用户名: 密码: 验证码:
胃癌血管特异结合肽GEBP11的鉴定及其对血管生成的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     血管生成是肿瘤发展过程中的重要条件之一,肿瘤组织微血管生成的进程、性质和密度直接关系到肿瘤生长、侵袭、转移的能力及预后,肿瘤血管诊断与治疗逐渐成为研究热点。然而,有关的肿瘤血管检测手段和治疗药物尚不令人满意,这主要与缺乏肿瘤血管特异性靶向分子及相关技术手段的不足有关。研究表明,肿瘤血管具有分子异质性,鉴定这些异质性分子并研究其作用,检测其表达水平并动态监测其变化规律,有可能为肿瘤血管靶向性诊断与治疗提供特异性靶向分子。目前肿瘤血管生成的评价主要靠免疫组化染色进行MVD计数,难以从功能上评价血管生成活性,而近年发展的分子成像技术有望实现肿瘤血管生成的可视化定量检测及动态实时追踪。受体靶向性核素内放射治疗与肿瘤血管抑制治疗相结合的肿瘤血管放射受体治疗,成为近年研究的一个热点,有望解决肿瘤血管抑制治疗中的一些问题。分子成像技术及放射受体治疗均有赖于高亲和力的特异性靶向分子。前期工作中,我们通过噬菌体随机肽库筛选获得胃癌血管内皮细胞特异结合肽GEBP11,并对其结合活性进行了初步鉴定。
     【目的】
     1、进一步深入鉴定该短肽与胃癌血管内皮细胞的结合特性及其体内胃癌血管靶向性;2、利用该短肽制备同位素探针,进行荷人胃癌裸鼠SPECT成像规律及受体放射治疗的初步研究;3、明确GEBP11短肽对胃癌血管生成的影响,并初步探讨其作用机制。
     【方法】
     1、通过蓝色噬斑形成实验及GEBP11、IN11噬菌体在荷瘤裸鼠体内的竞争抑制实验检测噬菌体体内归巢的特异性;2、免疫荧光技术检测GEBP11在荷瘤裸鼠体内的结合特异性;3、免疫细胞化学或荧光检测GEBP11在Co-HUVECs中的定位及内化;4、免疫组织荧光检测GEBP11在人胃癌组织中的结合特异性;5、采用直接法~(99)Tc~mO_4~-标记GEBP11,采用NBS法~(131)I标记GEBP11,纸层析法测定标记率、放射化学纯度等;6、放射自显影鉴定GEBP11同位素探针的结合活性;7、受体放射配基结合分析实验鉴定受体亲和力及受体细胞密度;8、同位素示踪技术检测~(131)I-GEBP11在荷瘤裸鼠体内的生物学分布;9、SPECT成像技术进行荷人胃癌裸鼠体内~(99)Tc~m-GEBP11显像;10、MTT细胞增殖实验、荷瘤鼠抑瘤实验评价~(131)I-GEBP11对内皮细胞及荷瘤鼠肿瘤的抑制能力;11、免疫组织化学染色计数瘤组织MVD;12、病理学HE染色、血液血细胞分析及生化指标检测观察肝脏损伤及骨髓抑制情况;13、Matrigel管状结构形成实验、鸡胚绒毛尿囊膜血管生成抑制实验、小鼠体内Matrigel Plug诱导血管生成实验分析GEBP11对血管生成的影响;14、MTT细胞增殖实验、细胞周期及凋亡分析、细胞侵袭迁移实验、细胞粘附实验探讨GEBP11抑制血管生成的细胞机制;15、基因表达谱芯片技术筛选GEBP11短肽作用Co-HUVECs后的差异表达基因。
     【结果】
     1、GEBP11体内胃癌血管靶向性及其结合特性的进一步鉴定
     IN11噬菌体在肿瘤组织回收的滴度显著高于对照噬菌体或其在对照组织中回收的滴度,而对照噬菌体在各组织之间的差别不大。GEBP11短肽对IN11噬菌体向荷瘤鼠肿瘤组织的归巢具有抑制作用,并且,随着GEBP11短肽浓度的升高,移植瘤内的归巢噬菌体数量逐渐下降,抑制率逐渐增高。荷瘤鼠体内荧光共定位分析显示,肿瘤组织中GEBP11短肽与抗Ⅷ因子抗体分布一致,而对照肽或在心脏、肌肉等对照组织无明显着色。
     免疫细胞化学或荧光染色显示,GEBP11短肽在Co-HUVECs胞膜及核周胞浆着色,而在HUVECs、GES细胞、胃癌SGC7901细胞及AGS细胞上呈阴性或弱阳性反应。激光共聚焦免疫荧光染色结果显示,4℃孵育时GEBP11主要结合于内皮细胞胞膜,给予内化条件37℃孵育后,结合于胞膜受体的GEBP11短肽可被内化入胞内。免疫组织荧光染色结果显示,GEBP11短肽在人胃癌组织上与CD31抗体着色位置一致,而对照肽URP无阳性反应,慢性胃炎组织上亦未见明显着色。
     2、GEBP11核素探针在荷人胃癌裸鼠体内的SPECT成像
     直接法将~(99)Tc~mO_4~-标记于GEBP11,纸层析法测定其标记率达90-98%,比活度大于100Ci /mmol,~(99)Tc~m-GEBP11在体内外具有良好的稳定性。NBS法将~(131)I标记于GEBP11,纸层析法测定其标记率达90%,比活度大于10Ci /mmol,具有良好的稳定性。放射自显影结果显示,~(99)Tc~m-GEBP11及~(131)I-GEBP11与Co-HUVECs的结合明显强于HUVECs,而对照标记肽~(99)Tc~m-URP或~(131)I-OXT在Co-HUVECs上无明显结合。受体放射配基结合分析实验结果显示,相同~(99)Tc~m-GEBP11标记肽浓度时,Co-HUVECs与标记肽的结合量高于HUVECs,均呈饱和曲线。Scatchard作图示GEBP11与Co-HUVECs、HUVECs的Kd值分别为1.972nM、2.489nM,两种细胞受体密度分别为5.7×105/细胞、3.3×105/细胞。
     放射性同位素示踪技术检测~(131)I-GEBP11在荷瘤裸鼠体内的生物学分布结果显示,~(131)I-GEBP11注入体内2小时后,肿瘤内放射活性高出大多数器官,随时间的延迟,肿瘤内放射性活性下降相对较慢,致使它与其它非肿瘤器官的相对比值逐渐增高,最高比值可达15以上。~(131)I-GEBP11在体内多数器官清除较快,肾脏内放射性最高,清除时间长。SPECT成像结果显示,~(99)Tc~m-GEBP11在体内相对聚集于肿瘤部位,随时间延长渐强,T/NT逐渐增高,12h后开始高于心血池本底,18-24h肿瘤灶显示更加清晰,是比较理想的显像时段。~(99)Tc~m-URP对照组SPECT显像无肿瘤部位放射性浓聚现象。
     3、~(131)I-GEBP11对荷人胃癌裸鼠移植瘤的抗肿瘤效应
     体外细胞杀伤实验显示,~(131)I-GEBP11对内皮细胞增殖有抑制作用,呈浓度依赖性;Na~(131)I对内皮细胞无特异性杀伤作用;GEBP11浓度达10μg/ml时开始表现出对内皮细胞增殖的抑制作用。抑瘤实验结果显示,eADM肿瘤抑制率最高,为64.9%,~(131)I-GEBP11次之,为56.3%,Na~(131)I、GEBP11无明显抑瘤作用。~(131)I-GEBP11、eADM及GEBP11组可明显延长生存期。~(131)I-GEBP11治疗组伴有血小板降低、肝功损伤等副反应,但明显轻于表阿霉素。免疫组化染色计数MVD显示,与NS组对照,~(131)I-GEBP11、GEBP11肿瘤组织MVD计数明显降低。
     4、GEBP11短肽抑制血管生成的作用及机制
     Matrigel管状结构形成实验、鸡胚绒毛尿囊膜血管生成抑制实验、小鼠体内Matrigel Plug诱导血管生成实验结果显示,GEBP11能抑制内皮细胞的管状结构形成能力、抑制CAM及小鼠体内血管生成。MTT细胞增殖实验、细胞周期及凋亡分析、细胞侵袭迁移实验、细胞粘附实验显示,GEBP11短肽对Co-HUVECs及HUVECs的增殖表现出不同程度的抑制作用,对Co-HUVECs抑制作用更强,GEBP11能诱导内皮细胞的凋亡,而对细胞周期无明显影响。GEBP11对内皮细胞的基质降解和迁移有抑制作用,对内皮细胞的粘附也有抑制作用。
     采用Trizol法抽提细胞总RNA,经鉴定RNA质量合格。经探针标记、芯片杂交、染色及图像采集等实验步骤,结果显示芯片的杂交信号强度较高,pm_mean(探针信号均值)大于200,neg_control_mean(阴性对照均值)小于10(图44),共有30000以上个杂交点。表达差异2倍以上定为差异表达基因,分析发现,与Co-HUVECs相比,GEBP11处理后的Co-HUVECs中上调表达的基因有2104个,下调表达的基因有1202个;与HUVECs相比,Co-HUVECs中上调表达的基因有194个,下调表达的基因有579个。
     【结论】
     1、GEBP11具有活体内胃癌血管靶向结合的能力,它与胃癌血管内皮细胞膜受体特异结合后可被内化。
     2、~(99)Tc~m-GEBP11 SPECT成像能较好地显示体内肿瘤灶,~(131)I-GEBP11具有明显的抗肿瘤效应及较弱的毒副作用,为开发肿瘤血管成像核素探针及受体放射治疗新药奠定了基础。
     3、GEBP11具有抑制胃癌血管生成的作用,这可能通过抑制ECs增殖、基质降解及迁移、粘附能力实现。GEBP11作用于内皮细胞可引起多种基因表达变化,这为探讨GEBP11抑制血管生成的分子机制提供了重要线索。
【Background】
     Angiogenesis and vasculature play important roles in the growth and metastasis of solid tumors. The progress, character and density of microvasculature are related to growth, invasion, metastatic and prognosis of tumor. Microvascular diagnosis and anti-vascular therapy have become an intensive studies field in cancer research. However, the means to detect tumor vasculature and anti-vascular drugs are not satisfactory. This could be explained by the deficiency of molecules targeting to tumor vasculature. It was found that tumor vessels had characteristics different from normal vessels, which would provide molecules targeting possibility for diagnosis and therapeutics for these heterogeneity molecules in tumor vasculatures. Now MVD count is the popular used methods to estimate the vasculatures in tumor, which, however, cannot evaluate the functions of them. Molecular imaging technology developed in the last several years provides the possibility to do it. And the radiation therapeutics targeting the receptors in tumor vasculatures hopes to promote anti-vascular therapy. These two means rely on efficient targeting molecules. In our previous works, we have found a peptide GEBP11 targeting to the vascular endothelial cells in gastric cancer by panning phage library.
     【Objectives】
     1. To identify the ability of GEBP11 to target the vasculature of gastric cancer in vivo.. 2. To make the isotope probes of GEBP11 and perform SPECT imaging and targeting therapy of gastric cancer in vivo.. 3. To identify the effects of GEBP11 on angiogenesis in gastric cancer and approach the possible mechanism.
     【Methods】
     1. The blue phage plaque formation assay and competitive binding assay in vivo. were performed to investigate the homing specificity of the IN11 phage which displayed the peptide GEBP11. 2. Immunofluorescent staining was used to study the binding specificity of synthesized peptide GEBP11. 3. Immunocytochemical or immunofluorescent staining was performed to identify the location and internalization of GEBP11 on Co-HUVECs. 4. Immunohistofluorescent staining was used to identify the binding specificity of GEBP11 in gastric cancer tissues. 5. GEBP11 was labeled with ~(99)Tc~mO_4~- using direct labeling method, and was labeled with ~(131)I using NBS labeling method. Then the labeled peptides were validated for radiochemical yield, specific activity, and in vitro. stability. 6. The bioactivity of ~(99)Tc~m-GEBP11 or ~(131)I-GEBP11 was validated by cell receptor autoradiography in cultured HUVECs. 7. Receptor binding assay was performed in vitro. to analyze quantitatively the binding specificity and affinity of GEBP11 to HUVEC, the receptor intensity on HUVEC, and the difference of affinity of GEBP11 binding to Co-HUVEC and HUVEC. 8. The radioactivity of all organs of nude mice injected with ~(131)I-GEBP11 was determined and the radioactivity of all organs per g (%ID/g) was calculated to analyze the specific distribution of ~(131)I-GEBP11. 9. Gamma camera images of nude mice bearing tumor xenografts of human gastric carcinoma injected with ~(99)Tc~m-GEBP11 was obtained 0.5-24 h after being injected to identify the targeting ability of labeled peptide to tumor tissues. 10. MTT assay on HUVECs and antitumor assay in nude mice bearing tumor xenografts of human gastric cancer were performed to evaluate the effects of ~(131)I-GEBP11 on HUVECs and xenografts. 11. Immunohistochemical staining was used for MVD counting in tumor. 12. H.E. staining, blood cells analysis and blood biochemical indicator analysis were performed to investigate the injury of liver and bone marrow. 13. Tube formation assay in matrigel, CAM angiogenesis assay and angionenesis induced by matrigel in mice were performed to identify the effects of GEBP11 on angiogenesis. 14. The cellular mechanisms of angiogenesis inhibition of GEBP11 were clarified by proliferation assay, cellular cycle and apoptosis analysis, invasion and migration assay and adherency assay. 15. The differential expression genes in Co-HUVECs treated by GEBP11 or not were screened by microarray.
     【Results】
     1. The binding ability of GEBP11 targeting to gastric cancer vasculature in vivo. and its binding characteristics
     The titer of IN11 phage recovered from tumor tissue was higher than that of control phage or IN11 phage but from control tissue. GEBP11 peptide inhibited homing effect of the IN11 phage to tumor tissue in nude mice bearing human gastric cancer xenografts, and the inhibition intensity was related to the concentrate of GEBP11. By immunohistofluorescent staining, GEBP11 was co-located with anti-FⅧantibody in tumor tissue. However, URP or GEBP11 in control tissues was not co-located with anti-FⅧantibody.
     Immunocytochemistry or immunofluorescence microscopy results showed that GEBP11 was stained on the membrane and perinuclear cytoplasm of Co-HUVECs, but not in HUVECs, GES cells, SGC7901 cells and AGS cells. We also found that GEBP11 peptide was abundant on membrane of ECs at 4℃, and they would be internalized into cytoplasm at 37℃. And the immunohistofluorescence microscopy results suggested that GEBP11 was co-located on the human gastric cancer tissues with anti-CD31 antibody, while URP or GEBP11 on the chronic gastritis tissues was not co-located with anti-CD31 antibody.
     2. Gamma camera images of nude mice bearing tumor xenografts of human gastric carcinoma injected with ~(99)Tc~m-GEBP11
     By direct labeling GEBP11 with ~(99)Tc~mO_4~-, we acquired high radiolabeling efficiency at 90-98%, as well as high specific activity beyond 100 Ci/mmol. in vitro. stability test indicated that ~(99)Tc~m-GEBP11 is fine in vitro. stability. By using NBS labeling method, we acquired high radiolabeling efficiency at 90% or more, as well as high specific activity beyond 10 Ci/mmol with ~(131)I-GEBP11 being fine stability either. Receptor autoradiography showed that there were more obvious silver particles on Co-HUVECs than on HUVECs, which indicated that ~(99)Tc~m-GEBP11 or ~(131)I-GEBP11 has fine biological activity. Receptor binding assay in vitro. showed that the binding of GEBP11 by Co-HUVECs was higher than that of HUVECs. The binding constant of ~(99)Tc~m-GEBP11 was calculated by Scatchard analysis. The Kd value of Co-HUVECs and HUVECs were determined to be 1.972 nM, 2.489 nM. The number of binding sites for the labeled peptide (receptor density) was estimated as 5.7×105 per Co-HUVEC and 3.3×105 per HUVEC, respectively.
     Biodistribution data of ~(131)I-GEBP11 in nude mice bearing tumour xenografts of human gastric carcinoma showed that the radiotracer exhibited a quick decrease in radioactivity over time in blood and primary organs. Highest activity concentration was observed in kidneys. After 2 h p.i., the tumor radioactivity was higher than that in most of other organs; After 48h p.i., tumor accumulation in the tumour xenografts was 15 times higher than that in the intestine. The tumor/non-tumor ratios steadily increased over time, which showed that ~(131)I-GEBP11 had the specifical targeting ability to tumor tissues in vivo.. Gamma camera images of nude mice bearing tumor xenografts of human gastric carcinoma injected with ~(99)Tc~m-GEBP11 showed the tumors could be visualized as early as 12 h and the activity was higher than that of heart until 24 h. The most clearly visualized imaging appeared at 18-24 h. Compared to ~(99)Tc~m-GEBP11, the radioactivity of tumor in nude mice injected with ~(99)Tc~m-URP was constantly lower than that of heart.
     3. ~(131)I-GEBP11 inhibited the growth of xenografts in nude mice
     The cell kill assay in vitro. showed that ~(131)I-GEBP11 could inhibit the growth of ECs at a radioactivity dependent manner. Na~(131)I had no inhibition on ECs. GEBP11 began to inhibit the ECs’s growth when the concentrate of GEBP11 reached 10μg/ml. Antitumor assay in vivo. showed that the tumor control rate of eADM was highest at 64.9%, and that of ~(131)I-GEBP11 was second at 56.3%. Compared with eADM and ~(131)I-GEBP11, Na~(131)I and GEBP11 had no inhibition effects on tumor. By life span analysis, ~(131)I-GEBP11, eADM and GEBP11 groups could prolong the life span. PLT decrease and liver injure occurred in therapy groups with ~(131)I-GEBP11, which was lower than that in eADM groups. Immunohistochemical staining showed that MVD counts in tumor in ~(131)I-GEBP11 and GEBP11 groups were lower than that in the NS group.
     4. GEBP11 was identified to have ability to inhibit angiogenesis
     By tube formation assay in matrigel, CAM angiogenesis assay and angionenesis induced by matrigel in mice, GEBP11 was identified to have ability in inhibiting angiogenesis. Proliferation assay, cellular cycle and apoptosis analysis, invasion and migration assay and adherency assay showed that GEBP11 could inhibit the proliferation of Co-HUVECs and HUVECs, induce the apoptosis of ECs, but not alter the cell cycle of ECs. Additionally, GEBP11 appeared to inhibit the ECM degradation, migration and adhere of ECs.
     The total RNA of HUVECs, Co-HUVECs and GEBP11-treated Co-HUVECs were extracted. The quality of extracted RNA was evaluated by agarose electrophoresis and analysis of Lab-on-chip. After microarray hybridization and data normalization, more than 30000 gene spots were detected. There were 1202 down-regulated genes and 2104 up-regulated genes in Co-HUVECs treated by GEBP11. And there were 579 down-regulated genes and 194 up-regulated genes in Co-HUVECs vs. HUVECs.
     【Conclusions】
     1. GEBP11 peptide has the ability in targeting to gastric cancer vasculature in vivo., and its binding to the receptor on EC membrane promotes its internalization ability into cytoplasm.
     2. The SPECT imaging of ~(99)Tc~m-GEBP11 can show the tumor mass clearly and ~(131)I-GEBP11 has anti-tumor effect with weak toxicant and secondary effect, which is the foundation for them to develop nuclide probe or radiotherapeutics drugs targeting to tumor vasculature.
     3. GEBP11 can inhibit angiogenesis, which comes true probably through its inhibition effects on the proliferation, invasion, migration and adherence of ECs. GEBP11 induces the changed expression of many genes, which provides important clew for approaching the molecular mechanism of GEBP11 inhibiting angiogenesis.
引文
1. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15-18
    2. Molema G, de Leij LF, Meijer DK. Tumor vascular endothelium: barrier or target in tumor directed drug delivery and immunotherapy. Pharm Res. 1997;14:2-10
    3. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1-8
    4. Sun HC, Li XM, Xue Q, et al. Study of angiogenesis induced by metastatic and non-metastatic liver cancer by corneal micropocket model in nude mice. World J Gastroenterol, 1999;5:116-118
    5. Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol. 2001;2(11):667-673
    6. Streubel B, Chott A, Huber D, Exner M, J?ger U, Wagner O, Schwarzinger I. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med. 2004;351(3): 250-259
    7. Fidler IJ, Ellis LM. Neoplastic angiogenesis--not all blood vessels are created equal. N Engl J Med. 2004;351(3):215-216
    8. Saga T, Koizumi M, Furukawa T, Yoshikawa K, Fujibayashi Y. Molecular imaging of cancer: evaluating characters of individual cancer by PET/SPECT imaging. Cancer science. Mar 2009;100(3):375-381.
    9. Goede V, Schmidt T, Kimmina S, Kozian D, Augustin HG. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest. 1998;78(11): 1385-1394
    10. George DY, Samuel D, Nicholas WG, et al. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242-248
    11. Carmeliet P, Jain RK. Angiogenesis in cancer and other disease. Nature. 2000 Sep 14;407(6801):249-57.
    12. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932-936.
    13. Goldman E. The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet. 1907;2:1236-1240
    14. Alguire GH. The transparent chamber technique as a tool in experimental tumor therapy. In: Symposia: approaches to tumour chemotherapy. Washington DC: American Association for the Advancement of Science. 1947:13-26
    15. Tannock IF. The relationship between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer.1968;22:258-273
    16. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med [J]. 1971; 133: 275-288.
    17. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285: 1182-1186
    18. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82(1):4-6
    19. Taylor, S. Folkman, J. Protamine is an inhibitor of angiogenesis. Nature. 1982;297:307-312.
    20. Takeda A, Stoeltzing O, Ahmad SA, Reinmuth N, Liu W, Parikh A, Fan F, Akagi M, Ellis LM. Role of Angiogenesis in the Development and Growth of Liver Metastasis. Ann Surg Oncol. 2002;9(7):610-616
    21. Guidi AJ, Abu-Jawdeh G, Berse B, Jackman RW, Tognazzi K, Dvorak HF, Brown LF.Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst. 1995;87(16):1237-1245
    22. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353-364
    23. Kerbel, R. S. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505-515.
    24. Carmeliet, P. Controlling the cellular brakes. Nature. 1999;401:657-658.
    25. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94:715-725.
    26. Femke Hillen, Arjan W. Griffioen. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007 Agu;26:489-502
    27. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell. 2000;100:57-70.
    28. Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671-674
    29. Brooks PC. Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev. 1996;15(2):187-194
    30. Tomanek RJ, Schatteman GC. Angiogenesis: new insights and therapeutic potential. Anat Rec. 2000;261:126-135
    31. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841-844
    32. Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec. 1986 Oct;216(2):154-64.
    33. Szczerba D, Székely G. Computational model of flow-tissue interactions in intussusceptive angiogenesis. J Theor Biol. 2005 May 7;234(1):87-97.
    34. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2002 Nov;2(11):826-35.
    35. Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech. 2001 Jan 15;52(2):182-9.
    36. Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004 Nov;231(3):474-88.
    37. Oh, S. J., Kurz, H., Christ, B., & Wilting, J. Plateletderived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts in vivo. Histochemistry and Cell Biology. 1998;109:349-357.
    38. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511-2514.
    39. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003 Jun;9(6):669-76.
    40. Ribatti D, Nico B, Floris C, Mangieri D, Piras F, Ennas MG, Vacca A, Sirigu P. Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep. 2005 Jul;14(1):81-4.
    41. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000 Feb 1;95(3):952-8.
    42. Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol. 2001 Oct;115(1):186-94.
    43. Zengin E, Chalajour F, Gehling UM, et al. Vascular wall resient progenitor cells: a source for postnatal vasculogenesis. Development, 2006, 133 (8) : 1543-1551.
    44. Hilbe W, Dirnhofer S, Oberwasserlechner F, Schmid T, Gunsilius E, Hilbe G, W?ll E, K?hler CM. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol. 2004 Sep;57(9):965-9.
    45. Arbab AS, Pandit SD, Anderson SA, et al. MRI and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells. 2006;24 (3):671-678.
    46. Stoll BR, Migliorini C, Kadambi A. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood, 2003;102 (7):2555-2561.
    47. Iwami Y, Masuda H. Asabara endothelial progenitor ceils: past, state of the art, and future. J Cell Mol Med. 2004;8 (4):488-497.
    48. Lyden D, Young AZ, Zagzag D, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vasculariztion of tumor xenografts. Nature. 1999;401:670-677.
    49. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194-1201.
    50. Folkman J: Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc Natl Acad Sci U.S.A. 2001;98:398-400.
    51. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008 Jan 11;319(5860):195-8.
    52. Wei J, Blum S, UngerM, et al. Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lungmetastases after intravenous delivery. Cancer Cell. 2004;5 (5):477-488.
    53. Purhonen S, Palm J, Rossi D, Kaskenp?? N, Rajantie I, Yl?-Herttuala S, Alitalo K, Weissman IL, Salven P. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6620-5.
    54. Wesseling, P., van der Laak, J. A., de Leeuw, H., Ruiter, D. J., Burger, P. C. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. Journal of Neurosurgery, 1994;81:902-909.
    55. Holmgren, L., O’Reilly, M. S., & Folkman, J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1995;1:149-153.
    56. Pezzella, F., Pastorino, U., Tagliabue, E., Andreola, S., Sozzi, G., Gasparini, G., et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. American Journal of Pathology. 1997;151:1417-1423.
    57. Holash, J., Maisonpierre, P. C., Compton, D., Boland, P., Alexander, C. R., Zagzag, D., et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994-1998.
    58. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55-60.
    59. Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Research. 2003;63:3403-3412.
    60. Dome, B., Paku, S., Somlai, B., & Timar, J. Vascularization of cutaneous melanomainvolves vessel co-option and has clinical significance. Journal of Pathology. 2002;197:355-362.
    61. Kim, E. S., Serur, A., Huang, J., Manley, C. A., McCrudden, K. W., Frischer, J. S., et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:11399-11404.
    62. Kunkel, P., Ulbricht, U., Bohlen, P., Brockmann, M. A., Fillbrandt, R., Stavrou, D., et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Research. 2001;61:6624-6628.
    63. Maniotis A J , Folberg R , Hess A , et al . Vascular channel formation by human melanoma cells in vivo and in vitro : vasculogenic mimicry [J ] . Am J Pathol. 1999;155 (3):739-752.
    64. Passalidou E, Trivella M, Singh N, et al. Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br J Cancer,2002(2);86:244-249.
    65. Sharma N, Seftor RE, Seftor EA, et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate,2002;50(3):189-201.
    66. Sood AK, Seftor EA, Fletcher MS, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol,2001;158(4):1279-1288.
    67. Shirakawa K, Furuhata S, Watanabe I, et al. Induction of vasculogenesis in breast cancer models. Br J Cancer, 2002;87(12):1454-1461.
    68. Shirakawa K, Wakasugi H, Heike Y, et al. Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer,2002;99(6):821-828.
    69. Folberg R , HendrixMJ , Maniotis A J , et al. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 2000;156(2):361-381.
    70. Angela RH, Elisabeth AS, Lynn MG, et al. Molecular Regulation of Tumor Cell Vasculogenic Mimicry by Tyrosine Phosphorylation :Role of Epithelial Cell Kinase ( Eck/ EphA2). Cancer Res. 2001;61:3250-3255.
    71. Seftor RE, Seftor EA, Koshikawa N, et al. Cooperative interactions of laminin-5 gamma-2 chain, matrix metalloproteinase-2, and membrane type-1-matrix metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001;61(17):6322-6327.
    72. Hess AR, Seftor EA, Seftor RE, et al. Phosphoinositide3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63 (16):4757-4762.
    73. Hendrix MJ, Seftor EA, Kirschmann DA, et al. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann N Y Acad Sci. 2003;99 (5):151-161.
    74. Podgrabinska, S., Braun, P, Velasco, P., Kloos, B., Pepper, M S., Skobe, M. Molecular characterization of lymphatic endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2002;99:6069-6074.
    75. Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. W., Fang, G. H., Dumont, D., et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:3566-3570.
    76. Banerji, S., Ni, J., Wang, S. X., Clasper, S., Su, J., Tammi, R., et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. Journal of Cell Biology. 1999;144:789-801.
    77. Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. AmericanJournal of Pathology. 1999;154:385-394.
    78. Oliver, G., Detmar, M. The rediscovery of the lymphatic system: Old and new insights into the development and biological function of the lymphatic vasculature. Genes & Development. 2002;16:773-783.
    79. Witte MH, Bernas MJ, Martin CP, et al. Lymphangiogenesis and lymphangiodysp lasia: from molecular to clinical lymphology. Microsc Res Tech. 2001;55 (2):122-145.
    80. Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro exp ression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumor and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res. 2003;63 (3):713-722.
    81. SkobeM, Hawighorit T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7 (2):192-198.
    82. Papontai M, Sleeman JP, Wilting J. Interaction of rat tumor cells with blood vessels and lymphatics of the avian chorioallantoicmem brane. Microsc Res Tech. 2001 ;55 (2) :100-107.
    83. Saharinen P, Tammela T, Karkainen MJ, et al. Lymphatic vasculature: development,molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 2004;25(7):387-395.
    84. Shimizu K, Kubo H, Yamaguchi K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci. 2004;95 (4):328-333.
    85. Leu, AJ, Berk, DA, Lymboussaki, A, Alitalo, K Jain, RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 2000;60:4324-4327.
    86. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnol. 1997;15:778-783.
    87. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276:1423-1425.
    88. Jain, R. K. Barriers to drug delivery in solid tumors. Sci. Am. 1994;271:58-65.
    89. Italiano, J., Richardson, J. L., Folkman, J. & Klement, G. Blood platelets organize pro- and anti-angiogenic factors into separate, distinct alpha granules: implications for the regulation of angiogenesis. Blood. 2006;108 (ASH Annual Meeting Abstracts), 393.
    90. Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, Wallace JL. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):216-20.
    91. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007 Apr;6(4):273-86.
    92. Ferrara, N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int.1999; 56: 794-814
    93. Raspollini MR, Amunni G, Villanucci A, et al. COX-2 status in relation to tumor microvessel density and VEGF expression: analysis in ovarian carcinoma patients with low versus high survival rates. Oncol Rep. 2004;11(2):309-13
    94. Poltorak, Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, and Neufeld G. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem. 1997; 272: 7151-7158
    95. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005 Feb 10;23(5):1011-27.
    96. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008 May 8;358(19):2039-49.
    97. Cheng, SY, Nagane M, Huang HS, and Cavenee WK. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci USA. 1997; 94: 12081-12087
    98. Wang L, Zeng H, Wang P.et al. Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J Biol Chem. 2003;278(49):48848-48860
    99. Petrova TV, Makinen T, and Alitalo K. Signalling via vascular endothelial growth factor receptors. Exp Cell Res. 1999; 253:117-130
    100. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004 May;3(5):391-400.
    101. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002 Oct;2(10):795-803.
    102. Rak J, Yu JL. Oncogenes and tumor angiogenesis: the question of vascular "supply" and vascular "demand". Semin Cancer Biol. 2004 Apr;14(2):93-104.
    103. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, Cheng JQ, Jove R, Yu H. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005 Aug 25;24(36):5552-60.
    104. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306-1309
    105. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006 Mar 10;312(5):549-60.
    106. Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer. 2007;7:327-31.
    107. Z. Galzie , A. R. Kinsella , J . A. Smith. Fibroblast growth factors and their receptors. Biochem. Cell. Biol. 1997;75:669-685
    108. D. M. Ornitz , J . Xu. J . S. Colvin , D. G. McEwen ,et al . Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 2002;271:15292-15297
    109. Muenke M, Schell U. Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet. 1995 Aug;11(8):308-13.
    110. Maciag T, Friesel RE. Molecular mechanisms of fibroblast growth factor-1 traffick, signaling and release. Thromb Haemost. 1995 Jul;74(1):411-4.
    111. Sutherland D, Samakovlis C, Krasnow MA. Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell. 1996 Dec;87(6):1091-101.
    112. Wakisaka N, Pagano JS. Epstein-Barr virus induces invasion and metastasis factors. Anticancer Res. 2003;23 :2133-2138.
    113. Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell. 1995 Nov 3;83(3):357-60.
    114. Schillace RV, Scott JD. Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr Biol. 1999 Mar 25;9(6):321-4.
    115. Landgren E, Klint P, Yokote K, Claesson-Welsh L. Fibroblast growth factor receptor-1 mediates chemotaxis independently of direct SH2-domain protein binding. Oncogene. 1998 Jul 23;17(3):283-91.
    116. Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X. FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev. 2000 Dec;11(4):295-302.
    117. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002 Feb 20;285(1-2):1-24.
    118. Eriksson K, Magnusson P, Dixelius J, et al . Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering withspecific intracellular signal transduction pathways. FEBS Lett. 2003;536:19-24.
    119. Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002;3 (3):207-214.
    120. Cronauer MV ,Schulz WA ,Seifert HH ,et al. Fibroblast growth factors and their receptors in urological cancers: basic research and clinical implications. Eur Urol. 2003;43(3):309-319.
    121. Nishizuka I, Ichikawa Y, Ishikawa T, Kamiyama M, Hasegawa S, Momiyama N, Miyazaki K, Shimada H. Matrilysin stimulates DNA synthesis of cultured vascular endothelial cells and induces angiogenesis in vivo. Cancer Lett. 2001 Nov 28;173(2):175-82.
    122. Pozzi A, LeVine WF, Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene. 2002 Jan 10;21(2):272-81.
    123. Huo N, Ichikawa Y, Kamiyama M, Ishikawa T, Hamaguchi Y, Hasegawa S, Nagashima Y, Miyazaki K, Shimada H. MMP-7 (matrilysin) accelerated growth of human umbilical vein endothelial cells. Cancer Lett. 2002 Mar 8;177(1):95-100.
    124. Ziche M, Donnini S, Morbidelli L. Development of new drugs in angiogenesis. Curr Drug Targets. 2004;5(5):485-493
    125. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2 (3):161-174.
    126. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol , 2001 ,21 (7) :1104-1117.
    127. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell. 2002 Mar;1(2):193-202.
    128. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 2003 Sep 1;63(17):5224-9.
    129. Bergers G, Brekken R , McMahon G. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2 (10):737-744.
    130. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem. 2002 Mar 22;277(12):9749-56.
    131. Akahane T, Akahane M, Shah A, Connor CM, Thorgeirsson UP. TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Exp Cell Res. 2004 Dec 10;301(2):158-67.
    132. Roth JM, Caunt M, Cretu A, Akalu A, Policarpio D, Li X, Gagne P, Formenti S, Brooks PC. Inhibition of experimental metastasis by targeting the HUIV26 cryptic epitope in collagen. Am J Pathol. 2006 May;168(5):1576-86.
    133. Lijnen HR, Ugwu F, Bini A, et al. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1(MMP23). Biochemistry. 1998;37 (14):4699-4702.
    134. Pozzi A , Moberg PE , Miles LA , et al . Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA. 2000;97(5):2202-2207.
    135. Walsh LJ, Murphy GF. Role of adhesion molecules in cutaneous inflammation and neoplasia. J Cutan Pathol. 1992 Jun;19(3):161-71.
    136. Dormond O, Ponsonnet L, Hasmim M,et al. Manganese-induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src. Thromb Haemost. 2004;92(1):151-161
    137. Bello L, Zhang J, Nikas J, et al. Alpha (v) beta3 and alpha (v) beta5 integrin expression in meningiomas. Neurosurgery, 2000;47(5):1185-1195.
    138. Scharovsky OG, Binda MM, Rozados VR, et al. Angiogenic and antiangiogenic balance regulates concomitant antitumoral resistance. Clin Exp Metastasis. 2004;21(2):177-183
    139. Beecken WD, Engl T, Blaheta R, et al. Angiogenesis Inhibition by Angiostatin, Endostatin and TNP-470 Prevents Cyclophosphamide Induced Cystitis. Angiogenesis. 2004;7(1):69-73
    140. Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost. 2004;30(3):379-385
    141. Sarlos S, Rizkalla B, Moravski CJ, et al. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am J Patho. 2003;163(3):879-887
    142.金伯泉等。细胞和分子免疫学。科学出版社出版。2001;(第二版):184-187
    143. Maeshima Y, Sudhakar A, Lively JC, et al. Tumstatin, an Endothelial Cell-specific Inhibitor of Protein Synthesis. Science. 2002;295:140-143.
    144. Bertolini F, Paolucci M, Peccatori F, et al. Angiogenic growth factors and endostatin in non-Hodgkin's lymphoma. Br J Haematol. 1999;106(2):504-509
    145. Lucas R, Holmgren L,Grcia I,et al.Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood. 1998;92:4730-4736
    146. Moser TL, Stack MS,Asplin I,et al.Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc natl Acad Sci USA. 1999;96:2811-2817
    147. O' Reilly NN, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997;88(2):277-285
    148. Dhanabal M, Ram chandxan R, Watexm an MT, et al. Endostatin induces endothelial cell apotosis. J Biol Chem. 1999;274(17):11721-11726
    149. Bertolini F, Fusetti L, Mancuso P, et al. Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma. Blood. 2000;96(1):282-288
    150. Perletti A, Concati P,Giardini R, et al. Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors. Cancer Res. 2000;60(7): 1793-1796
    151. Kaichun WU, Liping YAO, Daiming Fan, et al. Potent Inhibition of Cell Growth and Angiognenesis in Gastric Cancer by Small Interference RNA for Cyclooxygenase(COX)-2. Gastroenterology. 2004;123
    152. Han S, Gou C, Hong L, Liu J, ZheyiHan, Liu C, Wang J, Wu K, Ding J, Fan D. Expression and significance of Id1 helix–loop–helix protein overexpression in gastric cancer. Cancer Letters. 2004;216(1):63-71
    153. Meng FP, Ding jie, Liuna, Zhangjing, Shao xiaodong, Shen huiqin, Xueyan and Fan daiming. Inhibition of gastric cancer angiogenesis by Vector-based RNA interference for Raf-1. Cancer Biology and therapy. 2005;4(1):113-117
    154. CC Guo, J Ding, LP Yao, L Sun, T Lin, Y Song, LJ Sun, DM fan. Tumor suppressor gene Runx3 sensitizes gastric cancer cells to chemotherapeutic drugs by downregulating Bcl-2, MDR-1 and MRP-1. Int J Cancer. 2005;116(1):155-60.
    155. Umeda N, Ozaki H, Hayashi H, et al. Colocalization of Tie2, angiopoietin 2 and vascular endothelial growth factor in fibrovascular membrane from patients with retinopathy of prematurity. Ophthalmic Res. 2003;35(4):217-223
    156. Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol. 2000;18:813-827.
    157. Yu JL, Rak JW, Carmeliet P, et al. Heterogeneous vascular dependence of tumor cell populations. Am J Pathol. 2001;158(4):1325-1334.
    158. Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperp lasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543-553.
    159. McDonald DM, Foss AJ. Endothelial cells of tumor vessels: abnormal but not absent. Cancer Metastasis Rev. 2000;19 (122):109-120.
    160. Izumi Y, Xu L, di Tomaso E, et al. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416 (6878):279-280.
    161. Morikawa S, Baluk P, Kaidoh T, et al. Abnormalities in Pericytes on Blood Vessels and Endothelial Sprouts in Tumors. Am J Pathol. 2002;160(3):985-1000
    162. Baluk P,Morikawa S, Haskell A, et al. Abnormalities of basement membrane on blood vessels and endothelial sp routs in tumors. Am J Pathol, 2003, 163 (5) : 1801-1815.
    163. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer, 2003, 3 (6) : 422-433.
    164. Zurita AJ, Arap W, Pasqualini R. Mapping tumor vascular diversity by screening phage display libraries. J Control Release. 2003;91(1-2):183-186
    165. Arap W, Haedicke W. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA. 2002;99:1527-1531
    166. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279 (5349):377-380
    167. Jason A. Hoffman, Enrico Giraudo, Mallika Singh. et al. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell. 2003;4(5);383-391
    168. Trepel M, Arap W, Pasqualini R.In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol. 2002;6(3):399-404
    169. Rafii S, Avecilla ST, Jin DK.Tumor vasculature address book: identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell. 2003;4(5): 331-333
    170. Lim YC, Garcia-Cardena G, Allport JR, et al. Heterogeneity of endothelial cells from different organ sites in T-cell subset recruitment. Am J Pathol. 2003;162(5):1591-601
    171. St Croix B, Rago C, Velculescu V, et al. Genes exp ressed in human tumor endothelium. Science. 2000;289(5482):1197-1202.
    172. Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004;429(6992):629-635.
    173. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003, 3 (6):401-410.
    174. Ozawa CR,Banfi A, GlazerNL, et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest, 2004, 113 (4):516-527.
    175. Kevin H, Zachary W, Kovara AT, et al. Comparative analysis of in vitro angiogenic activities of endothelial cells of heterogeneous origin. Microvascular Res. 2002;63:316
    176. Darland DC, D’Amore PA. Blood vessel maturation: vascular development comes of age. J Clin Invest. 1999;103:157
    177.王新红,殷莲华,金惠铭。VEGF高表达的胶质瘤细胞对体外共培养血管内皮细胞的作用。中国微循环。2002;6(1):11
    178. Nikolai NK, Jianqing Y, Edwardine L, et al. Tumor-endothelium interactions in co-culture: coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J Cell Sci. 2003;116(6):1013
    179. Barrett JM, Mangold KA, Jilling T, Kaul KL. Bi-directional interactions of prostate cancer cells and bone marrow endothelial cells in three-dimensional culture. Prostate. 2005 Jun 15;64(1):75-82.
    180.张奇巧,宋姝贤,徐宇虹等。基于共培养技术的肿瘤微血管细胞模型的建立。肿瘤。2004;24(3):226-229
    181. Chang YS, di Tomaso E,McDonald DM, et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA. 2000;97(26):14608-14613.
    182. Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle. 2006 Aug;5(16):1779-87.
    183. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005 Dec 8;438(7069):820-7.
    184. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA, Benezra R, Mittal V. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007 Jun 15;21(12):1546-58.
    185. Rafii S, Lyden D. Cancer. A few to flip the angiogenic switch. Science. 2008 Jan 11;319(5860):163-4.
    186. Daniel G.M. Molin, Nynke M.S van den Akker and Mark J. Affirmative Action of Osteopontin on Endothelial Progenitors. Post. Arterioscler. Thromb. Vasc. Biol. 2008;28:2099-2100
    187. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, Coomber BL, Rak J. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev. 2001;20(1-2):79-86.
    188. Edovitsky E, Elkin M, Zcharia E, et al. Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst. 2004;96(16): 1219-1230
    189. Barinaga M. Desiging therapies that target tumor blood vessels. Science. 1997;275: 482-484
    190. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D'Amato RJ, Kerbel RS. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell. 2005 Jan;7(1):101-11.
    191. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27-31
    192. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219:316-333.
    193. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123-131.
    194. Weissleder R. Molecular imaging: exploring the next frontier. Radiology. Sep 1999;212(3):609-614.
    195. Kagalwala MN, Singh SK, Majumder S. Stemness Is Only a State of the Cell. Cold Spring Harb Symp Quant Biol. 2009 Jan 15. [Epub ahead of print]
    196. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. Apr 3 2008;452(7187):580-589.
    197. A. R. Hsu, X. Y. Chen, Advances in anatomic, functional, and molecular imaging of angiogenesis, Journal of Nuclear Medicine 2008, 49, 511.
    198. Winter PM, Morawski AM, Caruthers SD,et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270-2274.
    199. Neeman M, Dafni H. Structural, functional, and molecular MR imaging of the microvasculature. Annu Rev Biomed Eng. 2003;5:29-56.
    200. Su MY, Cheung YC, Fruehauf JP, et al. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Reson Imaging. 2003;18:467-477.
    201. Hogemann D, Ntziachristos V, Josephson L, Weissleder R. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug Chem.2002;13:116-121.
    202. de Lussanet QG, Backes WH, Griffioen AW, et al.Gadopentetate dimeglumine versus ultrasmall superparamagnetic iron oxide for dynamic contrast-enhanced MR imaging of tumor angiogenesis in human colon carcinoma in mice. Radiology. 2003;229:429-438.
    203. Wu Daocheng, Wan Mingxi. A Novel Fluoride Anion Modified Gelatin Nanogel System for Ultrasound-Triggered Drug Release. J Pharm Pharmaceut Sci. 2008;11 (4): 32-45
    204. Huo T, Du X, Zhang S, Liu X, Li X. Gd-EDDA/HYNIC-RGD as an MR molecular probe imaging integrin alphanubeta3 receptor-expressed tumor-MR molecular imaging of angiogenesis. European journal of radiology. Mar 2 2009.
    205. Mulder WJ, Castermans K, van Beijnum JR, Oude Egbrink MG, Chin PT, Fayad ZA, Lowik CW, Kaijzel EL, Que I, Storm G, Strijkers GJ, Griffioen AW, Nicolay K. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis. 2009;12(1):17-24.
    206. W. B. Cai, K. Chen, K. A. Mohamedali, Q. Z. Cao, S. S. Gambhir, M. G. Rosenblum, X. Y. Chen, PET of vascular endothelial growth factor receptor expression, Journal of Nuclear Medicine 2006, 47, 2048.
    207. K. Chen, W. B. Cai, Z. B. Li, H. Wang, X. Y. Chen, Quantitative PET Imaging of VEGF Receptor Expression, Molecular Imaging and Biology 2009, 11, 15.
    208. X. Y. Chen, P. S. Conti, R. A. Moats, In vivo near-infrared fluorescence imaging of integrin a,alpha(v)beta(3) in brain tumor xenografts, Cancer Research 2004, 64, 8009.
    209. Z. Liu, W. B. Cai, L. N. He, N. Nakayama, K. Chen, X. M. Sun, X. Y. Chen, H. J. Dai, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology 2007, 2, 47.
    210. Z. F. Liu, Y. J. Yan, F. T. Chin, F. Wang, X. Y. Chen, Dual Integrin and Gastrin-Releasing Peptide Receptor Targeted Tumor Imaging Using F-18-labeled PEGylated RGD-Bombesin Heterodimer F-18-FB-PEG(3)-Glu-RGD-BBN, Journal of Medicinal Chemistry 2009, 52, 425.
    211. X. Z. Zhang, Z. M. Xiong, Y. Wu, W. B. Cai, J. R. Tseng, S. S. Gambhir, X. Y. Chen, Quantitative PET imaging of tumor integrin alpha(v)beta(3) expression with F-18-FRGD2, Journal of Nuclear Medicine 2006, 47, 113.
    212. Nienhaus GU, Wiedenmann J. Structure, Dynamics and Optical Properties of Fluorescent Proteins: Perspectives for Marker Development. Chemphyschem. Feb 19 2009.
    213. Wunderbaldinger P, Turetschek K, Bremer C. Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. European radiology. Sep 2003;13(9):2206-2211.
    214. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science (New York, N.Y.) Jan 28 2005;307(5709):538-544.
    215. Marx J. Imaging. Animal models: live and in color. Science (New York, N.Y.) Dec 12 2003;302(5652):1880-1882.
    216. J. Cheon, J-H. Lee. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology, Accounts of Chemical Research 2008, 41, 1630.
    217. Reubi J C. Peptide Receptors as molecular targets for cancer diagnosis and therapy. Endocrine Reviews, 2003, 24(4): 389-427.
    218. Ramanujan S, Koening GC, Padera T. Local imblance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Res. 2000;60:1442-1448
    219. Tran HT, Blumenschein GR Jr, Lu C, et al. Clinical and pharmacokinetic study of TNP-470, an angiogenesis inhibitor, in combination with paclitaxel and carboplatin in patients with solid tumors. Cancer Chemother Pharmacol. 2004;54(4):308-314
    220. Masiero L, Figg WD, Kohn EC. New anti-angiogenesis agents: review of the clinical experience with carboxyamido-triazole (CAI), thalidomide, TNP-470 and interleukin-12. Angiogenesis. 1997;1(1):23-35
    221. Wang SY, Chen B, Zhan YQ, et al.SU5416 is a potent inhibitor of hepatocyte growth factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma cells. J Hepatol. 2004;41(2):267-273
    222. Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):967-72.
    223. Kaban LB, Troulis MJ, Ebb D, August M, Hornicek FJ, Dodson TB. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg. 2002 Oct;60(10):1103-11; discussion 1111-3.
    224. Marler JJ, Rubin JB, Trede NS, Connors S, Grier H, Upton J, Mulliken JB, Folkman J. Successful antiangiogenic therapy of giant cell angioblastoma with interferon alfa 2b: report of 2 cases. Pediatrics. 2002 Feb;109(2):E37.
    225. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factorβ1 platelet-derived endothelail cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997;57(5):963-969.
    226. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005 Oct;8(4):299-309.
    227.梁树辉。胃癌血管内皮细胞特异结合短肽的噬菌体肽库筛选。第四军医大学硕士学位论文。2005 May
    228. Eric A Jaffe, Ralph L Nachman, Carl G Becker, C Richard Minick. Culture of human endothelial cells derived from umbilical veins. The Journal of Clinical Investigation. 1973;52:2745-2756
    229.申宝忠.分子影像学,北京:人民卫生出版社,2007:323-326.
    230.惠晓丽。肿瘤血管靶向肽GX1的体内外鉴定。第四军医大学博士学位论文。2008 May
    231. Mather SJ, Ward BG. High Efficiency Iodination of Momoclonal Antibodies for Radiotherapy. J Nucl Med,1987;28(6):1031-1036.
    232.王喆。hSSTR2基因转染肺癌细胞的肿瘤核素显像与杀伤研究。第四军医大学博士学位论文。2008 May
    233.金伯泉等。细胞和分子免疫学实验技术。第四军医大学出版社出版。2002;(第1版):58-60
    234. Gleare M,Miyuke H, et al. Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligonucleotides after castration in the tumor model. Clin Cancer Res 1999:5:2891-2898.
    235. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995,36:169-180.
    236. Shtivelband MI, Juneja HS, Lee S, et al. Aspirin and Salicylate inhibit colon cancer medium- and VEGF-induced endothelial tube formation: correlation with suppression of cyclooxygenase-2 expression. J Thromb Haemost. 2003;1:2225-2233.
    237.商澎,骞爱荣,胡佩珍,马福成,朱平,陈志南。HAb18G/ CD147拮抗肽对体内血管生成的影响。中国药理学通报。2003 Mar;19(3):355-7.
    238. Passaniti A , Taylor RM , Pili R et al . A simple quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin and fibroblast growth factor. Lab Invest. 1992;67 (4) :519-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700