用户名: 密码: 验证码:
中国西部造山带深地震反射剖面探测技术方法应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西部发育着闻名世界的第三极-青藏高原,亚洲巨大的沙漠盆地-塔里木盆地,中亚造山带的典型代表-天山造山带,等等。这些构成了中国西部雄伟壮观的构造地貌景观,也为人们研究高原形成、陆内变形与造山成盆等大陆动力学前沿科学提供了天然实验室。特别是这些地质过程仍在进行,可以用深部探测方法观测其正在进行的行为,理解其深部的动力背景,为预测和减轻地质灾害。创新发展大陆动力学理论提供基础依据。
     深地震反射剖面是全球公认的探测地球内部结构的先锋技术。自上个世纪70年代以来,全球运用深地震反射剖面技术,探测造山带与盆地的深部结构,取得许多重大发现,极大地促进了地球科学发展。我国学者也自1992年以来,在中国西部造山带开始进行深地震反射剖面探测试验。
     中国西部造山带及其前陆地区也是油气富集地区和天然地震灾害多发地区。位于青藏高原腹地的羌塘盆地,处于全球巨型油气聚集带-特提斯构造域的东段,是青藏高原内部海相地层保存最完整、最具油气远景的盆地。南天山造山带与塔里木盆地接合部位,是地震活动区,新近发现了克拉2和迪那2等油气田。近年来,在这些造山带内进行的深地震反射剖面以其独特的技术优势,正逐渐给我们展现出深藏于地球深处的矿藏构造与灾害的发生的深部背景。
     然而,在青藏高原及其周缘造山带地区进行深地震反射剖面探测是挑战全球的技术难题。主要有两方面的问题制约着深层地震勘探。一是复杂的地表条件,地表起伏落差大,新老地层交替出露,近地表结构复杂,低、降速层横向变化大;二是复杂的地下地质构造,上地壳隐伏断裂与逆冲构造发育,下地壳流体作用明显。
     由于这些地区地表条件和地下构造的复杂性,使地震波高频信息吸收衰减严重,低频干扰发育,获得深层反射的信息非常困难。在这类地区进行地震勘探,不但勘探成本比常规地区高,并且往往有得不到资料的风险性。并且,由于地表低降速带厚度和速度的变化,引起地震波旅行时的不均匀延迟,带来了复杂的静校正问题。众所周知,静校正问题是山区地震资料处理的门槛,只有在有效解决静校正基础上才能使地震数据处理结果成像。
     地震波在地层中有一定的振幅、频率传播特性,通过对地震有效波和干扰波传播的特性分析,分析实际采集过程的难点,针对性地改进采集参数可以减少这种得不到资料的风险性。通过对复杂近地表结构的精细建立,在此基础上进行静校正计算是目前解决复杂山区静校正问题的有效途径。
     本文通过野外实践和室内理论分析,研究了深地震反射剖面技术在中国西部造山带应用时存在的问题,针对特定地质条件试验改善采集效果的技术方法,根据已有的和新采集的羌塘地震勘探资料以及最新采集的天山与塔里木盆地结合部位的深地震反射探测剖面(TT2007)数据为基础,进行实际资料数据处理的关键技术之一静校正应用研究。
     论文结合这两个地区的关键问题分两大部分内容展开研究。
     论文的第一部分,在野外采集实践基础上,对以往高原腹地羌塘盆地石油地震与新完成的深地震反射采集资料进行了干扰因素分析及相应的采集、处理对策研究。在对羌塘地区地震波场进行地表一致性自相关分析、吸收和衰减分析等理论分析的基础上,总结了采集资料的总体特征及干扰因素。在此基础上,进行压制规则干扰波的方法测试及应用。实践表明,羌塘盆地复杂的近地表结构是影响地震采集和处理的关键干扰因素。对近地表结构的认知程度有助于山区地震数据的野外采集与室内去噪、静校正等处理工作,因而,近地表速度模型的反演建立是本文主要研究内容之一。利用两条衔接并横过羌塘中央隆起的深地震反射剖面探测数据,进行了初至波层析成像试验,揭示了羌塘中央隆起的表层结构特征。并在反演的近地表速度结构的基础上进行了正演数值模拟,分析了勘探中的实际问题,如冻土层对地震波传播的影响。进行了提高深地震反射资料信噪比方面的激发和接收参数的优化研究,在激发方面,分析了地震激发的一致性差异,正演分析了激发井深与频率的关系,接收方面,探讨了接收道距与规则干扰的压制关系。研究结果表明,通过采集技术改进与处理参数优化的剖面,成像质量较之以前有较大的改善。
     论文的第二部分,在野外采集实践基础上,针对西南天山与塔里木盆地结合地带地震数据处理的静校正问题,进行了地表速度建模应用研究。在盆山结合的部位复杂的近地表地层中,地震射线并非垂直,当地形起伏落差较大,尤其是存在较大的横向速度变化时,会引起长、中、短波长的静校正问题。本文首先分析了影响静校正的主客观因素及常规静校正方法在造山带地震资料处理的适用性,在对盆山结合部探测数据进行分段层析静校正处理、对比、分析的基础上,针对TT2007线地形起伏落差大,横向速度变化大的特点,提出了利用层析反演速度结构精确求得的浮动面静校量和高程静校正量相结合的静校正处理技术流程。为使层析校正量更符合盆地巨厚的低速体、山地出露的基岩高速体以及结合部位横向变化的速度结构特征,采用了分线闭合处理,应用于常规速度分析与动校正,之后对CMP道集施加高程校正量。
     通过以上对两个地区采集方法技术与数据处理应用上的研究,得到深地震反射剖面技术在这些地区应用的多方面新认识:
     (一)深地震反射剖面数据近地表速度结构的建立及应用方面的研究结果
     (1)深地震反射数据的层析反演试验结果表明,羌塘中央隆起区二维地震测线层析射线密度随地下复杂构造的程度而变化,反演得到的速度结构与地表结构存在着良好的对应关系,高速层的厚度与地表出露岩性的年代呈负相关。
     (2)天山与塔里木盆地的速度结构在结合部存在明显的差别,对盆山结合带的静校正量计算采取分段层析反演建模,闭合处理,综合层析与高程方法的静校正流程,能够较好的解决天山与塔里木盆山结合带的静校正问题。
     (3)综合应用小折射调查结果和大炮记录数据层析反演的近地表结构,正演模拟野外放炮的研究,在逼近实际地表条件下进行采集模拟和理论分析,能够有效指导实际生产工作。这应是复杂山地改善地震采集难度的有效技术。
     (二)羌塘地区采集方面的研究结果与采集对策
     (1)理论分析与正演模拟表明,在冻土层中、或其下激发的深层有效波的波能量强于冻土层上激发,能减少由于冻土层对地震波传播的高速而导致地震波能量难以有效下传的影响。冻土层中的“冰”经钻化成水与土混为泥浆,可能会糊死钻头,可考虑在该区域使用大功率特型钻机成井以提高钻井效率。
     (2)正演模拟结果表明,激发井越深,地震记录频带则越宽,干扰波越弱,实际资料也验证浅井激发炮集受声波、面波干扰严重。以往激发井深单井未能超过12m,多数为双井组或多井组合,根据近年来试验结果,对于上地壳,单井激发井深>18m,能够取得比较好的资料。
     (3)羌塘地区规则干扰的频率低,一般在10Hz左右,当炮集上这些规则干扰的时间倾角大于50ms时,就会出现规则干扰的空间假频,对于这种野外记录,单纯通过f-k域滤波是难以压制,这种低频干扰严重时会影响深层反射成像,导致错误的构造解释。目前在羌塘地区试验的最小20m道距接收的炮集记录中,也出现空间假频。因此,在勘探成本允许的情况下,野外施工时仍尽量缩小道距,在采集阶段减少产生空间假频的可能性。
In west China, there lies the world famous No.3 pole - Qinghai-Tibetan plateau, the widest desert basin -Tarim Basin in Asia, and the typical orogenic belt - Tianshan orogen in central Asia, et al. These units not only make of majesty and grand tectonic physiognomy scenery for west China, also offer us a natural laboratory to research on the leading science of continental dynamics, such as the formation of Qinghai-Tibetan plateau and intra-continental deformed orogeny and basin-forming. Especially these geology process is still on-going, for that we can use deep probe method to observe the being behavior, to understand the deep dynamic background for the purpose of forecasts and alleviates the geology calamity, to supply basic gist for the developing of continental dynamics theory.
     Deep seismic reflection profiling is recognized globally as an avant-courier technology to probe the deep earth. The deep seismic reflection profiling has been applied in many range and basin area to detect the deep structure and has obtain many important discovery since the 1970's. It greatly promote the development of the earth science. Our scholars have deployed the deep seismic reflection profiling experimentation in orgoenic in west China since 1992.
     It is both hydrocarbon enrichment areas and earthquakes disaster zones in western China orogens. Qiangtang basin situated in the hinterland of the thickened Qinghai-Tibetan orogenic belt where is located in the east of Tethys domain. It is a region of the most hydrocarbon potential and the most intact marine strata within the Qinghai-Tibetan plateau. There are new discovery of Kela-2 and Dina-2 oil & gas fields and also Jiashi strong earthquake swarm along the junction of Tianshan orogen and Tarim basin. Recently some deep seismic reflection profiles take its high resolution advantage have been deployed in these orogenic belts are gradually open out the inside information of resource and disaster hides in deep earth.
     However, it is also very hard to probe the Qinghai-Tibetan plateau and its surrounding orgoenic belts. As is known to us, there are two main issues that restrict the deep seismic prospecting in the orogenic zones. One is the complicated earth's surface condition, typically as undulating landform, alternating new information and old outcrop, lateral variation of LVZ. The other is the complicated subsurface structures, i.e., concealed faults or over-thrusts are developed in upper crustal, and channel flow are obvious in lower crustal.
     Due to these complicated surface and subsurface conductions, the absorption of high frequency of seismic wave field is serious, and shallow low-frequency interference wave disturb the deep reflection events. So it is hard to obtain the deep structure information and some time takes a risk of no gains with high pains in these orognenic areas. And the lateral variation of LVZ brings the asymmetry travel-time delay to the seismic wave lead to complex statics correction problem. As is well known, the statics problem is the threshold to the seismic data processing in mountain area. Only if the best methods for the mountain area statics problem have been resolved, the profile can be stack naturally.
     As we know that seismic wave has definite amplitude and frequency characteristic when travelling throw the stratum. We may reduce the risk by the analysis of the characteristic of seismic wave, finding the main issues that hinder the seismic acquisition process, and then promote corresponding methods to improve the profile quality. It is also an efficient approach to calculate the statics based on the accurate velocity building for complex near surface to solve the statics correction issues in the complicated area.
     Through field practice and room theory analysis, the author has studied the key problem when applied the deep seismic reflection profile in orgonenic belts in west China. The paper has tested the technology and method to improve the acquisition quality under the complicated geology condition, and about twelve seismic survey lines obtained in the last decade and four new seismic acquisition lines recently deployed in Qiantang basin and one deep seismic reflection profile in the junction belt of Tianshan and Tarim (TT2007) are analyzed in this paper for the application of statics correction which is the key process during the seismic data process in complex areas.
     The paper divides into two main parts, accordingly.
     Part one is based on the experience of field acquisition and back to the room study of the interference factors analysis and corresponding countermeasures for data acquisition and process to improve the S/N ratio of the oil seismic data and the new finished deep seismic reflection profiling. Through the analysis of attenuation by earth absorption, surface-consistence statistical autocorrelation of seismic data, the author summed up the general characters of the data and the factors of interference the wave spreading, furthermore, carried out the test of coherent noise attenuation. Practices show that the complicated near-surface velocity structure is the key factor that influence the seismic field acquisition and data process. For the more knowledge of the near-surface structures the better for the job of seismic field acquisition, noise attenuation, and statics correction. So the establishment of near-surface velocity structures is the main research content of this paper. Two reflection seismic profiles that linking up and crossing the central uplift of the Qiangtang basin were tested for the first arrival tomographic method and the results reveal the central uplift the undulate character of the high velocity structure both vertical and horizontal. Based on the near-surface structure created by these inversion methods the author did forward simulation to analyze the actually problem during this area exploration, such as the blocking effect of the permafrost and the relationship between the well depth and seismic wave frequency. As for the optimize study of shooting the author researched the inconsistent of the survey line and adjacent shots assembles ,and in recording aspect, discussed the relationships between the receiver arrange and coherent noise attenuation, group interval and the spatial aliasing. The research results indicate that after acquisition technology improvement and data process parameters optimization, the quality of seismic profile are much more improved than before.
     The second part of this paper is based on the experience of field acquisition and focus on the statics correction problems of the junction belts between the southwest Tianshan and Tarim basin, the author carried out the application of near-surface velocity. Where there the complicated near-surface made the seismic rays are no-perpendicularity to the surface especially when the undulating landform and lateral variation of the LVL are all sharp, it will lead to long, medium and short wavelength statics problems. The author first analyzed the major factors to the statics problems that come from objectivity and subjectivity, and then discussed the applicability of the common statics correction methods, such as, elevation statics, model statics, refraction statics, and tomography statics during seismic data processing in the basin and range junction with complex structure character. Based on the subsection of the basin, range and its junction seismic data using tomographic statics correction method to process, compare and analyze the results, to deal with the big fall of the altitude and sharp variety of the LVL especially under the junction part, the author bought forward the statics correction technology work flow, i.e., combination of the tomographic method to create the velocity model and calculate the floating statics values for the shot and receiver station with elevation method to calculate the final datum statics values. In order to make the statics value accord with the huge low velocity of Tarim basin, and the shallow high velocity of Tianshan range, and the sharp changed velocity of the junction zone, the author used multi-line tying process, after the matching process the statics were applied during the velocity analysis and NMO, at last add the elevation statics to CMP ensembles.
     Upon the research of the two parts contents in acquisition technology and data process application in the two areas, this paper arrives at some new understandings of the deep seismic reflection profiling in these areas as follows:
     (1)The research results of the near-surface velocity model using deep seismic reflection profiling data
     1) The tomographic travel-rays assemble where the structure is complex underground. The tomographic image reveals the undulate character of the high velocity structure both vertical and horizontal. And its thickness has negative correlation with the age of the outcrop in the central uplift of Qiangtang.
     2) There is a distinct velocity variety in the junction of the Tianshan and Tarim basin. The method of adopting subsection tomograhpic and use multi-line tying process to combine with elevation method can solve the statics problem in TT2007 deep seismic reflection profile and improve the quality of the profile.
     3) The research course of creating the forward model based on the inversion method using the interpretation results of shallow refraction survey and the first arrivals data, to simulate the field shots and to do the theoretic research in approximately the real-surface condition, can be the guideline to supervise the field work. This will be an efficient way to improve the seismic acquisition quality.
     (2) Research results and countermeasures for the deep seismic acquisition in Qiangtang area.
     1) Theory analysis and results of seismic records simulation indicates that explode in or under the frozen layer can have better energy than above the high-velocity frozen layer and can reduce the effect of the wave-front spreading in this layer. The 'ice' may be melt with the soil to form mud and may stuff the aiguille when drilling in the permafrost. In case of that, it will be better to use special drilling equipment to get rid of the mud and make the aiguille clear.
     2) Model forward simulation shows that the deeper the drill hole the broader the record frequency and the less the interference wave. The real field shots also validate the fact that the shallower the record the serious the air blast and surface wave. Concluded from the experiment and comparison with the field shots in this area, it is recommended that the single well depth be more than 18m for the exploration of upper crustal.
     3) The frequency of coherent noise are low, about around 10Hz. When these wave in the record with the time dip angle great than 50ms, it will produce spatial aliasing in the F-K domain. So it is difficult to get rid of this kind of noise and it may influence the interpretation of the deep refection event. Even the ever test of 20mgroup interval record has spatial aliasing. So it is recommended to reduce the group interval considering the costallowable during the field work to decrease the possibility of spatial aliasing.
引文
Aki K and Leo WHK.1976.Determination of three-dimensional velocity anomalies under a seismic array using fast P-arrival times from local earthquakes,1,a homogeneous initial model.Journal of Geophysical Research 81:4381-4399
    Ali A M.An analytical raypath approach to the refraction wavefront method.Geophysical prospecting,1990,38(5):971-982
    Andson,D.L.;Dziewonski,A.M.Seismic tomography.Scientific American,1984,251:60-68
    Bendick R.,and Flesch,L.,Reconciling lithospheric deformation and lower crustal flow beneath central Tibet[J]:Geology,2007,35:895-898
    Bishop T N et al.Tomographic determination of velocity and depth in laterally varying media.Geophysics,1985,50(6):903-923
    Bregraan V D.,et al.Crosshole seismic tomography.Geophysics,1989,54(2):200-215
    Bube K P.,Resnick G R.Well-determined and poorly determined features in seismic tomography.Expanded Abstracts of 52th Annual Internet SEG Mtg,1984,717-719
    Burchfiel B C,Molnar P,Deng Q,et al.Latest Cenozoic rates of shortening across the margins of Tian Shan,Xinjiang,China[J].Geol.Soc.Am.Bstr.Prog,1994,26:462
    Cai LG.The transfer zone within intra-continent subduction orogenic belt in the Tianshan,northwest China.Experimental petroleum gelogy,2000,22(3):206-209
    Cai XL,Lin XW,Wang YJ,et al.Surface-consistence statistical autocorrelation of seismic data[J].Geophysical Prospecting for petroleum,2006,45(4):390-396
    Carcione J M.Wave fields in real media:wave propagation in anisotropic anelastic and porous media.U K:Elsevier Science Ltd.2001
    Chadwick R.A.and Pharaoh T.C.1998.The seismic reflection Moho beneath the United Kingdom and adjacent areas.Tectonophysics 299,255-279.
    Chen CM,Lu HF,Jia D,et al.Closing history of western Tianshan oceanic basin,western China,a collisional orogeny[J].Tectonophysics,1999,302:23-40
    Cook,F.A.,2002,Fine structure of the continental reflection Moho:Geological Society of America Bulletin,114:64-79.
    Culter R T.,Bishop T N.Seismic tomography:Formulation and Methodology.Expanded Abstracts of 52thAnnual Internet SEG Mtg,1984,711-712
    D.Le Meur,S.Kaculini,Large magnitude residual static corrections,CSEG National Convention,2005:268-271
    Devaney A I.,Oristaglio M L.,Geophysical diffraction tomography.Trans.,lnst.Electr.Electron.Eng.,1984,GE-22:3-13
    Dewey J.F.,Robert,Shackleton R.M.,Chang CF.et al.The tectonic evolution of the Tibetan Plateau[J].Phil.Trans.R.Soc.Lond.A 1988,327:379-413
    Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]Proc of the 6th Int Symposium on Micro Machine and Human Science.Nagoya:IEEE Press,1995:39-43
    Fawctt A T.,Clyton R W.Tomogrophic reconstruction of velocity anaomalies.Bull Seis Soc Am,1984,74:2201-2219
    Gao R,Lu ZW,Li QS,et al.Geophysical survey and geodynamic study of crust and upper mantle in the Qinhai-Tibet Plateau,Episodes,2005,28(4):263-273
    H.P.Coster,地形起伏地区的静校正和正常时差校正,SEG第57届年会论文集,7-9
    Hawkins,L.V.,1961,The reciprocal method of routine shallow seismic refraction invertigations,Geophysics,26,806-918.
    Hileman,J.A.,Embree,P.,Pflueger,J,C.,Automated static corrections,Geophysical Prospecting,16,1968:326-358
    Jaime A.Stein,Tom Langston,Steven E.Larson,A suocessful statics methodology for land data,The Leading EDGE,2009:222-226
    Jones,G.M.,Jovanovich,D.B.折射分析的射线反演法[J].Geophysics,1985,50(11):1701-1720
    Kapp Paul,Yin an,Harrison T.Mark,et al.Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet[J].Geological Society of America,2005,117(7/8):865-878
    Kennedy J,Eberhart R.Particle swarm optimization[C]Proc IEEE Int Conf on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948
    Klemperer,S.L,Reconciling lithospheric deformation and lower crustal flow beneath central Tibet:COMMENT and REPLY[J].An Alternative Earth:Comment,2008
    Klemperer,S.L.,Crustal flow in Tibet:Geophysical evidence for the physical state of Tibetan lithosphere,and inferred patterns of active flow,in Law,R.D.,Searle,M.P.,and Godin,L.,eds.,Channel flow,ductile extrusion and exhumation in continental collision zones[J]:Geological Society of London Special Publication,2006,268:39-70
    Konstantin Osypov.Refraction tomography without ray tracing[M].SEG Expanded Abstracts,1999
    L.Zanzi.波数域折射静校正[J].Geophysics,1991,10
    Li Peiming,Qian Rongjun,Feng,zeyuan,et al.An intermediate reference datum static correction technique and its applications[J].Applied geophysics,2005,2(2):80-84
    Lin Y.Analysis of attenuation by earth absorption[J].Oil geophysicsl prospecting,2001,36(1):1-8
    Ling Y,Gao J,Sun DS,et al.Analysis of vibroseis in seismic exploration and its application[J].Geophysical prospecting for petroleum,2008,47(5):425-438
    Liu QF,Zhang GQ.Application of wavelet transform and F-k algorithm in filtering[J].Oil Geophysical Prospecting,1996,31(6):782-791
    L(u|¨) GH,Yin C,Zhou XH,et al.Precious simulation of seismic illumination based on acquired targets.OGP,2006,41(3):258-261
    L(u|¨) QT,Hou ZQ,Yang ZS,et al.Underplating in the middle -lower Ynagtze Valley and model of geodynamic evolution:Constrains from geophysical data[J].Science in China Ser.D Earth Sciences,2005,48(7):985-999
    Lu Zhanwu,Gao Rui,Li Qiusheng,et al.Test of deep seismic reflection profiling across central uplift of Qiangtang Terrane in Tibet Plateau[j].Journal of Earth Science,2009,20(2):438-447
    Luo ZL,Liu SG,Yong ZQ,et al.Formation and development of viewpoint about Chinese-subduction[J].Xinjiang Petroleum Geology,2003,24(1):1-7
    Mike Cox.Static corrections for seismic reflection surveys[M].Tulsa:SEG,1999.
    Molnar P and Tapponnier P.Cenozoic tectonics of Asia:effects of continental collision[J].Science,1975,189:419-426.
    Moss F.J.and Mathur S.P.A review of continental reflection profiling in Australia,In Barazangi M.and Brown L.D.Reflection seismology:A global perspective.American Geophysical Union Geodynamics Series,V.1986,13:67-76.
    Oliver J.Exploration of the continental basement by deep seismic reflection profiling under the COCORP program.Precabrian Research,1982,16(4):54
    Oliver J.COCORP probes continental depths[J].Geotimes.1993,june:21-22.
    Rockwell,D.W.,1967,A general wave front method,in Musgrave,A.W.,Ed.,Seismic refraction prospecting:Soc.Expl.Geophys.,363-415.
    Ronen,S.,Claerbout,J.F.,Surface consistent residual statics estimation by stack power maximization,Geophysics,50,1985:2759-2767
    Rothman D H.Automatic estimation of large residual statics correction.Geophysics,1986,51(2):332-346
    Scales J A.,Tomographic inversion via the conjugate gradient method,Geophysics 1987,52:179-185,
    Schaffer J D,Caruana R A,Eshelman L J,Das R.A study of control parameters affecting online performance of genetic algorithms for function optimization.In[33],1993:573-580
    Schmid R,Ryberg T,Ratschbacher L,et al.Crustal structure of the eastern Dabie Shan interpreted from deep reflection and shallow tomographic data[j].Techtonophysics,333,2001:347-359
    Shu LS,Guo ZJ,Zhu WB,et al.Post-collision tectionism and basin-range evolution in the Tianshan belt[J].Geological Journal of China Universities,2004,10(3):393-403.
    Side Jin,Shuki Ronen,Robust estimation of large surface-consistent residual statics,Vienna,2006
    Stork C and Clayton R W.Analysis of the resolution between ambiguous velocity and reflector position for travel-time tomography.第56界SEG年会论文集,石油工业出版社,1987:326-332
    Stork C and Kusuma T.Hybrid genetic autostatics:new approach for large-amplitude statics with noisy data.Presented at 62nd SEG Mtg,1992:1127-1131
    Sun XW,Chen WC,Gao JH,et al.Study on attenuation of strong surface wave in wavelet domain[J].Oil Geophysical Prospecting,2008,43(1):22-28
    Teng J W et al.Deep reflected waves an the structure of the earth crust of the eastern part of chaidam basin[J].Acta Geophysica Sinica,1974,17(2):122-134.
    Tian QJ,Ding GY,Hao P.Seismotectonic study on west part of the interaction zone between southern Tianshan and northern Tarim[J].Seismology and Geology,2006,28(2):213-223
    Wiggins,R.A.,Larner,K.,Wisecup,D.,Residual statics analysis as a general linear inverse problem,Geophysics,41,1976:922-938
    Yin A and Harrison T.M.Geologic evolution of the Himalayan-Tibetan orogen[J].Annual review of Earth and Planetary Sciences,2000,28:211-280
    Zeng RS.Nature of Moho interface[J].Chinese J.Geophys.(Acta Geophysica Sinica),1964,13(2):180-188.
    Zhao D,Hasegawa A,Horiuchi S.Tomographic imaging of P and S wave velocity structure beneath north eastern Japan.J.Geophys.Res.,1992,97:19909-19928
    Zhao WJ.,Nelson,K.D.,Project INDEPTH Team,Deep seismic reflection evidence for continental underthrusting beneath south Tibet,Nature,1993,366,557-559
    蔡涵鹏,贺振华,等.基于粒子群优化算法波阻抗反演的研究与应用.石油地球物理勘探,2008,43(5):535-539
    蔡立国.天山陆内俯冲造山转换带的基本特征[J].石油实验地质,2000,22(3):206-209
    蔡希玲,刘学伟,王彦娟,等.地表一致性统计相关分析法及其应用[J].石油物探,2006,45(4):390-396
    常旭,王辉.地震法隐伏矿脉空间定位研究[J].地球物理学报,1998,41(3):408-415
    陈广思.相对折射静校正方法[J].石油地球物理勘探,1990,25(4):407-428
    成谷,马在田,张宝金,等.地震层析成像中存在的主要问题及应对策略[J].地球物理学进展,2003,18(3):512-518
    程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究,2000,20(6):521-531
    程金星,董敏煜,秦顺亭,等.三种算法联合迭代反演求取最佳剩余静校正量[J].地球物理学报,1996,39(3):416-423
    戴云,张建中.长波长静校正问题的一种解决方法[J].石油地球物理勘探,2000,35(3):315-325
    邓志文.复杂山地地震勘探[M].石油工业出版社,北京,2006.
    董敏煜.地震勘探[M].石油大学出版社,2000.
    董树文,高锐,李秋生,等.大别山造山带前陆深地震反射剖面[J].地质学报,2005,79(5):595-601.
    段云卿,折射波剩余静校正方法.石油地球物理勘探,2006,41(1):32-35
    樊计昌,李松林,张先康,刘明军.海原断裂在地壳深处的几何形态及其动力学意义[J].地震学报,2004,26(增刊):42-49.
    方立敏,鲁兵,刘池阳,等.羌塘盆地中部隆起的演化及其在油气勘探中的意义[J].地质评论,2002,48(3):279-283
    酆少英,何瑞珠,王巍,等.复杂地表条件下的静校正方法研究[J].河南石油,2002,16(3):18-20
    冯锐,李晓芹,陶裕录,等.电阻率层析成像用于水文地质勘探[J].地震学报,1997,19(6):655-663
    傅承义,陈运泰,祁贵仲.地球物理学基础[M].北京:科学出版社,1985
    付孝悦,张修富.西藏高原石油地质.2005.北京:石油工业出版社
    高锐,吴功建.青藏高原亚东-格尔木地学断面地球物理综合解释模型与现今地球动力学过程[J].长春地质学院学报,1995,25:241-250
    高锐,成湘州,丁谦.格尔木-额济纳旗地学断面地球动力学模型初探[J].地球物理学报,1995,38(增刊 Ⅱ):3-14
    高锐,黄东定,卢德源等.横过西昆仑-塔里木接触带德深反射地震剖面[J].科学通报,2000,45(17):1874-1879.
    高锐,肖序常,刘训等.新疆地学断面深地震反射剖面揭示的西昆仑-塔里木结合带岩石圈细结构.地球学报.2001a,22(6):547-552
    高锐,李朋武,李秋生等.青藏高原北缘碰撞变形的深部过程-深地震探测成果之启示.中国科学(D辑),2001b,31(增刊):660-71
    高锐,李秋生,赵越,等.燕山造山带深地震反射剖面启动探测研究[J].地质通报,2002,21(12):905-906
    高锐,肖序常,高弘,等.西昆仑.塔里木-天山岩石圈深地震探测综述[J].地质通报,2002,21(1):11-18
    高锐,肖序常,刘训等.新疆地学断面深地震反射剖面揭示德西昆仑-塔里木结合带岩石圈细结构[J].地球学报,2001,22(6):547-569.
    高锐,王海燕,马永生,等.松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系-深地震反射剖面探测成果[J].地球学报,2006,27(5):411-418
    高星.地震层析成像研究的回顾与展望[J].地球物理学进展,2000,15(4):41-45
    国九英,周兴元,李少英.二阶差分最大叠加能量法地表一致性静校正[J].石油地球物理,1992,27(3):361-370
    何光明,贺振华,黄德济,等.几种静校正方法的比较研究[J].物探化探计算技术,2006,28(4):310-0314
    何光明,贺振华,黄德济,等.无射线追踪层析静校技术在川西复杂地区资料处理中的应用[J].成都理工大学学报(自然科学版),2006,33(6):598-602
    侯贺晟,高锐,卢占武,等.青藏高原羌塘中央隆起近地表速度结构的初至波层析成像试验[J].地质通报,2009,28(6):738-745
    侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006b,25(5):521-543
    侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006c,25(6):629-651
    侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006a,25(4):337-358
    黄春菊,周蒂,陈长民,等.深反射地震剖面所揭示的白云凹陷的深部地壳结构[J].科学通报,2005,50(10):1024-1031.
    黄继钧,伊海生,林金辉.羌塘盆地构造特征及油气远景初步分析[J].地质科学,2003,39(1):1-10
    黄继钧.藏北羌塘盆地构造特征及演化[J].中国区域地质,2001,20(2):178-186
    嵇少丞,龙长兴,夏斌.褶皱的地震波反射响应及其大陆地壳构造地质意义[J].地质学报,2006,80(12):1919-1929
    井西利,李丽,陈淑梅.自适应混合反演剩余静校正[J].石油地球物理勘探,2004,39(2):153-157
    李家康,余钦范.高陡山区近地表速度的求取[J].石油勘探与开发,2000,27(2):60-64
    李培明,李振华,祖云飞,等.模型约束的三维初至折射静校正[J].石油地球物理勘探,2003,38(2):199-202,212
    李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1993.
    李卫忠.复杂地表地区近地表模型与静校正[J].油气地质与采收率,2007,14(3):73-76,93
    李廷栋.青藏高原隆升的过程和机制[J].地球学报,1995,1:1-9
    梁慧云.法国ECORS的主要科学成果及展望[J].国际地震动态,1990,9:26-28
    林伯香,孙晶梅,刘清林.层析成像低速带速度反演和静校正方法[J].石油物探,2002,41(2):136-140
    林依华,尹成,周熙襄,等.一种新的求解静校正的全局快速寻优法.石油地球物理勘探,2000,35(1):1-12
    凌云,高军,孙德胜,等.可探震源在地震勘探中的应用前景与问题分析[J].石油物探,2008,47(5):425-438
    凌云.大地吸收衰减分析[J].石油地球物理勘探,2001a,36(1):1-8
    凌云.模型初至地表一致性静校正[J].石油地球物理勘探,1992,27(3):351-360
    刘保金,沈军,张先康等.深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造[J].地球物理学报,2007,50(5):1464-1472.
    刘法启,张关泉.小波变换与F-K算法在滤波中的应用[J].石油地球物理勘探,1996,31(6):782-791
    刘福田,曲克信,吴华,等.华北地区的地震层面成象[J].地球物理学报,1986,29(5):442-449,图版Ⅰ图版Ⅱ
    刘江平,张友明,白兴盈,等.低速带底面起伏条件下常规低速带静校正误差及分析[J].物探与化探,2001,25(1):61-69
    陆基盂.地震勘探原理[M].东营:石油大学出版社,1993.
    卢占武,高锐,匡朝阳,等.青藏高原羌塘盆地二维地震数据采集方法试验研究[J].地学前缘,2006,13(5):382-390
    卢占武,青藏高原羌塘地体地壳精细结构横剖面-贯穿南北的地震反射探测试验研究,中国地质科学院博士后出站报告,2008,12
    陆涵行,曾融生,郭建明,等.唐山震区深反射剖面分析[J].地球物理学报.1988,31:27-36.
    吕公河,尹成,周星合,等.基于采集目标的地震照明度的精确模拟[J].石油地球物理勘探,2006,41(3):258-261
    吕庆田,侯增谦,赵金花,等.深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J].中国科学(D 辑),2003,33(5):442-449.
    吕庆田,姜枚,许志琴等.印度板块俯冲仅到特提斯喜马拉雅之下的地震层析证据.科学通报,1998,43(12):1308-1311
    罗志立,刘树根,雍自权,等.中国陆俯冲(C-俯冲)观的形成和发展[J].新疆石油地质,2003,24(1):1-7
    裴正林.双相各向异性介质弹性波传播交错网格高阶有限整分法模拟.石油地球物理勘探,2006,41(2):137-143
    裴正林.波动方程地震定向照明分析[J].石油地球物理勘探,2008,43(6):645-651
    彭聪,姜枚,宿和平,等.大别山超高压变质带层析地震调查[J].地质论评,2000,46(3):288-294.
    史大年,吕庆田,徐明才,等.铜陵矿集区地壳浅表结构的地震层析研究[J].矿床地质,2004,23(3):383-389
    舒良树,郭召杰,朱文斌,等.天山地区碰撞后构造与盆山演化[J].高校地质学报,2004,10(3):393-403
    宋桂桥,尹天奎,刘连升.关于塔里木沙漠区低速带调查重新定位的思考[J].石油物探,2008,47(4):372-375
    孙传友主编.地震勘探仪器原理.东营:中国石油大学出版社,1996(2006.1重印)
    孙学文,陈文超,高静怀,等小波域强面波衰减方法研究[J].石油地球物理勘探,2008,43(1):22-28
    滕吉文.青藏高原地球物理研究中几个重要问题之我见[J].地学前缘(中国地质大学(北京);北京大学),2006,13(3):19-22
    滕吉文.中国地壳、上地幔精细结构和大陆动力学研究的序幕-从1958年柴达木沉积盆地深部地震反射探测看半个世纪来该科学领域的发展导向和启迪[J].地球物理学进展,2008,23(1):1-13
    滕吉文等.柴达木东盆地的深层地震反射波和地壳结构[J].地球物理学报,1974,17(2):122-134.
    田勤俭,丁国瑜,郝平.南天山及塔里森北缘构造带西段地震构造研究[J].地震地质,2006,28(2):213-223
    王椿镛 楼海 魏修成 吴庆举.天山北缘的地壳结构和1906年玛纳斯地震的地震构造.地震学报.2001.23(5):460-470.
    王椿镛,王贵美,林中洋,等.用深地震反射方法研究邢台地震区地壳细结构[J].地球物理学报.1993,36:410-415.
    王椿镛,张先康,吴庆举,等.冀中坳陷内深地震反射剖面揭示的滑脱构造[J].科学通报.1994a,625-628.
    王椿镛,张先康,吴庆举,等.华北盆地滑脱构造的地震学证据[J].地球物理学报,1994b,37:613-620.
    王海燕,高锐,卢占武,等.地球深部探测的先锋-深地震反射方法的发展与应用[J].勘探地球物理进展,2006,29(1):7-13,19
    王海燕,高锐,马永生,等.若尔盖与西秦岭地震反射岩石圈结构和盆山耦合[J].地球物理学报,2007,50(2):472-481
    王彦春,余钦范,李峰,等.交互迭代静校正方法[J].石油物探,1998,37(2):63-70
    王志美,畅永刚.射线追踪与波动方程正演模拟方法对比研究[J].科技资讯,2007,12:47
    翁世劫.地球物理调查对造山带和盆地的新认识.地矿部石油地质研究所情报室,1992年11月.
    吴功建,高锐,余钦范,等.青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究[J].地球物理学报,1991,34(5):552-562
    吴建平,明跃红,叶太兰等.体波波形反演对青藏高原上地幔速度结构的研究.地球物理学报,1998,41(增刊):15-25
    吴云海.天山南部亚肯北地区三维地震勘探采集技术[J].石油物探,2004,43(4):380-383
    武晔,李小凡,顾观文等.改进的高精度拟谱微分方法及其在三维非均匀介质地震传播研究中的应用.地球物理学报,2008,51(6):1868-1875
    熊煮.复杂地区地震数据处理思路[M].北京:石油工业出版社,2002.
    徐凌,崔兴福,齐莉,等.复杂近地表层析反演与波场延拓联合基准面校正[J].石油物探,2007,46(3):226-230
    徐树桐,袁学诚,吴维平,等.大别山黄石-六安反射地震剖面新的地质解释[J].地质通报,2008,27(1):19-26.
    徐亚军,徐子伯,魏庚雨,等.塔里木复杂地表区静校正问题的处理方法及效果[J].石油地球物理勘探,1996,31(4):483-494
    薛为平,宋阳,刘居文,等.准噶尔盆地石南地区静校正方法应用研究[J].石油勘探,2006,45(6):615-618
    杨贵明,钱荣钧,严峰.塔里木盆地大沙漠静校正方法[J].石油地球物理勘探,1994,29(增刊):110-124
    杨文采,胡振远,程振炎,等.郯城-涟水综合地球物理剖面[J].地球物理学报,1999,42(2):206-217.
    杨卓欣,张先康,嘉世旭等.伽师强震群区震源细结构的深地震反射探测研究[J].地球物理学报,2006,49(6):1701-1708.
    姚保华,章振铨,王家林等.上海地区地壳精细结构的综合地球物理探测研究[J].地球物理学报,2007,50(2):482-491
    于明,吴琳.PROMAX系统用于三维地震数据的快速评价[J].石油地球物理勘探,2008,43(增刊1):19-23
    俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社.1993.
    袁学诚,任纪舜,徐明才,等.东秦岭邓县-南漳反射地震剖面及其构造意义[J].中国地质,2002,29(1):14-19.
    袁学诚,徐明才,唐文榜,等.东秦岭陆壳反射地震剖面[J].地球物理学报,1994,37:613-620.
    曾灏.二次相关法自动静校正[J].石油地球物理勘探,1981,4:37-43
    曾融生.莫霍面界面的性质[J].地球物理学报,1964,13(2):180-188.
    张兵,方伍宝,孔祥宁,等.近地表速度变化对地震波传播的影响[J].勘探地球物理进展,2008,31(5):357-362
    张继国,刘连升.复杂区初至层析反演静校正[J].石油地球物理勘探,2006,41(4):382-385,395
    张先康,王椿镛,刘国栋,等.延庆-怀来地区地壳细结构-利用深地震反射剖面[J].地球物理学报.1996,39:350-356.
    张先康,赵金仁,刘国华,等.三河-平谷8.0级大震区震源细结构的深地震反射探测研究[J].中国地震,2002,18(4):326-336.
    张雪梅,孙若昧,滕吉文.青藏高原及其邻区地壳、岩石圈和软流层厚度研究[J].科学通报,2007,52(3):332-338
    张中杰.地震各向异性研究进展[J].地球物理学进展,2002,17(2):281-293
    赵文津,Nelson,K.D.,车敬凯,等.深反射地震揭示喜马拉雅地区地壳上地慢的复杂结构[J].地球物理学报,1996,39(5):615-628
    赵文津,吴珍汉,史大年,等.国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究[J].地球学报,2008,29(3):328-342
    赵文津,徐中信,熊嘉育.雅鲁藏布江缝合带的深部结构和构造[J].地质科技,1997,29-33.
    赵文津,赵逊,史大年,等.喜马拉雅和青藏高原深剖面(INDEPTH)研究进展[J].地质通报,2002,21(11):691-700
    赵文津.岩石圈深部探测与青藏高原研究[J].中国工程科学,2003,5(2):1-15
    赵文津.中国大陆动力学研究进展-纪念中国地球物理学会成立60周年[J].地球物理学进展,2007,22(4):1113-1121
    赵政璋,李永铁,王岫岩,等.羌塘盆地南部海相侏罗系古油藏例析[J].海相油气地质,2002,7(3):34-36
    赵政璋,李永铁,叶和飞,等.青藏高原羌塘盆地石油地质[M].科学出版社,2001.
    郑洪伟,李廷栋,高锐,等.印度板块岩石圈地幔向北俯冲到羌塘地体之下的远震P波层析成像证据[J],地球物理学报,2007,50(5):1418-1426
    中国地质科学院.二00八年度科技成果汇报交流暨十大科技进展评选会会议材料.2009年1月
    钟本善,周熙襄.中国西部地区地震勘探的静校正问题[J].物探化探计算技术,1999,21(4):358-366
    朱介寿,蔡学林,曹家敏等.中国及相邻区域岩石圈结构及动力学意义.中国地质,2006,33(4):793-803
    朱介寿.汶川地震的岩石圈深部结构与动力学背景[J].成都理工大学学报(自然科学版),2008,35(4):348-356
    朱金芳,方盛明,张先康,等.泉州盆地及其邻区地壳深部结构的探测与研究[J].中国地震, 2006,22(3),249-258
    朱金芳,徐锡伟,张先康,等.福州盆地及邻区地壳精细结构的深地震反射与高分辨率折射及宽角反射/折射联合探测研究[J].中国科学D辑(地球科学),2005,35(8):738-749
    祖云飞,李培明,杨葆军,等.连续速度模型反演静校正技术的改进[J].石油地球物理勘探,2005,40(3):295-299
    左海,宋小平,魏庚雨.折射和层析静校正计算方法的综合应用[J].石油地球物理勘探,2007,42(增刊):35-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700