hybrid aspen cuttings were not clear. The research not only provided the basis for the adventitious roots of aspen clone genes, but also lay the foundation for further development of molecular biology of adventitious root cuttings.
引文
[1]哈特曼.H.T植物繁殖原理和技术.郑开文译.北京:中国林业出版社,1985.
    [2]闫绍鹏.欧美山杨杂种无性系低温胁迫下几种生理指标的遗传变异.东北林业大学硕士论文.2004:
    [3]Wolter KE. Root and shoot initiation in aspen callus culture. Science.1968,210: 509~510
    [4]CHALUPA V. Control of root and shoot formation and production of tress from poplar callus. Biol Plant 1974,16:316~320
    [5]CHALUPA V. The use of regenerants from tissue culture in plant Breeding. Czech Acad Sci, Prague pp 1977,193~198
    [6]曹川健,任玉芬,黄慧.三倍体欧州山杨的试管繁殖.植物生理学通讯,1998,32(2):124-125
    [7]刁桂萍,杨传平,詹亚光.欧美山杨杂种工厂化育苗技术.东北林业大学学报,2009,36(9):14-16
    [8]郭素娟.林木扦插生根的解剖学及生理学研究进展.北京林业大学学报,1997,19(4):63-68.
    [9]SchreckenbergK., DegrandeA., MbossoC., et al. The social and economic importance of Daeryodes edulis (G.Don) H.J. Lam in southern Cameroon. For.Trees Livelihoods, 2002,12:15~40.
    [10]王明麻.论无性系林业—概念和应用.南京林业大学学报,1993,(1):1-5.
    []1]森下一郎,大山浪雄.植物扦插理论与技术.李云森译.北京:中国林业出版社,1988
    [12]周玉珍,李火根,李博等.墨西哥落羽杉优良单株选择及无性繁殖.南京林业大学学报(自然科学版),2006,30(4):29-32.
    [13]王建华,孙晓梅,王笑山,等.母株年龄、激素种类及其浓度对日本落叶松扦插生根的影响.林业科学研究,2006,19(1):102-105.
    [14]Copes D.L., Mandel N.L. Effeets of IBA and NAA treatments on rooting Douglas-fir stem cuttings. New For,2000,20 (3):249~257
    [15]Rosier C.L., FramPton J., Goldfarb B., et al. Growth stage, auxin type, and concentration, influence rooting of Virginia Pine stem cuttings. Hortscienee,2004,39: 1392~1396
    [17]吕月良,陈璋,施季森,等.福建山樱花扦插繁殖及其影响因子研究[J].福建林业科技,2006,33(2):1-7
    [18]Sezai Ercisli, Ahmet Esitken, Rustem Cangi, et al. Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobaeterium rubi inoculation. Plant Growth Regulation,2003,41:133~137.
    [19]Fellker P., Medina D., Soulier C., et al. A survey of environmental and biological faetors (AzosPirillum spp, Agrobaeterium rhizogenes, Pseudomonas aurantiace) for their influence in rooting cuttings of Prosopis alba clones. Journal of Arid Enviornments, 2005,61 (2):227-247.
    [20]刘斯通,黄永芳,张浩等.按树采穗母株和采穗年限的选择.中南林学院学报,2006,26(20):79-83.
    [21]Stenvall N., HaPPala T., Pulkkinen P. The role of a root cuttings diameter and location on the regeneration ability of hybrid aspen. Forest Eeology and Management,2006, 237 (1-3):150-155.
    [22]Stephen J.T., Rodger F.P. Propagation of Wollemi pine from tip cuttings and lower segment cuttings does not require rooting hormones.Scientia Horticulturae,2006,109(4): 394-397.
    [23]来端.乐昌含笑种子育苗和扦插繁殖技术研究.林业科学研究,2006,19(4):441-445.
    [24]Mesen F., Newton A.C., Lcake. Vegetative Propagation of Cordia alliodora (Ruiz & Pavon) Oken:the effects of IBA concentration, Propagation medium and cutting origin. For, Ecol.Manage.1997; 92 (1-3):45~54.
    [25]Tchoundjeu Z., Ngo Mpeck M.-L., AsaahE., et al. The role of vegetative Ptopagation in the domestication of Pausinvstalid johimbe (K.Schum), a highly threatented medicinal sPecies of West and Central Africa. For. Ecol. Manage.2004,188 (1-3):175~183
    [26]Pohio K.E., WallaeeH.M., petersR.F., et al.Cuttings of Wollemi pine tolerate moderate Photoinhibition and remain highly capable of root formation. Trees,2005,19: 587~595
    [27]Syros T., Yupsanis T., Zafiriadis H., et al. Activity and isoforms of Peroxidases, Lignin and antomy, during adventitious rooting in cuttings of Ebenus cretieaL. Journal of Plant Physiology,2004,16] (1):69~77
    [28]王关林,苏冬霞,吴海东.代谢调节剂对嫩枝扦插繁殖成活率的影响及其机理.园艺学报,2006,33(2):395-398.
    [29]高俊平,姜伟贤.中国花卉科技二十年.北京:科学出版社,2000,89-91
    [30]Puri S., Verma C. Vegetative propagation of Dalbergi sissoo Roxb. Using softwood and hardwood stem cuttings. Journal of Arid Environments,1996,34 (2) 235~245
    [31]王军辉,张建国,张守攻等.川西云杉硬枝扦插生根特性的研究.浙江林学院学报,2006,23(3):351-356.
    [32]张兴,李桐森,孙海燕.华山松扦插繁殖技术研究.西南林学院学报,2006,26(4):19-23
    [33]许方宏,方良,李孟.影响按树插穗生根的几个因素研究.广东林业科技,2003,19.(1):6-10
    [34]张富云,赵燕.中国鹅掌揪扦插繁殖试验研究.云南农业大学学报,2006,21(1);127-129
    [35]张长芹,冯宝钧,刘昌礼,等.几种高山常绿杜鹃的扦插繁殖实验.园艺学报,1994,21(3):307-308.
    [36]陈广辉,王军辉,张建国等.吲哚丁酸对青海云杉硬枝扦插生根效应的影响[J].林业科学研究,2005,18(6):688-694.
    [37]刘传飞,李玲,施和平,潘瑞炽.生长素和细胞分裂素物质对野葛外植体器官发生的影响.华南师范大学学报,1999,(2):100-104
    [38]王军辉,张建国,张守功等.青海云杉硬枝扦插的激素、年龄和位置效应研究.西北农林科技大学学报,2006,34(7):65-70
    [39]王涛.ABT生根粉应用技术手册.中国林业出版社北京1989
    [40]任俐,刘小东,李耀文.三种植物激素对紫丁香扦插是影响.哈尔滨商业大学学报(自然科学版),2006,22(2):33-37
    [41]王雪莲,李宏伟,冯建荣等.生长调节剂对雪柳嫩枝扦插效果的影响.林业科技,2001,26(5):1-2
    [42]郑益兴,彭兴民,赵报荣等.印楝扦插繁殖影响因子分析.浙江林业科技,2006,26(5):50-53
    [43]孙晓梅,张守攻,王笑山,等.生长调节剂对落叶松杂种生根和幼苗生长的影响[J].北京林业大学学报,2006,28(2):68-72.
    [44]刘玉军.毛白杨硬枝扦插生根机理.北京林业大学博士论文,1988.
    [45]陈雪梅,高红兵.三种杨树扦插生根期间内源激素水平的比较研究.林业科学,1994,30(1):3-7
    [46]张德军,房金华,张维勇等.樟子松插穗条件与生根能力的关系.延边大学农学学报,2001,23(3)157-160
    [47]涂炳坤,王鹏程,叶要妹,玉云伟,丁小飞.香椿扦插繁殖的研究.中国蔬菜,2002,22(1):13-15
    [48]温宝阳,周丽君,康忠信等.不同因子对沙棘嫩枝扦插影响的实验研究.沙棘,1996,9(4):15-18
    [49]陈存及,刘春霞,陈登雄等.光皮桦扦插繁殖试验研究.福建林学院学报,2002,22(3): 101-104
    [50]何文林,林小虎.紫叶小檗硬枝扦插技术的研究.河北林果研究,2001,16(4): 337-341
    [51]张纪卯,陈文荣,陈能德.峦大杉生根及生长.浙江林学院学报,2001,2:8-11
    [52]杨永生.三尖杉繁殖技术研究.黔西南民族师范高等专科学校学报,2002,3:23-25
    [53]刘建美.黑木相思扦插育苗技术研究.林业勘察设计(福建),2006,26(2):106-109
    [54]雷泽勇,孟鹏,周凤艳.彰武松扦插技术的研究.沈阳农业大学学报,2005,36(3):313-316
    [55]耿云芬.北美红杉扦插育苗试验初报.云南林业科技,2001,97:28-30
    [56]陈春伟,侯艳,陈志国.水曲柳珍稀树种扦插繁殖技术的研究.2006,5:2-5
    [57]赵丽惠;张兴祥;彭冬梅等.红皮云杉的扦插繁殖技术.东北林业大学学报,1997,1:4-6
    [58]季孔庶,王章荣,陈天华,王明麻.马尾松种源与内源生根抑制物的相关性.南京林业大学学报,2002,26(2):24-28
    [59].罗杰,谢宜勤,朱宗彦.不同基质对月季半熟枝扦插繁殖的影响.安徽农业科学2005,33(7):1211-1212
    [60]吴玉华;吴小燕.不同扦插基质和不同浓度的生长素对四季桂花生根的影响.广西园艺,2001,3:
    [61]孙仲序,刘静,刘志荣,邱志霖.山东茶树扦插育苗技术研究.山东农业大学学报(自然科学版),2001,32(3):285-288
    [62]胡琼梅.不同扦插基质对尾叶桉生根的影响.西南林学院学报,2006,(6):76-78
    [63]王金祥,潘瑞炽.绿豆插条生根过程中内源激素含量变化.植物生理学通讯,2004.6:13-
    [64]许晓岗,汤庚国,谢寅峰.海棠果插穗的内源激素水平及其与扦插生根的关系.莱阳农学院学报,2005,3:11-
    [65]敖红,王昆,冯玉龙.长白落叶松插穗的内源激素水平及其与扦插生根的关系.植物研究,2002,22(2):190-194
    [66]江玲,周燮.外源生长素和细胞分裂素对莴苣幼苗侧根原基发生和内源激素含量的影响.南京农业大学学报,2000,1:4-
    [67]詹亚光,杨传平,金贞福,王玉成.白桦插穗生根的内源激素和营养物质.东北林业大学学报,2001,4-
    [68]郑先武,田砚亭.金丝小枣插条中外源激素和内源激素的关系.北京林业大学学报1995,17(4):44-49.
    [69]程水源,王燕.银杏插穗生根与酶及内源激素的关系.园艺学报,1996,23(4):407-408
    [70]郑均宝,刘玉军,裴保华等.几种木本植物插穗生根与内源IAA,ABA的关系.植物生理学报,1991,17(3):313-316.
    [71]王乔春.植物激索与插条不定根的形成.四川农业大学学报,1992,(1):33-39
    [72]刘玉艳,于凤呜,于娟.IBA对含笑扦插生根影响初探.河北农业大学学报,2003,26(2):25-29
    [73]由香玲.长白落叶松及杂种扦插过程中内源激素和蛋白质变化的研究.东北林业大学硕士论文,2001:
    [74]许晓岗.垂丝海棠、揪子的扦插生根机理研究.南京林业大学博士论文,2006:
    [75]Gaspar. Total practical uses of Peroxidase activity as a predictive maker of rooting performance of micropropagation. Agronomie,1992,12:757~76
    [76]彭永康,崔世民.植物过氧化物酶的结构、催化反应及生理功能.天津师大学报(自然科学版),1993,22(2):65-72.
    [77]裴保华,郑均宝.用NAA处理毛白杨插穗对某些生理过程和生根的影响.北京林学院学报,1984,(2):.73-77.
    [78]黄卓烈,李明,谭绍满等.吲哚丁酸处理桉树插条后过氧化物酶活性和同工酶变化与插条生根的关系.云南植物研究,2002,24(2):229-234.
    [79]Al Barazi Z., Schwabe W.W. The possible involvement of polyphenol-oxidase and the auxin-oxidase system in root form action and development in cuttings of Pistaciavera. J Hort.Sci,1984,59 (3):453~461.
    [80]Calderon Baltierra X.V. Changes in peroxidase activity during root formation by Eucalyptus globules shoots rasid in vitro. Plant Perox. Newlett,1994,4:27-29
    [81]Kieliszew ska-Rokicha B. Effect of treating scots pine (Pinus sylvestris L.) seedlings with phytohormone on the growth of the root system and on the peroxidase and IAA oxidase enzyme activities in roots. Arboretum-Kornckie,1989,32:207~219.
    [82]Huang Z., Tan S., Lin S., et al. The comparative study on the relationship between the activity of IAA oxidase and the rooting of cutting of Eucaplyptus and other species. Forest Res,1996,9:510~516.
    [83]黄卓烈,李明,詹福建等.不同生长素处理对桉树无性系插条氧化酶活性影响的比较研究.林业科学,2002,35(4):46-53.
    [84]易咏梅.杜仲二次梢扦插生根过程中营养物质动态变化分析.特产研究,2001,2:
    [85]邵顺流,钱华,金贞福等.百山祖冷杉插穗生根促进和不定根形成,东北林业大学学报,2006,5:17-
    [86]张晓平,方炎明.杂种鹅掌楸插穗不定根发生与发育的解剖学观察.植物资源与环境学报,2003,1:3-
    [87]林如;曹玉芳;胡正海.绞股蓝扦插生根的解剖学研究,福建农林大学学报, 2003,4:12-
    [S8]张钢民;杨文利;贾玉彬等.矮紫杉插条生根的解剖研究,园艺学报,1999,3:14-
    [89]Xu M, Zhu L, Shou H, Wu P. A PIN1 Family Gene, OsPIN1, Involved in Auxin-Dependent Adventitious Root Emergence and Tillering in Rice. Plant Cell Physiol,2005,6.
    [90]肖洁凝,黄学林,张以顺等.与芒果子叶切段不定根形成相关基因的cDNA片段的克隆.植物生理与分子生物学学报,2004,30(2):136-140
    [91]Lei Ge, Hui Chen, Jia-Fu Jiang, et al. Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity. Plant Physiology,2004,135:1502~1513
    [92]Ben Scheres, Philip Benfey, Liam Dolan, et al. Root Development. The Arabidopsis Book. American Society of Plant Biologists,2002
    [93]Carla A.Ticconi, Carla A.Delatorre, Brett Lahner, et al. Arabidopsis pdr2 reveals a phosphate-sensitive check point in root development. The Plant Journal,2004,37, 801~814
    [94]Laura U.Gilliland, Lucia C.Pawloski, and Muthugapatti K.Kandasamyet al. Arabidopsis actingene ACT7 plays an essential role in germination and root growth. The Plant Journal, 2003,33,319-328
    [95]Marta J.Laskowski, Mary E.Williams, H.Chad Nusbaum, et al. Formation of lateral root meristems isa two-stage process. Development 1995,121:3303~3310
    [96]Mathilde Fagard, Thierry Desnos, Thierry Desprez, et al. PROCUSTE1 Encodes a Cellulose SynthaseRequired for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis. The Plant Cell,2000,12,2409~2423
    [97]Silvia Costa, Liam Dolan. Epidermal patterning genes are active during embryogenesis in Arabidopsis. Development,2003,130,2893~2901
    [98]Siobhan Mary Brady, Sara F.Sarkar, Dario Bonetta, Peter McCourt. The ABSCISIC ACID INSENSITIVE3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The Plant Journal,2003,34,67-75
    [99]William M.Gray, J.Carlos del Pozo, Loni Walker, et al.Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. GENES&DEVELOPMENT 1999,13:1678~1691
    [100]QingTian, JasonW. Development,1999,126:711-721.
    [101]李小方,汤章城,何玉科.细胞生物学杂志,2001:130-136.
    [102]W illiam D. Teale, Ivan A. Paponov, Franck Ditengou et a.l Phys-iologia Plantarum, 2005,123:130~138.
    [103]Jane E. Taylor, Catherine A. New Phytologis,2001,151:323~339.
    [104]JillC. W ilmoth, ShucaiWang, Shiv B. Tiwar, et al. The Plant Journa,1 2005,43: 118~130.
    [105]Steffen Vanneste, LiesMaes, Ive De Smet, et al. Physiologia Plan-tarum,2005,123: 139~146.
    [106]YutakaOono, ChiharuOoura, AbidurRahman, et.al PlantPhysiol-ogy,2003,133: 1135~1147.
    [107]AlanMarchant, Rishikesh Bhalerao, Ilda Casimiro,et al. The Plant Cel, [J] 2002,14: 589~597.
    [108]Hidehiro Fukak, i Satoshi Tameda, Haruka Masuda, et al. The Plant Journa, [J] 2002, 29:153-168.
    [109]Hongjia Liu, ShoufengWang, XiaoboYu, et al. The Plant Journa, [J] 2005,43: 47~56.
    [110]QiXie, Giovanna Frugis, Diana Colgan, et al. Genes& Develop-ment,2000,14: 3024~3036.
    [111]Marta J.Laskowski,Mary E.Williams, and H.Chad Nusbaum, et al. Formation of lateral root meristems is a two-stage process. Development,1995,121:3303~3310
    [112]J.M.Sandra Healy, Margit Menges, John H.Doonan, et al. The Arabidopsis D-type Cyclins CycD2 and CycD3 Both Interact in Vivo with the PSTAIRE Cyclin-dependent Kinase Cdc2a but Are Differentially Controlled. The Journal of Biological Chemistry.2001,276: 7041~7047
    [113]Tom Beeckman,Sylvia Burssens and Dirk Inze.The peri-cell-cycle in Arabidopsis. Journal of Experimental Botany,2001,52:403~411
    [114]Lieven De Veylder,Gerrit T.S.Beemster,Tom Beeckman,et al. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. The Plant Journal,2001,25:617-626
    [115]Kristiina Himanen, Elodie Boucheron, Steffen Vanneste, et al. Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. The Plant Cell,2002,14:2339-2351
    [116]Steffen Vanneste, Lies Maes, and Ive De Smet, et al. Auxin regulation of cell cycle and its role during lateral root initiation. Physiologia Plantarum,2005,123:139~146
    [117]Juan Carlos del Pozo,M.Angeles Lopez-Matas,Elena Ramirez-Parra,et al. Hormonal control of theplant cell cycle. Physiologia Plantarum,2005,123:173~183.
    [118]Vanneste, Lies Maes, Ive De Smet, et al. Auxin regulation of cell cycle and its role during lateral root initiation. Physiologia Plantarum,2005,123:139~146
    [119]Ye Z H, Song Y R, Marcus A, et al. Comparative localization of three classes of cell wall proteins. Plant J,1991,1 (2):175~183.
    [120]Ludevid D, Hofte H, Himelblau E, et al. The Expression Pattern of the Tonoplast Intrinsic Protein gamma-TIP in Arabidopsis thaliana Is Correlated with Cell Enlargement. Plant Physiol,1992,100 (4):1633~1639
    [121]Ji Hoon Ahn, Yeonhee Choi, Sang-Gu Kim. Expression of a Soybean Hydroxyproline-Rich Glycoprotein Gene Is Correlated with Maturation of Roots. Plant Physiol,1998,116: 671~679
    [122]William Ebener, Thomas J.Fowler, Hideki Suzuki, et al. Expression of DcPRPl is Linked to Carrot Storage Root Formation and is Induced by Wounding and Auxin Treatment. Plant Physiol.,1993,101:259~265
    [123]P.Thomas, M.M.Lee J.Schiefelbein. Molecular identification of proline-rich protein genes induced during root formation in grape (Vitis viniferaL.) stem cuttings. Plant, Cell and Environment,2003,26:1497~1504
    [124]Q.Q. Wang, et al., Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant, Genomics,2010
    [125]Tao Wu, Zhi wei Qin, et al.,Transcriptome profile analysis of floral sex determination in cucumber, Journal of Plant Physiology,2010,167:905-913
    [126]Jiao Wu Yali Zhang, et al., Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology, BMC Plant Biology,2010,10:234
    [127]詹亚光,刁桂萍,王秋玉等.叶腋增殖途径快速繁殖欧美杂种山杨.东北林业大学学报,2005,33(2):7-9
    [128]孟凡娟,刘淑云,杨传平等.欧美山杨毛状根生长特性研究.黑龙江农业科学2009(1):89-90
    [129]Niina Stenvall, Tapani Haapala, et al., Effect of Genotype, Age and Treatment of Stock Plants on Propagation of Hybrid Aspen(Populus tremula XPopulus tremuloides) by Root Cuttings, Scandinavian Journal of Forest Research,2004,19 (4) 303-311
    [130]Anna B. Ohlsson, Soraya Djerbi,et al., Cell suspension cultures of Populus tremula_P. tremuloides exhibit a high level of cellulose synthase gene expression that coincides with increased in vitro cellulose synthase activity, Protoplasma (2006) 228:221-229
    [131]武晓东,闫绍鹏.激素处理对欧美杂种山杨嫩枝微扦插繁殖的影响.林业科技,2010
    [132]李继华.扦插的原理与应用.上海:上海科学技术出版社,1987
    [133]李正理.植物组织制片学.北京:北京大学出版社,1996.
    [134]李鸿莉,彭宏祥,朱建华等.毛葡萄嫁接换种砧穗及其接合部位剖面结构观察.广 西农业科学,2005,36(5):415~417.
    [135]符韵林,徐峰,韦广绥等.南带产区杉木正常术与被压术的比较解剖研究.西北林学院学报,2005,20(3):160-164.
    [136]陈泗维,徐继忠.茎插条中不定根据的起源与发育.河北农业大学学报,1987,10(3):86-89
    [137]张钢民,杨文利,贾玉彬等.矮紫杉插条生根的解剖研究.园艺学报,1999,26(3):201-203.
    [138]王小平,孟迪.东北红豆杉扦插枝条愈伤组织的结构研究.通化师范学院学报,2005,26(6):74-75.
    [139]刘勇,肖德兴,黄长干等.板栗嫩枝扦插生根解剖学特征研究.园艺学报,1997,24(1):8-12.
    [140]丘醒球,余倩珠,张少宏羽等.桉树插条生根解剖研究初报.林业科学研究,1995,8(2):170-177.
    [141]林艳,詹亚光,刘玉喜等.白桦嫩枝扦插不定根形成的解剖观察.东北林业大学学报,1996,24(3):15-19
    [142]张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003.7
    [143]郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2006.2
    [144]刘萍,李明军.植物生理学实验技术.北京:科学出版社,2007:-12
    [145]陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2005.
    [146]王晶英,敖红,张杰,等.植物生理生化实验技术与原理.哈尔滨:东北林业大学出版社,2003
    [147]Stefancic M., Stampar., Veberic R., et al. The levels of IAA, IAAsp and some phenolics in cherry rootstock'GiSelA5'leafy cuttings pretreated with IAA and IBA. Scientia Horiculturae,2007,112(14):399~405
    [148]Bartel B., LeClere S., Magidin M., et al. Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid a oxidation. J Plant Growth Regul,2001,20:198~216
    [149]Ford Y.-Y., Bonham E.C., Cameron R.W.F., et al. Adventitious rooting:examining the role of auxin in an easy-and a difficult-to-root plant. Plant Growth Regul,2002,36:149-159
    [150]Claudia Martellet Fogacal, Arthur G. Fett-Neto. Role of auxin and its modulators in the adventitious rooting of Eucalyptus spcies differing in recalcitrance. Plant Growth Regulation, 2005,45:1~10.
    [151]Nordstrom A.-C., Jacobs F.A., Eliasson L. Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol,1991,96: 856-861.
    [152]Nag S., Saha K., Choudhuri M.A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in Rooting. Plant Growth regul, 2001,21:182~194.
    [153]Harley M.B., Rowarth J.S. Resistance to root growth and changes in the concentratens of ABA within the root and xylem sap during root restriction stress. J.Exp Bot,1999.50: 799~804
    [154]秦新民,梁倩华,白花泡桐不定根发生过程中内源激素和RNA的变化.热带亚热带植物学报,1995,4(1):52-56.
    [155]De Klerk G.J., Van der Krieken W., De Jong J.C. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev. Biol.-Plant,1999,35:189~199
    [156]Kamel Tartoural, Andrea da Rocha, Sahar Youssef. Synergistic interaction between coumarin 1,2-benzopyrone and indole-3-butyric acid in stimulating adventitious root formation in Vigna radiate (L.) Wilczek cuttings:Endogenous free and conjugated IAA and basic isoperoxidases. Plant Growth Regulation,2004,00:1~10
    [157]Maldiney R., Pelese F., Pilate B., et al. Endogenous levels of abscisic acid, indole-3-acid, zeatin and zeatin-riboside during course of adventitious root formation in cuttings of Craigella. Physiol Plant,1986,68:426~430.
    [158]郑均宝.树木的营养繁殖.北京:中国林业出版社,1989
    [159]宋纯鹏.植物衰老生物学.北京:北京大学出版社,1998.30-57.
    [160]Moncousin C.h., Gaspar T. Peroxidase as a marker for rooting improvement in Cynarn scolymus L.cultivated in vitro. Biochem. Physiol. Pflanzen,1983,178:263~271.
    [161]Nordstrom A.C., Eliasson J. Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root fromation in pea cuttings. Physiol. Plant,1991,82: 599-605.
    [162]黄卓烈,李明,谭绍满等.吲哚丁酸对桉树插条多酚氧化酶的影响及其与生根的关系.广西植物2003,23(1):77-52.
    [163]Bhattacharya N.C., bhattacharya S., Nanda K.K. Isoenzyme polymorphism of peroxidase, IAA oxidase, catalase and a mylase in rooting etiolated stem segments of Salix terasperma[J],biochem Physiol Pflanz,1978,172(5):439~452
    [164]Gasper T., Penel C., Thorpe J.,Kevers C. Peroxidase 1970-1980. A survey of Their biochemical and Physiological Roles in Higher Plants. Geneve:University of Geneve, 1982,25-32.
    [165]Haissig B.E. Influence of auxins and synergists on adventitious root primordiumin in itiation and development. New Zealand J For Sci,1974,4:311~323.
    [166]Wiesmann Z.,Riov J.and Epstein E. Companrison of movement and metabolism of indole-3-acetic and indole-3-butyric acid in mung bean cuttings. Physiol.Plant.1988,74: 556~560
    [167]宋金耀,何文林,李松波,等.毛白杨嵌合体扦插生根相关理化特性分析.林业科学,2001,37(5):64-67
    [168]Calderon-Baltierra X V. Changes in peroxidase activity during root formation in Eucalyptus globulus shoots raised in vitro. Plant Perox.Newslett,1994,(4):27~29
    [169]Pacheco P et al. Flavonoids as regulators and markers of root formation by shoots of Eucalyptus globulus raised in vitro. Plant Perox.Newslett,1995,(5):9-12
    [170]宋丽红.光叶褚微体快速技术与扦插生根机理研究[D].泰安:山东农业大学.2005.
    [171]Nag S.,Saha K.and Choudhuri M.A.Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. Plant Growth Regul.2001,20:182~194
    [172]Bellamine J., Penel c., Greppin H., et al. Confirmation of the role of auxin and calcium in the late phase of adventitious root formation. Plant Growth Regul,1998,26:191~194
    [173 ]李颖章,韩碧文.薄层培养的菊芭不定根分化中内源IAA和细胞分裂素的动态变化.植物生理学通讯,1995,31(2):97-99.
    [174]王清民,彭伟秀,张俊佩,等.核桃试管嫩茎生根的形态结构及激素调控研究.园艺学报,2006,33(2):255-259.
    [175]刘桂丰,杨传平,曲冠正等.落叶松杂种,插穗生根过程中4种内源激素的动态变化.东北林业大学学报,2001,29(6):1-3.
    [176]Blakesley D., Weston G.D., Hall J.F. The role of endogenous auzin in root initation. Part 1:Evidence from studies on auxin application and endogeuous levels. Plant Growth Regulation,1991,10:341-353.
    [177]徐继忠,陈四维.桃硬枝插条内源激素(ABA、IAA)含量变化的生根的影响.园艺学报,.1989,16(4):275-278.
    [178]朱青松,梅康明,王沙生.外源生长素对烟草髓愈伤组织分化和内源IAA含量的影响.北京林业大学学报,1999,21(1):22-25.
    [179]赵一宇,裴保华,吕文.河北杨插穗系内源激素的季节性消长和生根的关系.林业科学,1987,23(2):208-213.
    [180]Haissig B E. Carbohydrate accumulation and partitioning in Pinus banksiana seedlings and seedling cuttings. Physiologia Plantarum,1984,61:13-19.
    [181]黎众魁,徐罕伦,汪德耀.芦柑子叶培养中过氧化物酶活性及其同工酶的变化.厦门大学学报(自然科学版),1994,33(4):543~547.
    [182]沈宗英,沈曾偌,张志良等.花椰菜下胚轴培养过程中过氧化物酶活性及同工酶 谱的变化.植物生理学报,1985
    [183]王顺才,马锋旺,梁东,等.称猴桃离体生根期间抗氧化系统的变化.西北农林科技大学学报(自然科学版),2005,33(1):83-87.
    [184]李明,黄卓烈,谭绍满等.难易生根的按树对过氧化物酶活性及其同工酶的研究.华南农业大学学报,2000,21(3):56-59.
    [185]Cuik R., Xing G.S., Liu X.M., et al. Effect of hydrogen peroxide on somatic embryogensis of Lycium barbarum L[J]. Plant Sci,1999,146:9-16
    [186]田敏,朱睦元,李纪元.草蓦愈伤组织的超弱发光及活性氧代谢变化的研究.激光生物学报,2004,13(5):319-324.
    [187]Dare Ksc., Oberley T.D., Mouse K.E. Expression of manganese superoxide dismatase promotes cellular differentiation. Free Rad BioPMed,1994,16:275-282.
    [188]Gyana Ranjan Rout. Effect of auxin on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regulation,2006,48:111~117.
    [189]余叔文,汤章城.植物生理与分子生物学第2版.北京:科学出版社,1998.
    [190]Luciano da Rocha Correa, Daniel Cristiano Paim, Joseli Schwambach, et al. Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Labill.Plant Growth Regulation,2005,45:63~73
    [191]PearseH.L. The effete of nutrition and Phytohormones on the rooting of vine euttings. Ann, Bot., n.s.1943,7:123-132
    [192]马锋旺,李嘉瑞.苹果新梢离体不定根形成期间某些生理变化的研究.西北农业学报,1995,4(1):80-83.
    [193]'t Hoen, P. A., Y. Ariyurek, et al. (2008). Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36(21):41.
    [194]Audic, S. and J. M. Claverie. The significance of digital gene expression profiles. Genome Res 1997.7(10):986~95.
    [195]Benjamini, Y. and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 200129:1165~1188.
    [196]Szabolcs Fekete, Andrea Mandy, Eva Stefanovits-Banyai. Change of peroxidase enzyme activities in annual cuttings during rooting. Acta Biologica Szegediensis,2002,46(3-4):29~31
    [197]Tohit GNES. Peroxidase and IAA-Oxidase activities during rooting in cuttings of three poplar species. Turk J Bot,2000,24:97~101.
    [198]Xiao ning zhang, zhi cai qu,you zhong wan, et al. Application of suppression subtractive hybridization(SSH) to cloning differentially expressed cDNA in Dunaliella salina (Chlorophyta) Under Hyperosmotic Shock. Plant Molecular Biology Reporter,2002,20:49-57
    [199]Eisen, M. B., P. T. Spellman, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998.95(25):14863~8.
    [200]Saldanha,A.J. Java Treeview--extensible visualization of microarray data. Bioinformatics 2004.20(17):3246~8.
    [201]Kanehisa, M., M. Araki, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008.36(Database issue):D480-4.
    [202]白华举,陈军营,刘林,陈新建.TIR1终于被确证为生长素受体.植物生理学通讯,2006,42(4):731-735

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700