用户名: 密码: 验证码:
基于界面行为的多孔沥青混合料冻融损伤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在今年初国家制定的十二五规划中,提出绿色发展的概念,即建设资源节约型、环境友好型社会,促进资源的循环利用,加强生态和环境保护。在这种背景下,由于具有抗滑、降噪、雨天行驶安全、有效补充地下水资源、合理利用废旧轮胎材料等诸多优点,多孔沥青路面已经成为道路工程界路面铺装的研究热点。但是,由于结构组成与常规密级配沥青混合料不同,强度仅靠内摩阻力与相对更弱的粘聚力提供,耐久性问题一直是制约多孔沥青混合料进一步应用的瓶颈,尤其在季节性冰冻地区使用规模更小。国内外对多孔沥青混合料在季冻区耐久性的研究主要关注带钉轮胎导致的磨损与过度撒布除冰盐带来的经济与环保问题,而对于不利季节的冻融耐久性,由于研究目标与方法不一致,仍然有许多问题亟待澄清。因此结合理论分析与试验验证,探讨多孔沥青混合料冻融损伤特性,通过界面行为分析,提出改善冻融耐久性的技术对策,将对多孔沥青混合料在季冻区的应用提供理论支撑。
     首先,对多孔沥青混合料的冻融损伤特点进行了分析,由于材料属性、外部冰冻荷载以及损伤模式的复杂性,具体研究过程应做适当简化。由此提出宏微观结合的分析手段。宏观层面涉及冻融力学试验,全面分析了试验条件对冻融结果的影响,确定了包含不同饱水条件与加载模式的两种试验方法。微观上以沥青与集料界面性能为研究目标,提出了评价界面性能的试验系统,基于界面受力分析明确了研究界面性能的关键在于沥青薄膜厚度的选择。进一步采用真实集料模拟混合料中沥青与集料的粘结状态,试验结果表明相对于铝制夹具,集料与沥青之间有着更强的界面粘结性能。
     其次针对多孔沥青混合料抗冻性能的内外影响因素进行了全面的研究。基于不同空隙率沥青混合料的强度与物理特性衰减规律,总结出沥青混合料冻融损伤的三阶段,明确沥青与集料界面性能对于冻融耐久性的重要影响。结合空隙率在实际路面以及室内混合料试样内部的不均匀分布现象,提出多孔沥青混合料的冻融损伤临界位置在其结构内部。以空隙率与渗水系数间的关系为基础,初步提出满足多孔沥青混合料冻融耐久性的渗水系数要求。而后对影响室内混合料抗冻性能评价的因素进行了分析,提出单轴压缩模式更适合开级配磨耗层抗冻性能的评价。并根据多次冻融循环试验中的沥青硬化规律,借助混合料动态模量预测模型,建立了室内冻融试验结果的修正公式。
     基于增量型本构方程,构建了多孔沥青混合料的粘弹塑性损伤模型。以此对近似冻融温度下(-10~20℃)多孔沥青混合料单轴压缩试验的应力-应变曲线进行了拟合,并重点针对粘弹模型、塑性模型以及损伤因子中相应参数随温度与加载速率的变化规律加以分析,验证了该理论模型用于描述多孔沥青混合料力学性能的合理性。进而采用上述模型对冻融作用后的多孔沥青混合料力学行为进行了分析。理论模型中的参数变化规律揭示了多孔沥青混合料冻融损伤特点,即宏观模量下降,松弛时间变长,内摩阻角增大,材料体积变形加大,混合料内部粘聚力丧失,集料与沥青间界面性能也随之迅速衰减。
     随后重点针对沥青与集料界面性能开展了大量的试验研究。选取2种沥青(3种老化状态)与2种集料分别组合成为界面试验系统,首先以温度循环荷载为研究目标,对界面系统施加了低频疲劳荷载,根据提出的疲劳损伤模型,对疲劳寿命进行了预估。结果表明橡胶沥青与集料间有着更好的界面疲劳寿命。在0℃以上时,温度越低,沥青与集料间界面疲劳寿命越长。除长期老化橡胶沥青外,老化可以有效改善沥青与集料间界面疲劳性能。此外相对于花岗岩,玄武岩与沥青间具有更佳的界面疲劳性能。进一步提出了界面系统单向加载开裂试验,基于时温等效原则建立了不同温度下的界面开裂临界应变能密度主曲线,并对较低温度下(0℃以下)的开裂行为进行了预测。综合对比界面疲劳与开裂性能,分析疲劳试验中单次加载循环应变峰值,借助统计分析手段明确了两者之间存在着较强的相关性,由此可采用1剪应变率下的开裂试验临界应变能密度评价冻融循环荷载下的界面性能。不同温度与加载速率下的开裂试验结果同样表明橡胶沥青具有更大的临界应变能密度,老化的作用规律也基本同疲劳试验,但在较低温度下,长期老化不利于界面粘结性能。
     在上述研究基础上,提出更为简便的低温粘附性试验,并对3种集料与3种沥青及胶浆在低温状态下的粘结性能进行了分析。改性沥青,尤其是橡胶沥青,有助于提高集料与沥青间的界面粘结性能。同时,根据低温粘附性试验中破坏特征分析可知,沥青薄膜与集料间的粘结性能是低温下混合料破坏的主要诱因。选用2种典型的材料组合成型多孔沥青混合料,综合分析宏观冻融性能演化规律,并结合微观界面性能试验数据,提出沥青与集料界面系统临界应变能密度越大,界面疲劳性能越好,低温下界面粘结性能越佳,选用该材料组合成型的多孔沥青混合料也具有更好的抗冻融破坏能力。最后,就自愈性对沥青与集料界面粘结性能的影响进行了初步研究,提出沥青类材料良好的自愈性有助于混合料抗冻融耐久性的提高。
The twelfth five-year guideline of the China presents the idea of Green which relates with the establishment of resource saving and environmental friendly society, keeping the recycle and protection of resource and environment. Due to the exceptional performance of porous asphalt mixture on drainage, skid resistance, noise reduction, complementarities of ground water etc., the application of porous asphalt mixture in pavements has gradually become an important technology trend. However, due to its different structure from conventional dense-graded asphalt mixtures, that is strength only provided by internal friction angle of coarse aggregate and weak bounding from less binder between aggregates, durability problem has been a big issue for the further application of porous asphalt mixtures, especially for cold regions. Until now, on the durability of porous asphalt in cold regions, researchers at home and abroad mainly focus on the excessive wear caused by tires with nails, as well as the economical and environmental issues by spreading much de-icing salt. But due to the inconsistent research purposes and methods in the past, there are still many issues to be clarified for freeze-thaw durability in adverse seasons. In this paper, theoretical analysis and experimental verification are combined to study the freeze-thaw properties of porous asphalt mixture; furthermore, based on the analysis of interface behaviors, technical measures are proposed to improve freeze-thaw durability. The whole study can provide a theoretical support for its application in seasonal frozen regions.
     Firstly, damage characteristics of porous asphalt mixtures under freeze-thaw cycles were analyzed. For the complexity of material properties, frozen loading and damage mode, the research methods were determined by a simpler mode. Consequently, the micro-macro analytical methods and corresponding test procedures were proposed. For the macroscopic freeze-thaw mechanical test, a comprehensive analysis on the influence of test conditions on freeze-thaw durability was presented, and two kinds of testing process including different water-saturated conditions and test time were developed at last. For micro level, test method on evaluation of interfacial adhesion performance is provided based on analysis of the asphalt and aggregate interface state. Through the analysis of interfacial system, it was found that the thickness of asphalt film affected interfacial performance badly. And then, the effectiveness of evaluating interfacial performance between asphalt and aggregate with proposed interface system is verified.
     Secondly, factors affecting on frost resisting performance and evaluation of porous asphalt mixtures were discussed. Based on the attenuation rule of strength and physical properties, the freeze-thaw damage process could be divided into three phases, and among that the interfacial performance would behave rather important. Considering the asymmetrical distribution characteristics of percent of air voids, it is believed that the critical location of porous asphalt mixtures in freeze-thaw cycles lie in the inner structure. Reasonable permeability coefficient considering frost resisting performance in cold region was proposed based on the relationship between the permeability coefficient and porosity of porous asphalt mixture. Then, factors which influence the indoor frost resistance evaluation were analyzed. It was found that uniaxial compression mode is more suitable to the evaluation on frost resistance of porous asphalt pavement in China. Based on the asphalt hardening law during freeze-thaw test, correction method for indoor freeze-thaw test results was established.
     A viscous-elastic-plastic damage model of porous asphalt mixtures was constructed, and then the stress-strain curves under uniaxial compression modes at freeze-thaw temperature (-10~20℃) were fitted. The rationality of model was validated through parameter analysis including elastic modulus, relaxation time, shear modulus and bulk modulus etc.. The attenuation behavior under multiple freeze-thaw cycles was analyzed with the model. It was concluded that the freeze-thaw will cause to decrease of modulus, enlarge of relaxation time and internal friction angle, increase of bulk volume, and debonding between asphalt and aggregate.
     To further, the interface bonding performance between two kinds of asphalt and aggregate was discussed. Firstly fatigue loading with low frequency was applied to interfacial system to simulate the effect of temperature cycling. Interface fatigue damage model was established and used to predict fatigue lives. The final test results indicated that rubber asphalt exhibit better fatigue lives. The decrease of temperature and use of basalt could improve the fatigue lives above the 0℃. Aging had an important effect on the fatigue performance. Furthermore, the monotonic test was introduced. And the critical strain energy density (CSED) was determined based on the stress-strain curve. The master curve of CSED at different temperature could be got based on time temperature correspondence, and so the fracture behavior at lower temperature could be predicted. Comparison and analysis of the results from fatigue and cracking tests show that there is a good relationship between these two tests, and a simpler critical strain energy density in cracking test is proposed to evaluate interface performance under the freeze-thaw load. Meanwhile, the CSED results at different temperature and load rates show the same change trend on the effect of rubber asphalt and aging. However, it is found that long-term aging had negative effect on the interfacial performance at lower temperature.
     Based on the above experiment results, a simpler low-temperature adhesion test was proposed, and interfacial bonding properties between different aggregate and binder at low temperatures were studied. The modified asphalt, especially rubber asphalt had a good effect on the interfacial performance. It was also found that the adhesion between asphalt film and aggregate determined the damage mode. The feasibility of replacing mechanical test with it was analyzed compared to mechanical properties of the interface bonding. Then two kinds of typical asphalt and aggregate combinations were chosen to prepare porous asphalt mixtures, and the freeze-thaw durability was studied. Preliminary analysis shows that freeze-thaw durability of porous asphalt mixtures can be characterized by the interface bonding properties between asphalt and aggregate. Finally, the effect of healing on the interfacial bonding performance was investigated. It is believed that healing of viscoelastic materials has a positive effect on the freeze-thaw durability of asohalt mixtures.
引文
1 Allex E. Alvarez, Amy E. Martin, Cindy K. Estakhri, Joe W. Button, Charles J. Glover, Sung H. Jung. Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Course[C]. Texas Transportation Institute and The Texas A&M University System,2006.
    2森永教夫主编.日本铺装技术答疑[M].人民交通出版社, 2006.
    3 Heather J. Munden, Linda M. Pierce, Joe P. Mahoney, Steve Muench, Mia Waters, Jeff Uhlmeyer. Low Noise Pavement Evaluation in Washington State[C], TRB Annual Meeting, 2008.
    4达优建材商贸有限公司.排水性铺装概要[Z]. 2007. http://www.taiyu-sh.cn/tps.htm.
    5胡俊琳,张丽娟,李晓娟.化学类冻结抑制材料在排水性路面中的应用[J].中外公路, 2010, 30(2):192-195.
    6 National Ready-Mixed Concrete Association. Freeze-Thaw Resistance of Pervious Concrete[M]. Silver Spring Maryland, 2004.
    7 Matthew Lebens. Porous Asphalt Pavement Performance in Cold Regions[R]. LRRB INV 878:Task 4 Report,2009.10.
    8 ASTM D7064/D7064M-08. Standard Practice for Open-Graded Friction Course (OGFC) Mix Design[M]. 2008.8.
    9 M. Huurman. Lifetime Optimisation Tool, LOT, Main Report, Report 7-07-170-
    1[R], Laboratory of Road and Railway Engineering, Delft University of Technology, Delft, 2008.1.
    10 A Manual for Design of Hot Mix Asphalt with Commentary[M]. Advanced Asphalt Technologies, LLC. Sterling, VA, 2011.
    11 Watson D. E., K. A. Moore, K. Williams, and L. A. Cooley. Refinement of New-Generation Open-Graded Friction Course Mix Design[C]. TRB Annual Meeting, 2003.
    12 Hossam F. Hassan, Salim Al-Oraimi, Ramzi Taha. Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer[J]. Journal of Materials in Civil Engineering, 2005, 17(4): 416-422.
    13 Mohammad Faghri,Martin H. Sadd. Performance Improvement of Open-Graded Asphalt Mixes[R]. University of Rhode Island Transportation Research Center, 2002.8.
    14 James J. Houle, Joshua F. Briggs, James J. Houle, Joshua F. Briggs, Robert M. Roseen, Thomas P. Ballestero. Porous Asphalt, the Hole Story: Construction, Performance, Maintenance and Myth[R]. The UNH Stormwater Center. LID Conference, Wilmington, NC, 2007.3.
    15 Khalid, H., F. Pérez. Performance Assessment of Spanish and British Porous Asphalts[M]. Performance and Durability of Bituminous Materials, Published by E &FN Spon, London, 1996.
    16 Poulikakos, L., S. Takahashi, M. Partl. A Comparison of Swiss and Japanese Porous Asphalt through Various Mechanical Tests[C]. Swiss Transport Research Conference, 2004.
    17 Tappeiner, W. Open-Graded Asphalt Friction Course[M]. Information series 115. National Asphalt Pavement Association, Lanham, MD, 1993.
    18 Kandhal, P. Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses[M]. Information series 115. National Asphalt Pavement Association, Lanham, MD, 2002.
    19 Khalid, H., and C. Walsh. A Rational Mix Design Method for Porous Asphalt[C]. The 24th European Transport Forum, PTRC, Session G22i (Road Materials & Methods–Worldwide Update), London, 1996.
    20 Kandhal, P. Asphalt Pavements Mitigate Tire/Pavement Noise[J]. Hot Mix Asphalt Technology, March-April, 2004: 22-31.
    21 Newcomb, D., L. Scofield. Quiet Pavements Raise the Roof in Europe[J]. Hot Mix Asphalt Technology, September-October, 2004: 22-28.
    22 Danish Road Institute. Noise Reducing Pavements–State of the Art in Denmark[R]. Report 141, Road Directorate, Ministry of Transport–Denmark, 2005.
    23 Fickes, M. The Asphalt Rubber Phenomenon[J]. Hot Mix Asphalt Technology, July-August, 2003: 20-23.
    24 Chowdhury, A., J. Button, A. Bhasin. Fibers from Recycled Tires as Reinforcement in Hot Mix Asphalt[R]. Report No. SWUTC/05/167453-1, Texas Transportation Institute, Texas A&M University, College Station, Texas, 2006.
    25 Kearfott, P., M. Barrett, J. F. Malina, Jr. Stormwater Quality Documentation ofRoadside Shoulders Borrow Ditches[R]. CRWR Online Report 05-02, Center for Research in Water Resources, The University of Texas at Austin, Austin, Texas, 2005.
    26 California Department of Transportation (Caltrans). Open Graded Friction Course Usage Guide[M]. Sacramento, CA, 2006.
    27 Huber, G. Performance Survey on Open-Graded Friction Course Mixes[C]. Synthesis of Highway Practice 284. TRB Annual Meeting, 2000.
    28 Mallick, R., P. Kandhal, A. Cooley, and D. Watson. Design, Construction and Performanceof New Generation Open-Graded Friction Courses[R]. National Center for Asphalt Technology Report 00-01. NCAT, Auburn, AL, 2000.
    29 Kandhal, P.S., and R.B. Mallick. Open Graded Friction Course: State of the Practice[C]. Transportation Research Circular Number E-C005, TRB Annual Meeting, 1998.
    30 The Highways Agency, The Scottish Office Development Department, The Welsh Office Y Swyddfa Gymreig, The Department of the Environment for Northern Ireland. Design Manual for Roads and Bridges. Volume 7: Pavement Design and Maintenance Bituminous Surfacing Materials and Techniques[M]. 1999.
    31 Rogge, D. Development of Maintenance Practices for Oregon F-mix[M]. Publication FHWAOR-RD-02-09. Federal Highway Administration, U.S. Department of Transportation, Washington, D.C., 2002.
    32 Yetkin Yildirim, Terry Dossey, Ken Fults, Maghsoud, Tahmoressi, Manuel Trevino. Cold Weather Performance of New Generation Open Graded Friction Courses[R]. Report No. FHWA/TX-08/0-4834-2, Center for Transportation Research, The University of Texas at Austin, 2007.1.
    33 Yildirim, Y., T. Dossey, K. Fults, M. Trevino. Winter Maintenance Issues Associated with New Generation Open-Graded Friction Courses[R]. Report No. FHWA/TX-07/0-4834-1, Center for Transportation Research, The University of Texas at Austin, 2006.8.
    34 Y.Hassan, A.O.Abd EI Halim, A.G.Razaqpur, W.Bekheet, M.H.Farha. Effects of Runway Deicers on Pavement Materials and Mixes--Comparison with Road Salt[J]. Journal of Transportation Engineering, 2002, 128(4): 385-391.
    35 Lori Schaus, Susan Tighe, Ludomir Uzarowski. Porous Asphalt Pavement Designs: Canadian Climate Use[C]. TRB Annual Meeting, 2008.
    36 Salil Mohan. Winter Damage of Porous Asphal-Case study using a meso-mechanics based Tool for Lifetime Optimization of PA[D]. Thesis of Delft University of Technology, 2010.12.
    37 Allex E. Alvarez, Amy Epps Martin, Cindy Estakhri, Richard Izzo. Evaluation of Durability Tools for Porous Friction Courses[C]. TRB Annual Meeting, 2008.
    38诸永宁.排水性沥青路面排水性能研究与排水设施的设计[D].东南大学, 2004.
    39钱红梅.关于OGFC技术应用若干问题的探讨[J].黑龙江交通科技, 2008, (4): 46-48.
    40刘先淼,叶健利. OGFC排水式面层沥青混合料配合比设计与施工[J].广东公路交通, 2006, (4): 9-14.
    41马金池. OGFC路面在勉宁高速公路上的成功应用[J].交通标准化, 2006, (7): 206-208.
    42宋宪发,凌建明,朱方海.排水沥青路面降温性与效果分析[J].上海公路, 2007, (1): 18-20.
    43曹东伟,刘清泉,唐国奇.排水沥青路面[M].人民交通出版社, 2010.3.
    44裴进章,贾长玉.排水式沥青磨耗层水稳定性研究[J].中国城市经济, 2011, (14): 218-219.
    45杨扬,刘海苹,徐建成. OGFC型降噪路面在我国的发展趋势[J].森林工程, 2007, 23(4): 35-37.
    46尹义林.透水沥青混合料OGFC在道路中的应用[J].中国市政工程, 2008, (3):10-11.
    47武市,增田,帆苅.开级配沥青混凝土冻结融解作用的影响[C].第19次日本道路会议一般论文集, 1991.10.
    48汤寄予,高丹盈,夏丹,张启明.用水泥改善开级配路面抗滑磨耗层耐水性的试验研究[J].新型建筑材料, 2008, (3): 9-13.
    49黄绍龙,丁庆军,刘新权,胡曙光.硅藻土改性OGFC沥青混合料研究[J].交通科技, 2008, (5): 64-67.
    50高丹盈,夏丹,李花歌,汤寄予.木质素纤维对OGFC性能影响的试验研究[J].郑州大学学报(工学版), 2008, 29(3): 1-4.
    51 Wisneski, M. L., J. M. Chaffin, R. R. Davison, J. A. Bullin, C. J. Glover. The Use of Lime in Recycling Asphalt[C]. TRB Annual Meeting, 1996.
    52 Davide Valtorta, Lily D. Poulikakos, Eimear Connery, Manfred N. Partl, Edoardo Mazza. Accelerated Aging of Bituminous Binders Using a HighFrequency Torsional Rheometer[J]. Advanced Engineering Materials, 2007, (9): 121-128.
    53 William Jeremy Robinson. Design and Performance of Open Graded Friction Course Hot Mix Asphalt[D]. Thesis of Mississippi State University, 2005.
    54 Nicholls, J. C., I. G. Carswell. The Design of Porous Asphalt Mixtures to Performance-Related Criteria[R]. TRL Report 497. TRL, United Kingdom, 2001.
    55 M. Huurman, L.T. Mo. Fatigue in mortar and adhesive zones; measurements, test interpretation and determination of model parameters[R]. Report 7-07-170-
    2, Laboratory of Road and Railway Engineering, Delft University of Technology, Delft, 2007.11.
    56 Glover, C. J., R. R. Davison, C. H. Domke, Y. Ruan, P. Juristyarini, D. B. Knorr, S. H.Jung. Development of a New Method for Assessing Asphalt Binder Durability with Field Validation[R]. Research Report No. 1872-2, Texas Transportation Institute, Texas A&M University, College Station, Texas, 2002.
    57 T.C.Powers. Freezing Effects in Concrete[M]. Durability of Concrete. ACI, 1975.
    58冯德成.半刚性基层冻融损伤及其抗冻性能研究[D].哈尔滨工业大学博士论文,2006.9.
    59 A.M内维尔.混凝土的性能[M].李国洋等译.中国建筑工业出版社, 1982.
    60李金玉,曹建国,徐文雨,林莉,关遇时.混凝土冻融破坏机理的研究[J].水利学报, 1999, (1): 41-49.
    61李金玉,彭小平,邓正刚.混凝土抗冻性的定量化设计[J].混凝土, 2000, (9): 61-65.
    62祝金鹏,李术才,刘宪波,刘敏.冻融环境下混凝土力学性能退化模型[J].建筑科学与工程学报, 2009, 26(1): 62.
    63张磊.混凝土在硫酸盐与冻融双因素作用下的复合损伤研究[D].扬州大学硕士论文, 2007.5.
    64欧阳伟,高宏新,胡伟.水泥混凝土路面的抗盐冻性能分析[J].青岛理工大学学报, 2006, 27(4): 30-33.
    65 Zhiyun Zhou, Hirozo Mihashi. Micromechanics Model to Describe Strain Behavior of Concrete in Freezing Process[J]. Journal of Materials in Civil Engineering. 2008, 20(1): 46-53.
    66张淑娟,赖远明,苏新民,蒲毅彬,张学富.风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J].岩石力学与工程学报, 2004, 23(24): 4105-4111.
    67刘慧,杨更社,田俊锋,徐江.冻结岩石细观结构及温度场数值模拟研究[J].地下空间与工程学报, 2007, 3(6): 1127-1132.
    68徐光苗.寒区岩体低温、冻融损伤力学特性及多场藕合研究[D].中国科学院研究生院博士学位论文, 2006.6.
    69张先军,林传年,张俊兵.昆仑山隧道围岩冻融状况数值分析[J].岩石力学与工程学报, 2003, 22(增2): 2643-2646.
    70 F.Talamucci. Freezing Processes in Porous Media: Formation of Ice Lenses, Swelling of the Soil[J]. Mathematical and Computer Modelling, 2003, (37): 595-602.
    71 Francisco Padilla, Jean-Pierre Villeneuve, Jean Stein. Simulation and analysis of frost heaving in subsoils and granular fills of roads[J]. Cold Regions Science and Technology, 1997, (25): 89-99.
    72 Fukuda, M. Rock weathering by freezing thawing cycles[J]. Low Temperature Science, 1974, (32): 243-249. (in Japanese with English summary).
    73 Norikazu Matsuoka. Mechanisms of rock breakdown by frost action: An experimental approach[J]. Cold Regions Science and Technology, 1990, 17(3): 253-270.
    74 Aung Ko Ko Soe, Masahiko Osada, Thandar Thetoe Nwe Win. Drying-induced deformation behaviour of Shirahama sandstone in no loading regime[J]. Engineering Geology, 2010, (114): 423-432.
    75易军艳.沥青混合料的渗水特性及抗冻性能研究[D].哈尔滨工业大学工学硕士学位论文, 2008.7.
    76潘宝峰,王哲人,陈静云.沥青混合料抗冻融循环性能的试验研究[J].中国公路学报, 2003, 16(2): 1-4.
    77 Vivek Tandon, Nalini Vemuri, Soheil Nazarian, Maghsoud Tahmoressi. A Comprehensive Evaluation of Environmental Conditioning System[C]. Journal of Association of Asphalt Paving Technologist, 1997.
    78 Saleh Al. Swailmi. Ronald L.Terrel. Evaluation of Water Damage of Asphalt Concrete Mixtures Using the Environmental Conditioning System[C]. Journal of Association of Asphalt Paving Technologist, 1998.
    79 Martin McCann, Peter Sebaaly. A Quantitative Evaluation of Stripping Potential in Hot Mix Asphalt Using Ultrasonic Energy for Moisture AcceleratedConditioning[C]. TRB Annual Meeting, 2001.
    80 Martin McCann , Richard Anderson-Sprecher. Comparison of Moisture Damage in Hot Mix Asphalt Using Ultrasonic Accelerated Moisture Conditioning and Tensile Strength Test Results[C]. Airfield and Highway Pavements, 2006.
    81曹晓岩,陈永兴,鲍福堂.沥青混合料抗冻性能的研究[J].黑龙江工程学院学报, 2004, 18(2): 36-38.
    82侯曙光,王宏畅,黄晓明,李志栋.低温地区沥青混合料冻融疲劳特性分析[J].公路交通科技, 2006, 23(4): 7-11.
    83李喆,李志栋.基于能量法的沥青混合料冻循环疲劳特性评价[J].山西交通科技, 2005, (1): 26-28.
    84杨扬,郭欣欣. LSPM材料在基层抗冻耐久性上的应用[J].交通科技与经济, 2008, (3): 31-32.
    85李刚,李铭娜,杨扬.寒区开级配沥青稳定碎石基层抗冻性能分析[J].交通科技与经济, 2009, (3): 61-63.
    86王国忠,赵尘.沥青稳定基层混合料抗冻性能正交试验研究[J].内蒙古农业大学学报, 2004, 25(3): 63-66.
    87 L.M. Kachanov.连续介质损伤力学引论[M].杜善义译.哈尔滨工业大学出版社, 1989.12.
    88楼志文.损伤力学基础[M].西安交通大学出版社, 1991.9.
    89沈为.损伤力学[M].华中理工大学出版社, 1995.3.
    90宋玉普,冀晓东.混凝土冻融损伤可靠度分析及剩余寿命预测[J].水利学报, 2006, 37(3): 259-263.
    91关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述与建立[J].硅酸盐学报, 2001, 29(6): 530-534.
    92关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅱ:模型验证与应用[J].硅酸盐学报, 2001, 29(6): 535-540.
    93余红发,孙伟,张云升,王甲春,陈树东.在冻融或腐蚀环境下混凝土使用寿命预测方法Ⅰ—损伤演化方程与损伤失效模式[J].硅酸盐学报, 2008, 36(S1): 128-135.
    94盛冬发.损伤粘弹性基本理论及其结构的静、动力学行为分析[D].上海大学博士论文, 2004.8.
    95何平,程国栋,朱元林.冻土粘弹塑损伤耦合本构理论[J].中国科学(D辑), 1999, 29(增1): 34-39.
    96李栋伟,汪仁和,胡璞.冻粘土蠕变损伤耦合本构关系研究[J].冰川冻土, 2007, 29(3): 446-449.
    97赵荣国.含损伤非线性粘弹性材料本构理论研究[D].湘潭大学硕士论文, 2001.6.
    98关宏信,郑健龙,张起森.沥青混合料的粘弹性疲劳损伤模型研究[J].力学与实践, 2007, 29(2): 50-53.
    99关宏信.沥青混合料粘弹性疲劳损伤模型研究[D].中南大学博士论文, 2005.5.
    100关宏信,郑健龙.沥青路面粘弹性疲劳损伤分析[J].湖南科技大学学报(自然科学版), 2008, 23(3): 54-57.
    101吴旷怀,杨国良,张肖宁.考虑松弛的沥青混合料疲劳损伤累计模型研究[J].深圳大学学报理工版, 2008, 25(4): 345-350.
    102蔡四维,蔡敏.混凝土的损伤断裂[M].人民交通出版社, 2000.5.
    103孙雅珍,赵颖华,王金昌.含表面裂缝沥青路面粘弹性损伤分析[J].东北公路, 2003, 26(4): 6-8.
    104向晋源,朱湘.基于粘弹性损伤模型的沥青混合料高温性能评价指标研究[J].黑龙江工程学院学报(自然科学版), 2009, 23(2): 4-9.
    105邵腊庚,周晓青,李宇峙,应荣华.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J].土木工程学报, 2005, 38(4): 125-128.
    106许金泉.界面力学[M].科学出版社, 2006.9.
    107汤丽华.粘弹性界面端及界面裂纹的奇异场[D].上海交通大学硕士学位论文, 2007.12.
    108 Bogy D B. Edge bonded dissimilar orthogonal elastic wedges under normal and shear loadings[J]. Journal of Apply Mechanics, 1966, (35): 146-154.
    109 Dundurs J. Discussion of edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading[J]. Journal of Apply Mechanics, 1969, (36): 650-652.
    110许金泉,金烈侯,丁皓江.双材料界面端附近的奇异应力场[J].上海力学, 1996, (17): 104-110.
    111许金泉,李一全.线性硬化结合材料的界面端弹塑性奇异应力场[J].浙江大学学报(工学版), 2000, (34): 266-272.
    112许金泉,傅列东.硬化系数对界面端弹塑性奇异应力场的影响[J].计算力学学报, 2001, (18): 156-161.
    113 Comninou M. The interface crack[J]. Journal of Apply Mechanics, 1977, (44):631-637.
    114 Comninou M. The interface crack in a shear field[J]. Journal of Apply Mechanics, 1978, (45): 287-290.
    115 Dundurs J, Gautesen A K. An opportunistic analysis of the interface crack[J]. International Journal of Fracture, 1988, (36): 151-159.
    116 Shih C F, Asaro R J. Elastic-plastic analysis of crack on bi-material interface[J]. Journal of Apply Mechanics, 1988, (55): 299-316.
    117 Rice J R. Elastic fracture mechanics concepts for interfacial cracks[J]. Journal of Apply Mechanics, 1988, (55): 98-103.
    118任玉娜.聚合物改性沥青粘聚性与粘附性研究[D].中国石油大学硕士学位论文, 2011.4.
    119肖庆一,薛航,徐金枝,刘丽,雷海燕.基于表界面理论的沥青路面水损坏模型研究[J].武汉理工大学学报, 2007, 29(5): 71-73.
    120 Jonathan Howson, Amit Bhasin, Eyad Masad, Robert Lytton, Dallas Little. Development of Database for Surface Energy of Aggregates and Asphalt Binders[R]. FHWA/TX-09/5-4524-01-1, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, 2009.6.
    121 Robert L. Lytton, Eyad A. Masad, Corey Zollinger, Rifat Bulut, Dallas Little. Measurements of Surface Energy and Its Relationship to Moisture Damage[R]. FHWA/TX-05/0-4524-2, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, 2005.5.
    122 Jonathan Howson, Eyad A. Masad, Amit Bhasin, Veronica Castelo Branco, Edith Arambula, Robert Lytton, Dallas Little. System for the Evaluation of Moisture Damage Using Fundamental Material Properties[R]. FHWA/TX-07/0-4524-1, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, 2007.5.
    123 Audrey R. Copeland. Influence of Moisture on Bond Strength of Asphalt-Aggregate Systems[D]. Dissertation of Vanderbilt University. 2007.8.
    124 Kunnawee Kanitpong, Hussain Bahia. Relating Adhesion and Cohesion of Asphalts to the Effect of Moisture on Laboratory Performance of Asphalt Mixtures[C]. TRB Annual Meeting, 2005.
    125 Alaa H. Abed. Enhanced Aggregate-Asphalt Adhesion and Stability of Local Hot Mix Asphalt[J]. Engineering and Technical Journal, 2011, 29(10): 2044-2059.
    126 Mohammad J. Khattak, Gilbert Y. Baladi, Lawrence T. Drzal. Low Temperature Binder-Aggregate Adhesion and Mechanistic Characteristics of Polymer Modified Asphalt Mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 411-422.
    127延西利,梁春雨.沥青与石料间的剪切粘附性研究[J].中国公路学报, 2001, 14(4): 25-27.
    128曹庭维,吴少鹏,刘至飞,林俊涛.掺TPS高粘度沥青添加剂排水性沥青混合料的低温性能研究[C].第十四届全国疲劳与断裂学术会议论文集, 2008.
    129黄焱,史庆增,宋安.冰温度膨胀力的有限元分析[J].水利学报, 2005, 36(3): 1-9.
    130刘宛生,陈旭明.水的反常膨胀特性探讨[J].《中南民族学院学报(自然科学版)》, 1994, 13(2): 96-98.
    131 Manshi Low. Paving Roads in Laos: An Alternative Porous Pavement and Its Social Impacts on Rural Communities[C]. SIGUS-MIT Laos Workshop, 2004.1.
    132黄国章,陈志成. OGFC路面技术的应用与探索[J].中国市政工程, 2008, (1): 19-21.
    133徐芝纶.弹性力学简明教程[M].高等教育出版社, 2002.8.
    134谢水友,郑传超.水平荷载对沥青路面结构的影响[J].长安大学学报(自然科学版), 2004, 24(2): 14-17.
    135 L.T. Mo, M. Huurman, S.P.Wu, A.A.A. Molenaar. Investigation into stress states in porous asphalt concrete on the basis of FE-modelling[J]. Finite Elements in Analysis and Design, 2007, (43): 333-343.
    136史庆增,徐阳.约束冰层温度膨胀力的研究[J].海洋学报, 2000, 22(3): 144-148.
    137 Donald Carter, Devinder Sodhi, Ed Stander, Octave Caron, Tung Quach. Ice Thrust in Reservoirs[J]. Journal of Cold Regions Engineering, 1998, (11): 169-184.
    138刘鸿绪,朱卫中,朱广祥,高爱娣,曾赛星.再论冻胀量与冻胀力之关系[J].冰川冻土, 2001, 23(1): 63-66.
    139史庆增,宋安,薛波.半圆形构件冰力和冰温度膨胀力的试验研究[J].中国港湾建设, 2002, (3): 7-13.
    140马骉,王秉纲.冻土地区路面基层结构与材料[M].人民交通出版社, 2007.10.
    141 M. Bellanger, F. Homand, J.M. Remy. Water behaviour in limestones as afunction of pores structure: Application to frost resistance of some Lorraine limestones[J]. Engineering Geology, 1993, 36(1): 99-108.
    142 Liantong Mo, M. Huurman, Shaopeng Wu, A.A.A Molenaar. Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen–stone adhesion and mortar[J]. Materials and Design, 2009, (30): 170-179.
    143混凝土研究协会.混凝土耐久性研究与工程应用手册[M].中国科技文化出版社, 2005.
    144王抒音.高速重载交通下改善沥青—集料界面相互作用的技术途径[D].哈尔滨工业大学博士学位论文, 2002.9.
    145李东庆.沥青混合料抗冻融循环性能的试验研究[J].公路, 2007, (12): 145-147.
    146 Little D N, D R Jones. Chemical and Mechanical Processes of Moisture Damage in Hot-Mix Asphalt Pavements[C]. Moisture Sensitivity of Asphalt Pavements: A National Seminar, San Diego, California, Proceedings, 2003.2: 37-70.
    147 Sabtucci L. Minimizing Moisture Damage in Asphalt Pavements[R]. Pavement Technology Update, University of California Pavement Research Center, 2010.10, Vol.2, No.2.
    148 Sebaaly P E, E Hajj, D Little, S Shivakolunthar, T Sathanathan, K Vasconcelos. Evaluating the Impact of Lime on Pavement Performance[R], Final Report, National Lime Association, 2010.6.
    149 Taylor M A, N P Khosla. Stripping of Asphalt Pavements: State of the Art[C]. TRB Annual Meeting, 1983.
    150 Cheng D X, Little D N, Lytton R L, Holste J C. Surface Free Energy Measurement of Aggregates and Its Application to Adhesion and Moisture Damage of Asphalt-Aggregate Systems[C]. International Center for Aggregates Research 9th Annual Symposium: Aggregates-Concrete, Bases and Fines, Austin, Texas, 2001.4.
    151 Robert L. Lytton, Eyad A. Masad, Corey Zollinger, Rifat Bulut, Dallas Little. Measurements of Surface Energy and Its Relationship to Moisture Damage[R]. Report No. FHWA/TX-05/0-4524-2, Texas Transportation Institute, Texas A&M University System, College Station, Texas, 2005.5.
    152 R.L. Lytton. Adhesive Fracture in Asphalt Concrete Mixtures[M]. In J.Youtcheff (Ed.), 2004.
    153 Marek, C.R., M. Herrin. Tensile Behavior and Failure Characteristics of Asphalt Cements in Thin Films[C]. Association of Asphalt Paving Technologists, 1968, (37): 386-421.
    154 Scott Schram, Magdy Abdelrahman. Effects of Asphalt Film Thickness on Field Performance[C]. TRB Annual Meeting, 2011.
    155 Huachun Zhai, Hussain U. Bahia, Signe Erickson. Effect of Film Thickness on Rheological Behavior of Asphalt Binders[C]. TRB Annual Meeting, 2000.
    156 J. A. F. Harvey, D. Cebon. Fracture Tests on Bitumen Films[J]. Journal of Materials in Civil Engineering, 2005, 17(1): 99-107.
    157刘刚.纤维改性排水性沥青混合料组成设计与性能研究[D].武汉理工大学工学硕士论文, 2006.4.
    158 Thomas W. Kennedy, Ronald J. Cominsky. Hypotheses and Models Employed in the SHRP Asphalt Research Program. Strategic Highway Research Program[R], SHRP-A/WP-90-008, National Research Council, Washington DC, 1990.
    159徐皓,倪富健,刘清泉.排水性沥青混合料渗透系数测试研究[J].中国公路学报, 2004, 17(3): 1-5.
    160吴浩,张久鹏,王秉纲.多孔沥青混合料空隙特征与路用性能关系[J].交通运输工程学报, 2010, 10(1):1-5.
    161 Advanced Asphalt Technologies, LLC. A Manual for Design of Hot Mix Asphalt with Commentary[R]. NCHRP Report 673. Tanspoatation Research Board, Washington, D.C. 2011.
    162 Eyad Masad, Emad Kassem, Arif Chowdhury, Zhanping You. A Method for Predicting Asphalt Mixture Compactability and Its Influence on Mechanical Properties[R]. FHWA/TX-09/0-5261-2, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, 2008.8.
    163 Christensen, D.W., Pellinen, T.K., Bonaquist, R.F.. Hirsch Model for Estimating the Modulus of Asphalt Concrete[C]. Journal of the Association of Asphalt Paving Technologists, Lexington, KY, 2003.
    164 Laith Tashman, Eyad Masad, Dallas Little, Hussein Zbib. A microstructure-based viscoplastic model for asphalt concrete[J]. International Journal of Plasticity, 2005, (21): 1659-1685.
    165 Y. Richard Kim, M.N. Guddati, B.S. Underwood, T.Y. Yun, V. Subramanian, S.Savadatti. Development of a Multiaxial Viscoelastoplastic Continuum Damage Model for Asphalt Mixtures[R]. Report No. FHWA-HRT-08-073, 2009.
    166 Sousa J, Weissman S L, Sackman J L, Monismith C L. Nonlinear elastic viscous with damage model to predict permanent deformation of asphalt concrete mixes[C]. TRB Annual Meeting, 1993.
    167曹庭维,吴少鹏.掺TPS添加剂排水性沥青混合料的低温性能研究[J].新型建筑材料, 2009, (4): 257-261.
    168 Wai-Fah Chen, Da-jian Han. Plasticity for Structural Engineers[M]. J.Ross Publishing, Inc., 5765 N. Andrews Way, Fort Lauderdale, FL. 2007.
    169 Masoud K. Darabi, Rashid K. Abu Al-Rub, Eyad A. Masad, Chien-Wei Huang, Dallas N. Little. A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials[J]. International Journal of Solids and Structures, 2011, (48): 191-207.
    170 Florea D.. Nonassociated elastic/viscoplastic model for bituminous concrete[J]. International Journal of Engineering Science, 1994, (32): 87–93.
    171 Chehab G.. Characterization of Asphalt Concrete in Tension Using a ViscoElastoPlastic Model[D]. Dissertation of North Carolina State University, 2002.
    172沈金安.沥青及沥青混合料路用性能[M].人民交通出版社, 2003.5.
    173李荣,邱洪兴,淳庆.疲劳累积损伤规律研究综述[J].金陵科技学院学报, 2005, 21(3): 17-22.
    174 Wen Haifang, Shen Shihui, Ma Zhanpeng, Wang Jingan. Modeling the Effects of Temperature and Loading Rate on Fatigue Property of Asphalt Binder[J]. Journal of Testing and Evaluation, 2010, 38(6): 11.
    175 Wen H., Kim Y.R., Simple Performance Test for Fatigue Cracking and Validation with WesTrack Mixtures[C]. TRB Annual Meeting, 2002.
    176 Johnson C., Bahia H., Wen H.. Practical Application of Viscoelastic Continuum Damage Theory to Asphalt Binder Fatigue Characterization[C]. Journal of Association of Asphalt Paving Technologist, 2009: 597-638.
    177 Imad L. Al-Qadi, Eli. H. Fini, J-F. Masson, Kevin M. McGhee. Effect of Bituminous Material Rheology on Its Adhesion[C]. TRB Annual Meeting, 2008.
    178刘玉萍.新疆克拉玛依90号沥青的PG性能试验研究[J].山西建筑, 2008, 34(12): 170-171.
    179吴玉辉.辽宁地区道路沥青性能等级研究[J].公路, 2008, (11): 169-172.
    180 J.S. Chen, L.S. Huang. Developing an aging model to evaluate engineering properties of asphalt paving binders[J], Materials and Structures, 2000, (33): 559-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700