用户名: 密码: 验证码:
不吸水链霉菌基因转移系统的建立及嘧肽霉素生物合成基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嘧肽霉素是本研究室研发的具有自主知识产权的新型抗病毒农用抗生素,由不吸水链霉菌辽宁变种(Streptomyces ahygroscopicus var.Liaoningensis)产生,对多种植物病毒病害、真菌病害都有很高的防效,为了从分子生物学角度研究嘧肽霉素的生物合成,本文建立了不吸水链霉菌的遗传转移系统,克隆获得了嘧肽霉素的部分生物合成相关基因,并对其功能进行了研究,获得的结果如下:
     1.利用紫外诱变方法,获得了1株嘧肽霉素生物合成阻断突变株UV2136和1株嘧肽霉素高产菌株,前者为互补克隆策略研究嘧肽霉素生物合成基因提供了转化受体,后者为嘧肽霉素的生产提供了高产菌株。
     2.针对嘧肽霉素的生物合成阻断突变株UV2136,本文研究了其最佳的菌体培养、原生质体制备和再生条件。采用改良的含15%蔗糖、0.5%甘氨酸的YEME液体培养基振荡培养36h,获得细腻丰富的菌丝体;对不同的酶浓度、酶解温度和酶解时间进行3因子4水平的正交试验,筛选最佳酶解条件为:溶菌酶浓度2mg/ml,28℃,作用90min,可获得最高的制备率99%;再生培养基以R2YE为最佳,采取直接涂布方式,25.5℃培养可达到48%的再生率;
     3.利用原生质体转化法建立了嘧肽霉素生物合成阻断突变株的质粒转移系统,本试验为后续的互补克隆提供了方法,也是首次建立不吸水链霉菌的基因转移系统。UV2136对硫链丝菌素高度敏感,选择含有该抗生素标记的质粒pIJ702和pWHM3,探索其转化UV2136的可能性。结果表明,UV2136含有较强的限制修饰系统,采取热衰减法获得原生质体、原生质体热处理、冷处理、EDTA处理、质粒DNA变性等,均不能实现质粒pIJ702向UV2136的转化。来自非甲基化宿主E.coli ET12567的pWHM3也无法实现转化,而源于E.coli DH5α的甲基化pWHM3,可以低频转化菌株UV2136,转化效率为4转化子/μg pWHM3,经UV2136自身修饰的pWHM3可实现高效转化,达到10~4转化子/μg pWHM3。
     4.利用接合转移实现了温敏感型质粒向不吸水链霉菌辽宁变种的转化,为研究嘧肽霉素生物合成相关基因的功能分析提供了载体。利用BclI酶切质粒pIJ702,回收其中含有硫链丝菌素抗性基因的1,055bp的BclI-BclI片段,插入质粒pKC1139的BglⅡ位点,构建pKC1139-tsr质粒;设计引物,以pIJ702为模板扩增了其中含硫链丝菌素的目的基因,经ApaI、NheI双酶切,插入到pSET152的ApaI-NheI酶切位点,构建pSET152-tsr质粒;pKC1139-tsr质粒可通过接合转移实验转入不吸水链霉菌辽宁变种,为后续的基因功能研究提供了载体,但pSET152-tsr质粒不能倒入,表明嘧肽霉素产生菌中可能不含有attp位点。
     5.采用互补克隆策略获得了3个可能的嘧肽霉素生物合成相关基因,cytoA、cytoB和cytoC,cytoA、B分别编码双组分系统的传感激酶和反应调节因子,cytoC编码保守假定蛋白,并分别对其进行了功能研究,表明cytoA、B可能参与嘧肽霉素生物合成的调控,cytoC直接参与嘧肽霉素的生物合成。利用EcoRI、HindⅢ对野生型菌株04-2-2基因组DNA进行不完全酶切,回收3-15kb DNA片断,分别与经EcoRI、HindⅢ酶切的pWHM3连接,转化嘧肽霉素生物合成阻断突变株,筛选硫链丝菌素抗性菌落,对其进行嘧肽霉素活性测定,从EcoRI酶切产物中获得1个恢复嘧肽霉素产生能力的克隆,定名为UV2136-R,对其中的插入片段进行分析,结果表明,该片断含有3个开放阅读框,分别定名为cytoA、cytoB和cytoC。其中,cytoA大小为1464bp,编码一个由487个氨基酸残基组成的蛋白质,数据库比较结果表明cytoA编码的氨基酸序列属于组氨酸蛋白激酶超家族,与始旋链霉菌中的传感激酶有较高的同源性,一致性可达66%,说明cytoA的编码产物可能为组氨酸激酶;cytoB大小为570bp,编码一个由189个氨基酸残基组成的蛋白质,数据库比较结果表明cytoB编码的氨基酸序列与灰色链霉菌中的反应调节因子有很高的同源性,一致性可达86%,表明cytoB的编码产物为反应调节因子,与cytoB编码的传感激酶共同组成二组分系统,基因登陆号为GQ149124,两者的阻断使嘧肽霉素的产生能力降低,可能为正调控基因;cytoC大小为783bp,基因登陆号为GQ250103,编码一个由260个氨基酸残基组成的蛋白质,数据库比较结果表明,cytoC的编码产物属于DUF899超家族,与固氮菌和始旋链霉菌中的保守假定蛋白的同源性高,一致性可达85%,该假定蛋白与硫氧环蛋白相似,其阻断使菌株丧失嘧肽霉素产生能力,说明其是参与嘧肽霉素生物合成的一个重要基因。
     6.利用同源克隆获得了一个嘧肽霉素生物合成基因cytoD,可能编码葡萄糖基转移酶,功能验证表明其直接参与嘧肽霉素的生物合成。嘧肽霉素与杀稻瘟菌素S有相同的组成部分,即胞啶咛,推知可能有相同或相近功能的生物合成基因存在,以灰色产色链霉菌中催化胞啶咛合成的blsD基因的部分序列为探针,对嘧肽霉素产生菌04-2-2的完全酶切片段进行Southern杂交,从XbaI完全酶切的基因组DNA中获得一条2.1kb左右的杂交片段,利用基因小库构建、菌落原位杂交等克隆得到了含有杂交片段的菌落,其中的质粒定名为pUC18-CGA,测序结果表明其中含有1个完整的开放阅读框,cytoD由981bp组成,编码326aa组成的蛋白质,Blast结果表明,其编码产物与灰色链霉菌中的葡萄糖基转移酶有较高的同源性,一致性可达85%,说明cytoD可能为葡萄糖基转移酶基因。cytoD的阻断使菌株丧失嘧肽霉素产生能力,说明其是参与嘧肽霉素生物合成的一个重要基因。
     以上工作对克隆获得完整的嘧肽霉素生物合成基因簇、研究嘧肽霉素的生物合成途径具有重要意义。
Cytosinpeptidemycin is a newly reported antiphytoviral agricultural antibiotic produced by Streptomyces ahygroscopicus var.Liaoningensis,which owns high control effect to some plant viral and fungal diseases.To study the biosynthesis of cytosinpeptidemycin in the view of molecular biology,the gene transformation system of Streptomyces ahygroscopicus was developed,some biosynthetic gene was cloned and analyzed in the study.The results are as fellows:
     1.Wild strain of Streptomcyes ahygroscopicus was mutagenized by UV irradiation.A matant,UV2136,blocked in the biosynthesis of cytosinpeptidemycin was used to clone cytosinpeptidemycin biosynthetic genes.Meanwhile,a high-producing strain was induced, which can be used in the cytosinpeptidemycin production.
     2.Targeted with UV2136,the mutant of Streptomyces ahygroscopicus var.Liaoningensis blocked in cytosinpeptidemycin biosynthesis,the optimal conditions for mycelium growth, protoplasts formation and regeneration were developed.Exquisite and abundant mycelium was typically grown in 40ml of adopted YEME medium containing 15%of glucose and 0.5% of glycine.The optimal lysozyme system,including lysozyme concentration,temperature and lysis time,was studied by orthogonal design analysis,and the results indicated that the highest formation ratio of 99%was achieved when the lysozyme solution was 2mg/ml, incubated at 28℃for 90min.The protoplasts were plated on dry plates of R_2YE by spreading with a glass spreader,and the regeneration ratio was over 48%when cultured at 25.5℃.
     3.The gene transformation system of mutant UV2136 was developed by protoplasts transformation in the study.UV2136,the mutant blocked in cytosinpeptidemycin biosynthesis,was highly sensitive to thiostrepton,plasmid pIJ702 and pWHM3 containing thiostrepton resistance gene,tsr,were used to transform UV2136.Without endogenous plasmid,UV2136 owns strong restriction and modification systems which prevent the transformation of foreign plasmid.Many possible solutions were adopted,including heat attenuation,heat treatment,chill treatment,EDTA treatment and plasmid denaturation,no transformant was found when pIJ702 was used.Non-methylated pWHM3 derived from E.coli ET12567 also can not be transformed into UV2136,while the pWHM3 from methylatng host,E.coli DH5α,can be introduced at a low frequency,4 transformants perμg pWHM3,and the pWHM3 modified by UV2136 itself can be transformed at a higher frequency,10~4 transformants perμg pWHM3.
     4.Conjugation was used to develop the transformation system of wild strain of cytosinpeptidemycin producing 04-2-2.To construct pKC1139-tsr,pIJ702 was digested by BelⅠ,the fragment of 1,055bp containing tsr gene was recovered and inserted into the pKC1139/BglⅡwhich was dephosphorylated by CIAP.To construct pSET152-tsr,tsr gene was cloned by PCR,digested by ApaI and NheI and ligated with pSET152/ApaI/NheI.By conjugation,pKC1139-tsr can be transformed into the wild strain 04-2-2,while pSET152-tsr cannot be introduced,probably because there is no attP site which is necessary for the replication of pSET152-tsr.
     5.By complementation of UV2136,three genes involved in the biosynthesis of cytosinpeptidemycin were cloned and function analyzed.Total DNA of the wild strain 04-2-2 was partially digested by EcoRI and HindⅢindividually and 3-15kb fragments were recovered,ligated with pWHM3/EcoRI and pWHM3/HindⅢwhich was dephosphorylated by CIAP.The ligated product was introduced into UV2136 by protoplast transformation system and the cytosinpeptidemycin activity of thiostrepton resistant strains was determained. A transformant,UV2136-R,can produce cytosinpeptidemycin,and the insert was analyzed. There are three ORFs designated cytoA,cytoB and cytoC.cytoA,consisted of 1464bp, encodes a protein with 487 amion acid resdues.Database searching showed that CytoA belongs to HATPase_c superfamily,is homologous to sensor kianse from Streptomyces pristinaespiralis ATCC 25486 with 66%identities,suggesting that the expressed product of cytoA maybe histidine kinase.cytoB,consisted of 570bp,encodes a protein with 189 amino acid residues.Database Blasting showed that CytoB belongs to REC superfamily,is highy homologous to response regulator from Streptomyces griseus subsp.griseus NBRC 13350 with 86%identities,illuminating that CytoB is response regulator,consisting of two-competent system together with CytoA,and gene accession No.was GQ149124. Disruptant of cytoA/B could produce cytosinpeptidemycin,which indicated that cytoA/B was not related to the production of cytosinpeptidemycin directly,but was regulatory genes.cytoC, consisted of 783bp,encodes a protein with 260 amino acid residues.Database searing showed that CytoC belongs to DUF899 superfamily,is high homologous to conserved hypothetical protein which is thioredoxin-like from Frankia sp.ccI3 and Streptomyces pristinaespiralis ATCC 25486 with 85%identities.Disrupant of cytoC losing the ability to produce cytosinpeptidemycin,suggested that cytoC is an important gene involved in the biosynthesis of cytosinpeptidemycin.
     6.By homologous cloning,a biosynthetic gene named cytoD encoding glycosyltransferase was cloned and function analyzed.There are cytosinine in both cytosinpeptidemycin and Blasticidin S,it can be induced that there are similar genes involved in the biosynthesis.Using partial sequence of BlsD as probe,total digested genome DNA of 04-2-2 was Southern blotted,and a 2.1kb signal fragment was found.By construction of gene sub-library and colony in situ hybridization,a colony containing signal fragment was achieved and the plasimid was named pUC18-CGA.There is 1 ORF named cytoD,which is 981bp and the expressed product is a protein with 321 amino acid residues.Database blasting showed that CytoD is high homologous to glycosyltransferase from Streptomyces griseus subsp.griseus NBRC 13350 with 85%identities,suggesting that CytoD maybe glycosyltransferase.Disruptant of cytoD lose the ability to produce cytosinpeptidemycin, which illustrated that cytoD is an important gene involved in the biosynthesis of cytosinpeptidemycin.
     All the results were essential for the cloning of cytosinpeptidemycin biosynthetic genes and illustrating the total biosynthesis.
引文
[1]陈蔚,田宇清,杨海花,谭华荣.2000.圈卷产色链霉菌尼可霉素生物合成基因—sanH和sanI 的研究.微生物学报,40:598-604
    [2]陈文君,戚长菁,潘俊.1998.新的抗肿瘤抗生素Ⅱ.提纯、理化性质与鉴别.中国抗生素杂志,23(3):170-174
    [3]顾觉奋主编.抗生素.上海科学技术出版社,2001上海
    [4]胡继兰,李月英,张春颖等.1998.新的抗肿瘤抗生素Ⅰ.抗微生物活性及产生菌的生物学.中国抗生素杂志,23(2):100-103
    [5]聂丽平,李文利,谭华荣.2000.圈卷产色链霉菌尼可霉素生物合成基因—sanK的克隆及功能研究.生物工程学报,16:667-670
    [6]聂丽平,田宇清,谭华荣.2001a.圈卷产色链霉菌尼可霉素生物合成基因—sanJ的克隆及功能研究.遗传学报,28(2):188-195
    [7]聂丽平,田宇清,谭华荣.2001b.圈卷产色链霉菌尼可霉素生物合成基因—sanL的结构与功能.微生物学报,41(2):59-64
    [8]王国君,2004.圈卷产色链霉菌(Streptomyces ansochromogenes)尼可霉素生物合成相关基因的研究.中国科学院微生物研究所博士论文.北京.
    [9]王以光主译,1998.抗生素---多学科研究入门.北京:人民卫生出版社.
    [10]向固西,胡厚芝,陈家任等.1995.一种新的抗生素—宁南霉素.微生物学报,35(5):368-374
    [11]曾红梅,谭华荣,李季伦.2002.Tn4650在圈卷产色链霉菌中的转座及其在尼可霉素生物合成相关基因克隆中的应用.微生物学报,42(1):11-18
    [12]Aparicio,J.F.,Caffrey,P.,Marsden,A.F.et al.1994.Limited proteolysis and active site studies of the first multienzyme component of the erythromycin-producing polyketide synthase.J Biol Chem,269(11):8524-8528
    [13]Arrowsmith,T.J.,Malpartida,F.,Sherman,D.H.et al.1992.Characterization of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis.Mol Gen Genet,234:254-264
    [14]Austin,M.A.and Noel,J.P.2003.The chalcone synthase superfamily of type Ⅲ pokyketide synthase.Nat.Prod.Rep.,20:79-110
    [15]Austin,M.A.,Izummikawa,M.,Bowman,M.E.et al.2004.Crystal structure of a bacterial type Ⅲpolyketide synthase and enzymatic control of reactive polyketide intermediates.J.Bio.Chem Papers in Press,Published on July 20:1-52
    [16]Babaoglu K.,Lee R.E.,Qi J.White S.W.2004.Crystal structure of 7,8-dihydropteroate synthase from Bacillus anthracis: mechanism and novel inhibitor design. Structure, 12: 1705-1717
    [17] Bailey, C. R., Winstanley, D.J. 1986. Inhibition of restriction in Streptomyces clavuligerus by heat treatment. J Gen Microbiol, 132 (10): 2945-2947.
    [18] Bangera, M. G., and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol., 181:3155-3163
    [19] Bentley, SD., Chater, KF., Cerdeno-Tarraqu, AM. et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417(6885): 141-147
    [20] Bibb, M.J., Findlay, P.R. & Johnson, M.W. 1984.The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene, 30: 157-166
    [21] Bibb, M.J., Schotte, J.L., Cohen, S.N. 1980. A DNA cloning system for interspecies gene transfer in antibiotic- producing Streptomyces. Nature, 284(5757): 526
    [22] Bibb, M.J., Sherman, D, H., Omura, S. et al. 1994. Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene, 142:31-39
    [23] Bormann, C., Aberle, K., Fiedler, H. P. et al. 1990. Genetic complementation of Streptomyces tendae deficient in nikkomycin production. Appl Microbiol Biotechnol, 32: 424-430
    [24] Bormann, C., Mohrle, V. and Bruntner, C. 1996. Cloning and heterologous expression of the entire set of structural genes for nikkomycin synthesis from Streptomyces tendae Tu901 in Streptomyces lividans. Journal of Bacteriology, 178: 1216-1218
    [25] Brautaset, T., O. N. Sekurova, H. Sletta et al. 2000. Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem. Biol.,7:395-403
    [26] Brunter, C, Bormann, C. 1998. The Streptomyces tendae Tu901 L-Lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem, 254: 347-355
    [27] Bruntner, C, Lauer, B., Schwarz, W. et al. 1999. Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet, 262: 102-114
    [28] Bulter, M.J., Friend, E.J., Hunter, J.S. et al. 1989. Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetraclyclin by Streptomyces rimosus. Mol Gen Genet, 215: 231-238
    [29] Buttner, M.J., Fearnley, I.M. & Bibb, M.J. 1987. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet, 209: 101-109
    [30] Cane, D.E., Kudo, F., Kinoshita, K. et al. 2002. Precursor-directed biosynthesis: biochemical basis of the remarkable selectivity of the erythromycin polyketide synthase toward unsaturated triketides. Chem Biol, 9(1): 131-142
    [31] Cane, D.E., Walsh, C.T. 1998. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science, 282(5386): 63-68
    [32] Chater, K.F., Bruton, C.J. 1983. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene, 26: 67-78
    [33] Chater, K.F., Bruton, C.J. 1985. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO, (4): 1893-1897
    [34] Chater, K.F., Bruton, C.J. 1985a. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO, (4): 1893-1897
    [35] Chen H., Tseng C.C., Hubbard B.K. et al. 2001. Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine. Proc. Natl. Acad. Sci. U.S.A. (98): 14901-14906
    [36] Chen,W., Zeng,H. and Tan,H. 2000. Cloning, sequencing, and function of sanF: A gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Curr. Microbiol, 41 (5), 312-316
    [37] Chung, S.T. 1987. Tn4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae. J Bacteriol, 169(10): 4436-4441
    [38] Cole, S.T., Brosch, R., Parkhill, J. et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393: 537-544
    [39] Cone, M.C., Petrich, A.K., Gould, S.J. et al. 1998. Cloning and heterologous expression of blasticidin S biosynthetic genes from Streptomyces griseochromogenes. J Antibiot, 51(6): 570-578
    [40] Cone, M.C., Yin, X., Grochowski, L.L. et al. 2003. The blasticidin S biosynthesis gene cluster from Streptomyces griseochromogenes: sequence analysis, organization and initial characterization. ChembioChem, 4(9): 821-828
    [41] Coque, J. J. R., Martin, J. F., and Liras, P. 1993. Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus. Mol. Gen. Genet, 1993(236):453-458
    [42] Cortes, J., Haydock, S.F., Roberts, G.A. et al. 1990. An unusal large multifunctional polyketide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythrea. Nature, 348: 176-178
    [43] Cundliffe, E. et al. 1981. The Molecular Basis of Antibiotic Action. John Wiley and Sons Ltd: New York,402-547
    [44] Decker, H. and Haag, S. 1995. Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J Bacteriol, 177: 6126-6136
    [45] Deppenmeier U. and Johann A. 2002.The ganome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol, 4(4): 453-461
    [46] Dhillon, N., Hale, R.S., Cortes, J. et al. 1989. Molecular characterization of a gene from Saccharopolyspora erythraea {Streptomyces erythraeus) which is involved in erythromycin biosynthesis. Mol Microbiol, 3: 1405-1411
    [47] Distler, J., Ebert, A., Mansouri, K. et al. 1987Gene cluster for streptomycin biosynthesis in Streptomyces greseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res, 15: 8041-8056
    [48] Donadia, S., Staver, M.J., McAlpinem J.B. et al. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science, (252): 675-679
    [49] Eaton, RW, and KN Timmis. 1986. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J. Bacteriol. 168:123-131
    [50] Engel, P. 1987. Plasmid transformation of Streptomyces tendae after heat attenuation of restriction. Applied and Environmental Microbiology, 53(1): 1-3.
    [51] Engel, P., Wright, M.S. 1993. FEMS Microbiol Lett, (109): 257-262
    [52] Epp, J.K., Burgett, S.G., Schoner, G.E. 1987. Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene, (53): 73-83
    [53] Espinosa, J.C., Tercero, J.A., Rubio, M.A. et al. 1999. The pur7 gene from the puromycin biosynthetic pur cluster of Streptomyces alboniger encodes a nudix hydrolase. Journal of Bacteriology, 181(16): 4914-4918
    [54] Fernandez, M.A., Martinez, E., Boto, L. et al. 1992. Nucleotide sequence and deduced functions of a set of co-transcribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem, (267): 19278-17290
    [55] Fernandez, M.A., Caballero, J.L., Hopwood, D.A. et al. 1991. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of streptomyces. Cell, 66(4): 769-780
    [56] Fiedler, H. P., Kurth, R, Langharig, J et al. 1982. Nikkomycins: microbial inhibitors of chitin synthetase. J Chem Biotechnol, (32): 271-280
    [57] Fiona, F., Vassilios, M., Colin, P.S. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes [J]. FEMS Microbiology Letters, 155 (2), 223-229
    [58] Fishman, S.E., Cox, K., Larson, J.L. et al. 1987. Cloning genes for the biosynthesis of a macrolide antibiotic. Proc Natl Acad Sci, (84): 8248-8252
    [59] Fjaervik, E., and S. B. Zotchev. 2005. Biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei. Appl. Microbiol. Biotechnol. (67):436-443
    [60] Funa N., Ohnishi Y., Fujii I. et al. 1999. A new pathway for polyketide synthesis in microorganisms. Nature, 400:897-899
    [61] Funa N., Ohnishi Y., Ebizuka Y. et al. 2002. Alteration of reaction and substrate specificity of a bacterial type Ⅲ polyketide synthase by site-directed mutagenesis. Biochem. J. (367): 781-789
    [62] Funa, N., Ozawa, H., Hirata, A. et al. 2006. Phenolic lipid synthesis by type Ⅲ polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA.
    [63] Geistilch, M., Losick, R., Turner, J.R. et al. 1992. Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaceins. Mol Microbiol, (6): 2019-2029
    [64] Grimm, A., Madduri, K., All, A. et al. 1994. Characterization of the Streptomyces peucetius ATCC29050 genes encoding doxorubicin polyketide synthase. Gene, (151): 1-10
    [65] Gong, W., Jiang, W., Yang, Y. et al. 2004. Improvement of transformation and electroduction in avermectin high-producer, Streptomyces avermitilis. Folia Microbiol (Praha), 49(4): 399-405.
    [66] Gross, F., Luniak, N., Perlova, O. et al. 2006. Bacterial type Ⅲ polyketide synthases: phylogentic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Arch Microbiol, 185(1): 28-38
    [67] Hallam, S.E., Malpartida, F. and Hopwood, D.A. 1988. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene, (74): 305-320
    [68] Han, L., Yang, K., Ramalingam, E. et al. 1994. Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology, (140): 3379-3389
    [69] Haydock, S.F., Dowson, J.A., Dhillion, N. et al. 1991. Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol Gen Genet, (230): 120-128
    [70] He, W., Wu, L., Gao, Q.et al. 2006. Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr Microbiol, 52(3): 197-203
    [71] Hertweck, C. 2000. The multiplasmid approach: a new perspective for combinatorial biosynthesis. ChemBioChem, 1(2): 103-106
    [72] Hong, J.S., Park, S.J. et al. 2007. Functional analysis of DesⅧ homologues involved in glycosylation of macrolide antibiotics by interspecies complementation. Gene, 386(1-2): 123-130
    [73] Hopwood, D.A., Bibb, M.J., Bruton, C.J. et al. 1983. Cloning streptomyces genes for antibiotic production. Trends in Biotechnology, (1): 42-48
    [74] Hopwood, D.A., Bibb, M.J., Chater, K.F. et al. 1985. Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich.
    [75] Hopwood, D.A. 1997. Genetics contributions to understanding polyketide synthase. Chem Rev, (97): 2465-2497
    [76] Hopwood, D.A. 1999. Forty years of genetics with Streptomyces: from in vivo through in vivo to in silico. Microbiology, (145): 2183-2202
    [77] Hu, Z., Bao K.., Zhou, X. et al. 1994. Repeated polyketide synthase modules involved in the biosyntheses of a heptaene macrolide by Streptomyces sp. FR-008. Mol Microbiol, (14): 163-172
    [78] Hughes, D., Andersson, D.I. 2001. Antibiotic Development and Resistance. Taylor& Francis.
    [79] Hutchinson, C.R. 1999. Microbial polyketide synthases: more and more prolific. Proc. Natl. Acad. Sci. (96): 3336-3338
    [80] Hutchinson, C.R., Fujii, 1. 1995. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Ann Rev Microbiol, (49): 201-238
    [81] Ichinose, K., Ozawa, M., Itou, K. et al. 2003. Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative of the benzoisochromanequinone gene cluster. Microbiology, (149): 1633-1645
    [82] Ikeda H., Takada, Y., Pang, C. et al. 1993. Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol, (175): 2077-2082
    [83] Isono K. J. Nucleoside antibiotics: structure, biological activity and biosynthesis. J Antibiotics, 41: 1711-1739
    [84] Izumikawa, M., Shipley, P.R., Hopke, J.N. et al. 2003. Expression and characterization of the type Ⅲ polyketide synthase 1,3,6,8-tetradroxynaphthalene synthase from Streptomyces coelicolor A3(2). J Ind Microbiol Biothechnol, (30): 472-479
    [85] Janssen, G.R., Ward, J.M. & Bibb, M.J. 1989. Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from Streptomyces fradiae. Genes, (3): 415-429
    [86] Jasenka P., Daslav H, Tamara S, et al. 1982. Optimal cultural and physiological conditions for handling Streptomycs rimosus protoplasts[J]. Applied and Environmental Microbiology, 44(5): 1178-1186
    [87] Jesus F Aparicio, Roberto Fouces, Marta V Mendes et al. 2000. A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chemistry & Biology, (7): 895-905
    [88] Jia, J., Li, W., Nie, L. et al. 2000. Cloning, sequencing and function of sanA, a gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Sci. China (Series C), (43): 30-38
    [89] Jnawali HN, Oh TJ, Liou K, et al. Two-component regulatory system involved in clavulanic acid production. J Antibiot (Tokyo). 2008, 61 (11 ):651 -9
    [90] Katz, L. 1997. Manipulation of modular polyketide synthases. Chem Rev, (97): 2557-2575
    [91] Kieser T, Bibb M J, Buttner M J, et al. 2000. Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
    [92] Kim CC., Yu TW., Fryhle CB,Handa S. et al. 1998. 3-amino-5hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7 N units in rifamycin and related antibiotics. J Biol Chem, 273: 6030-6040
    [93] Kim, E.S., Bibb, M.J., Buter, M.J. et al. 1994. Sequences of the oxytetracycline polyketide synthase encoding OTC genes from Streptomyces rimosus. Gene, (141): 141-142
    [94] Kushstoss, S., Huber, M., Turner, J.R. et al. 1996. Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene, (183): 231-240
    [95] Kwak J, Jiang H, Kendrick KE. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus [J]. FEMS Microbiol Lett. 209(2):243-8.
    [96] Lacalle R. A., Pulido D., Vara J. et al. 1989. Molecular analysis of the pac gene encoding a puromycin N-acetyl transferase from Streptomyces alboniger. Gene. 79(2):375-380
    [97] Lacalle R. A., Ruiz D., Jimenez A. 1991. Molecular analysis of the dmpM gene encoding an O-demethyl puromycin O-methyltransferase from Streptomyces alboniger. Gene. 109(1 ):55-61
    [98] Lacalle, R. A., Tercero, J. A. and Jimenez A. 1992. Cloning of the complete biosynthesis gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts. The EMBO Journal, 11(2): 785-792
    [99] Lacalle, R.A., Tercero, J.A., Vara, J. et al. 1993. Identification of the gene encoding an N-Acetylpuromycin N-Acetylhydrolase in the puromycin biosynthetic gene cluster from Streptomyces alboniger. Journal of Bacteriology, 175(22): 7474-7478
    [100] Lauer, B., Russwurm, R. and Bormann, C. 2000. Molecular characterization of two genes from Streptomyces tendae Tu901 required for the formation of the 4-fromyl-4-imidazolin-2-one-containing nucleoside moiety of the peptidyl nucleoside antibiotic nikkomycin. European Journal of Biochemistry, (267): 1698-1706
    [101] Lauer,B., Sussmuth,R., Kaiser,D. et al. 2000. A putative enolpyruvyl transferase gene involved in nikkomycin biosynthesis. J. Antibiot., 53 (4), 385-392
    [102] Lauer, B., Russwurm, R., Schwarz, W. et al. 2001. Molecular characterization of co-transcribed genes from streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety and assembly of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet, (264): 662-673
    [103] Lee, M.Y., Myeong, J.S., Park, H.J. et al. 2006. Isolation and partial characterization of a cryptic polyene gene cluster in Pseudonocarida autotrophica. J Ind Micrbiol Biothenol, 33 (2): 84-7
    [104] Li, W., Jia, J., Tan, H. et al. 2000. Cloning, sequencing and function of sanB, a gene related to mikkomycin biosynthesis of streptomyces ansochromogenes. Chinese Sci. Bull. (45): 2158-2162
    [105] Liu,G., Tian,Y., Yang,H. and Tan,H. 2005. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol. Microbiol, 55 (6), 1855-1866
    [106] Lombo, F., Brana, A.F., Mendez, C. et al. 1999. The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated sequences that are located at both ends of the cluster. J Bacteriol, (181): 642-647
    [107] Losey, H.C., Peczuh, M.W. Chen, Z. et al. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplaninaglycones: novel glycopeptides [J] .Biochemistry, 2001, 40: 4745
    [108] Macneil, D.J., Occi, J.L., Gewain, K.M. et al. 1992. Complex organization of Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene, (115): 119-125
    [109] Magarvey, N.A., B., Haltili, et al. 2006. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicro Agents Chemother, 50(6): 2167-77
    [110] Malpartida, F., Hallam, S.E., Kieser, H.M. et al. 1987. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes. Nature, (325): 818-821
    [111] Malpartida, F., Hopwood, D.A. 1984. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature, (309): 462-464
    [112] Malpartida, F., Hopwood, D.A. 1986. Physical and genetic characterization of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet, (205): 66-73
    [113] Malpartida, F., Niemi J., Navarrete R. et al. 1990. Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene, 93(1): 91-99
    [114] Mao, Y., M. Varoglu and DH Sherman. 1999. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendnlae NRRL 2564. Chem. & Biol. 6:251-263
    [115] Marsden F.A, Wilkinson, B., Cortes, J. 1998. Engineering broader specificity into an antibiotic-producing polyketide synthase. Science, 279(5348): 199-202
    [116] Matsushima, P., Cox KL, Baltz RH. 1987. Highly transformable mutants of Streptomyces fradiae defective in several restriction systems. Mol Gen Genet, 206: 393-400
    [117] Matsushima, P. and Baltz, R.H. 1985. Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradie proplasts. Journal of Bacteriology, 163(1): 180-185
    [118] McDaniel, R., Thamchaipenet, A., Gustafsson, C. 1999. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products. Proc. Natl. Acad. Sci, (96): 1846-1851
    [119] McKenzie NL, Nodwell JR. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol. 2007, 189(14):5284-92
    [120] Mochizuki, S., K. Hiratsu, M., Suwa. et al. 2003. The linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol. Microbiol, (48): 1501-1510
    [121] Mohrle, V., Roos, U. and Bormann, C. 1995. Identification of cellular proteins involved in nikkomycin production in Streptomyces tendae Tu901. Molecular Microbiology, (15): 561-571
    [122] Moore B.S., Hertweck C, Hopke J.N. et al. 2002. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J. Nat. Prod. (65): 1956-1962
    [123] Motamedi, H. and Hutchinson, C.R. 1987. Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens. Proc Natl Acad Sci, (84): 4445-4449
    [124] Motamedi, H., Shafiee, A., Cai, S.J. et al. 1996. Characterization of methyltransferase and hydroxylase gene involved in the biosynthesis of the immunosuppressants FK506 and FK520. J Bacteriol, (178): 5243-5248
    [125] Muchova J, Locava B, Godany A et al. Highly transformable mutants of Streptomyces aureofaciens containing restriction-modification systems. J. Basic Microbiol, 31:141-147
    [126] Muller, H., Further, R., Zahner, H. et al. 1981. Effect of nikkomycin Z, nikkomycin X and polyoxin A on chitosomal chitin synthetase. Arch Microbiol, (130): 195-197
    [127] Nikodinovic, J., Barrow, KD., Chuck, JA. 2003. High frequency transformation of the Amphotericin- producing bacterium Streptomyces nodosus [J]. J Microbiol Methods, 55(1): 273-7
    [128] Ogawa, H., Date, T., Gomi, T. et al. 1988. Molecular cloning, sequence analysis, and expression in Escherichia coli of the cDNA for guanidinoacetate methyltransferase from rat liver. Proc. Natl. Acad. Sci. USA, 85(3): 694-698
    [129] Oh, SH., Chater, KF. 1997. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol, 179(1): 122-7.
    [130] Omura S, Ikeda H, Ishikawa J, et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis deducing the ability of producing secondary metabolites. Pro Natl Acad Sci USA, 98:12215-12220
    [131] Patti Matsushima and Richard H. Baltz. 1985. Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. Journal of Bacteriology, 163(1): 180-185
    [132] Paulus, T.J., Tuan, J.S., Luebke, V.E. et al. 1990. Mutation and cloning of eryG, the structural gene for erythromycin O-methyltransferase from Saccharopolyspora erythraea, and expression of eryG in Escherichia coli. J Bacteriol, (172): 2541-2546
    [133] Pfeifer, J., Nicholson, G.J., Ries, J. et al. 2001. A polyketide synthase in glycopeptide biosynthesis-The biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. Journal of Biological Chemistry. 276(42): 38370-38377
    [134] Qin ZJ., Peng KM., Zhou XF et al. 1994. Development of a gene cloning system for Streptomyces hygroscopiciis subsp. yingchengensis, a producer of three useful antifungal compounds, by elimination of three barriers to DNA transfer. J Bacteriology, 176(7): 2090-2095
    [135] Ramette, A., Moenne-Loccoz, Y. and Defago, G. 2001. Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of PhlD with plant polyketide synthase. MPMI, 14(5): 639-652
    [136] Rascher, A.J., Hu, Z., Viswanathan, N. et al. 2003. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopiciis NRRL3602. FEMS Microbiol Lett, (218): 223-230
    [137] Redenbach, M., Kieser, H. M., Denapaite, D. et al. 1996. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96
    [138] Remeo, J.T. 1999. Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Springer.
    [139] Richardson, M.A., Kubstoss, S., Huber, M. et al. 1989. Genetics and Molecular Biology of Industrial Microorganisms. American Society for Microbiology, Washington, 40-43
    [140] Rubio, M. A., Barrado, P., Espinosa, J.C. et al. 2004. The pur6 gene of the puromycin biosynthesis gene cluster from Streptpmyces alboniger encodes a tyrosinyl- aminonucloeside synthetase. FEBS Letters, (577): 371-375
    [141] Rubio, M.A., Espinosa, J.C., Tercero, J.A. et al. 1998. The Pur10 protein encoded in the gene cluster for puromycin biosynthesis of Streptomyces alboniger is an NAD-dependent ATP dehydrogenase. FEBS Letters, 437(3): 197-200
    [142] Rudd, B.A. & Hopwood, D.A. 1979. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol, 114: 35-43
    [143] Ruzicka, F. J., Lieder, K. W. and Frey, P. A. 2000. Lysine 2,3-aminomutase from Clostridium subterminale SB4: mass spectral characterization of cyanogen bromide-treated peptides and cloning, sequencing, and expression of the gene kamA in Escherichia coli. J. Bacteriol. 184, 469-476
    [144] Sanchezl, M.B., Barradol, P., Jimenez, A. et al. 2006. The pur3 gene from the pur cluster encodes a monopgosphatase essential for puromycin biosynthesis in Steptomyces. FEBS Letters, 580(7): 1807-1811
    [145] Sankaran, L. and Pogell, B M. 1975. Biosynthesis of Puromycin in Streptomyces alboniger: regulation and properties of O-Demethylpuromycin O-Methyltransferase antimicrob. Agents Chemother.,(8):721-732
    [146]Sankaranarayanan,R.,Saxena,P.,Marathe,UB.et al.2004.A novel tunnel in mycobacterial type Ⅲ polyketide synthase reveals the structural basis for generating diverse metabolites.Nat Struct Mol Biol,11(9):894-900
    [147]Rodriguez-Garcia,A.,Sola-Landa,A.,Santos-Beneit,F.et al.Cross-talk between two global regulators in Streptomyces:PhoP and AfsR interact in the control of afsS,pstS and phoRP transcription.Mol Microbiol,2009,72(1):53-68
    [148]Saxena P,Yadav G,Mohanty D and Gokhale RS.2003.A new family of type Ⅲ polyketide synthases in Mycobacterium tuberculosis.J Biol Chem,(278):44780-44790
    [149]Schweck,T.,Aparicio,J.F.,Molnar,I.et al.1996.The biosynthetic gene cluster for the polyketide immunosuppressant rapalnycin.Proc Natl Acad Sci,(92):7839-7843
    [150]Se-hoon oh and Keith F.Chater.1997.Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2):possible relevance to other organisms.Journal of Bacteriology,179(1):122-127
    [151]Seno,E.T.and Baltz,R.H.1989.In Shapiro,S.(ed.),Regulation of Secondary Metabolism in Actinomycetes.CRC,Boca Raton,1-48
    [152]Seow,K.T.,Meurer,G.,Gerlitz,M.et al.1997.A study of iterative type Ⅱ polyketide synthases,using bacterial genes cloned from soil DNA:a means to access and use genes from uncultured microorganism.J Bacteriol,(179):7360-7368
    [153]Sherman,D.H.,Malpatide,F.,Bibb,M.et al.1989.Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tu22.EMBO Journal,(8):2717-2725
    [154]Shu D,Chen L,Wang W,et al.afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor.Appl Microbiol Biotechnol,2009,81(6):1149-60
    [155]Stanzak,R.,Matsusshima,P.,Baltz,R,et al.1986.Cloning and expression in Streptpmyces lividans of clustered erythromycin biosynthesis gene from Streptomyces erythraeus.Bio Technology,(4):229-232
    [156]Stutzman-Engwall,K.J.and Hutchinson,C.R.1989.Multigene families for anthracycline antibiotic production in Streptomyces peucetius.Proc Natl Acad Sci,(86):3135-3139
    [157]Stutzman-Engwall,K.J.,Otten,S.,Hutchinson,C.R.1992.Regulation of secondary metabolism in Streptomyces spp.and over production of daunorubicin in Streptomyces peucetus.J.Bacteriol,(174):144-154
    [158]Suarez,J.E.,Chater,K.F.1980.DNA cloning in Streptomyces:Resistance genes from antibiotic producing species.Nature,(286):525-527
    [159] Summers, R.G., Donadio,S., Staver, M.J. et al. 1997. Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. Microbiology, (143): 3251-3262
    [160] Summers, R.G., Wendt, P.E., Motamedi, H. et al. 1992. Nucleotide sequence of the tcmⅡ-tcmⅣ region of the tetracenomycin C biosynthetic gene cluster of Streptpmyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase-O-methyltransferase. J Bacteriol, (174): 1810-1820
    [161] Sun, Y., Zhou, X., Dong, H. et al. 2003. A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem Biol, (10): 431-441
    [162] Swan, D.G., Rodriguez, A.M., Vilches, C. et al. 1994. Characterization of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence. Mol Gen Genet, (242): 358-362
    [163] Tercero, J.A., Espinosa, J.C., Jimenez, A. 1998. Expression of the Streptomyces alboniger pur cluster in Streptomyces lividans is dependent on the bldA-encoded tRNALeu. FEBS letters, (421): 221-223
    [164] Tercero, J.A., Espinosa, J.C., Lacalle, R.A. et al. 1996. The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. The Journal of Biological Chemistry, 271(3): 1579-1590
    [165] Tercero, J.A., Lacalle, R.A., Jimenez. A. 1993. The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. European Journal of Biochemistry, (218): 963-971
    [166] Thompson, C.J., Ward, J.M., Hopwood, D.A. 1980. DNA cloning in Streptomyces: resistance genes from antibiotic- producing species. Nature, (286): 525-527
    [167] Thompson, C.J., Ward, J.M., Hopwood, D.A. 1982. Cloning of antibiotic-resistance and nutritional genes in Streptomyces. J Bacteriol, (151): 668-677
    [168] Thum, C., Schneider, C.Z., Palma, M.S. et al. 2009. The Rvl712 Locus from Mycobacterium tuberculosis H37Rv codes for a functional CMP kinase that preferentially phosphorylates dCMP. J Bacteriol, 191(8): 2884-7
    [169] Tseng, CC., McLoughlin, SM., Kelleher, NL. et al. 2004. Role of the active site cysteine of DpgA, a bacterial type IN polyketide synthase. Biochemistry, 43(4): 970-980
    [170] Tuan, J.S., Webber, J.M., Staver, M.J. et al. 1990. Cloning of genes involved in erythromycin biosynthesis from Saccharopolyspora erythraea using a novel actinomycete-Escherichia coli cosmid. Gene, (90): 21-29
    [171] Umemura, K. Satou, J. Iwata, M. et al. 2009. Contribution of salicylic acid glucosyltransferase, OsSGTl, to chemically induced disease resistance in rice plants. Plant J, 57(3): 463-72
    [172] Vara, J., Perez-Gonzalez, J A, Jimenez, A. 1985. Expression in mammalian cells of a gene from Streptomyces alboniger conferring puromycin resistance. Biochemistry, (24): 8074-8081.
    [173] Vara, J., Pulido, D., Lacalle, R.A. et al. 1988. Two genes in Streptomyces alboniger puromycin biosynthesis pathway are closely linked. Gene, (69): 135-140
    [174] Vakugaku Zasshi, 1962. Studiese on the structure of gougerotin. (2) Components of gougerotin. 82: 1361-5
    [175] Volokhan O., Sletta, H., Ellingsen, T.E. et al. 2006. Charaterization of the P450 monooxygenase NysL, responsible for C-10 hydroxylation during biosynthesis of the polyene macrolide antibiotic Nystatin in Streptomyces noursei. Applied and Environmental Microbiology, 72(4): 2514-2519
    [176] Wang G., Nie L. and Tan H. 2003. Cloning and characterization of sanO, a gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Lett Appl Microbiol, 37(6): 452-457
    [177] Wood S.A., Kirby, B.M., Goodwin, CM. et al. 2007. PCR screening reveals unexpected antibiotic biosynthetic potential in Amycolatopsis sp. Strain UM16. Journal of Applied Microbiology, (102): 245-253
    [178] Wu G, Williams HD, Zamanian M et al. 1992. Isolation and characterization of Escherichia coli mutants affected in aerobic respiration: the cloning and nucleotide sequence of ubiG. Identification of an S-adenosylmethionine-binding motif in protein, RNA, and small-molecule methyltransferases. J Gen Microbiol. 138 ( Pt 10):2101-2112
    [179] Xu, J., Liu, G., Tan, H. 2003. sanC-a novel gene involved in nikkomycin biosynthesis in Streptomyces ansochromogenes. Lett. Appl. Microbiol, (36): 234-238
    [180] Xu, J., Tozawa, Y., Lai, C. et al. 2002. A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol. Genet. Genomics, (268): 179-189
    [181] Xue Q, Ashley, G., Hutchinson, C.R. et al. 1999. A multiplasmid approach to preparing large libraries of polyketides. PNAS, 96(21): 11740-11745
    [182] Ylihonko, K., Tuikkanen, J., Jussila, S. et al. 1996. A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and complementation of early-block mutations in the anthracycline pathway. Mol Gen Genet, (251): 113-120
    [183] Yu, T.W., Bibb, M.J., Revill, W.P. et al. 1994. Cloning, sequence and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. J Bacteriol, (176): 2627-2634
    [184] Zhang J.J., Liu H., Xiao H. et al. 2009. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J Bacteriol, 191(8): 2703-10
    [185] Zhao C.H., Ju J.H., Christenson S.D. et al. 2006. Utilization aof the methoxymalony- acyl carrier protein biosynthesis locus for cloning the oxazolomycin biosynthetic gene cluster from Streptomyces albus JA3453. Journal of Bacteriology, 188(11): 4142-4147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700