用户名: 密码: 验证码:
基于ARM的嵌入式航向姿态参考系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,载体的航向和姿态是无人直升机导航系统中必不可少的重要参数,它是保证其能在空中保持期望姿态并稳定飞行的前提条件。随着嵌入式系统的飞速发展以及新型高性能元器件的出现,本文提出并研制出了一种基于ARM内核的高性能的嵌入式微处理器和嵌入式实时操作系统的航向姿态参考系统。
     文章首先介绍了航姿系统的相关基本理论及其工作原理,包括惯性系统中常用坐标系的定义、姿态角的定义以及捷联矩阵计算。
     其次,文章重点介绍了基于ARM的航姿系统的软硬件设计。在硬件设计上,给出了硬件总体设计方案,并对各个功能模块进行了详细论述;软件是以uC/OS-Ⅱ为嵌入式实时操作系统来开发的应用程序,在给出系统软件总体框架的基础上,分别论述了硬件驱动程序、操作系统移植以及任务的划分。
     最后,分析了磁航向误差产生的原因以及补偿方法,并用实验对椭圆假设补偿方法进行了验证。
     研究证明,由三轴微加速度计、三轴微陀螺仪和三轴磁阻传感器阻组成,以S3C44BOX微处理器和uC/OS-Ⅱ实时操作系统为核心的航向姿态参考系统,与通常的航姿测量系统相比,具有体积小、成本低、实时性强等特点,很有应用价值。
It's well-known that heading and attitude of vehicles are very important parameters in the navigation system of UAV (Unmanned Aerial Vehicle). It's the pre-requisite condition of UAV holding anticipant attitude and aviating steadily in the air. With the rapid development of embedded system and the appearance of newly and high-performed components, this paper puts forward and researches a kind of Attitude and Heading Reference System (AHRS) which consists of high-performanced ARM embedded microprocessor and embedded real-time operating system.Firstly, in this paper, the basic theories and operational principles of AHRS are introduced, including definition of usually coordinates in inertia system, Euler angles definition and calculation of attitude matrix.Secondly, we focus on the hardware and software design of AHRS based on ARM. In the hardware design, we present the overall plan of hardware designing and discuss every function module in detail. Software is developed by uC/OS-Ⅱ as embedded RTOS. On the basis of the general software chart of system, we describe the hardware drivers, transplant of the operating system and the division of tasks.Lastly, we analyze the reasons of magnetic heading's error and the compensation methods. What's more, we experiment to validate the ellipse hypothesis compensation method.Research proves that the AHRS compared with general attitude and heading measurement system is small size, low cost, high real time and so on. AHRS based on S3C44B0X microprocessor and uC/OS-Ⅱ RTOS is composed of 3-axis micro accelerometers, 3-axis micro rate gyros and 3-axis Magnetoresistive sensors. The system is of great practical value.
引文
[1] 陆元九.惯性器件(上)[M].宇航出版社,1990.
    [2] 赵忠.惯性系统发展趋势与对策[C].惯性技术发展动态发展方向研讨会文集,2000.
    [3] 陈哲.捷联惯导系统原理[M].北京:宇航出版社,1996.
    [4] 于波,陈云相,郭秀中.惯性技术[M].北京:北京航空航天大学出版社,1994.
    [5] 袁信,郑谬.捷联式惯性导航原理[M].航空专业教材编审组,1985.
    [6] 卢大伟.多传感器数据融合方法在新型组合航姿系统中的应用研究[M].东南大学博士学位论文,2001.
    [7] 潘敏.DSP及其在捷联航姿系统中的应用[D].西北工业大学硕士学位论文,2003.
    [8] 田泽.嵌入式系统开发与应用[M].北京:北京航空航天大学出版社,2004.
    [9] Jean J.Labrosse.嵌入式实时操作系统uC/OS-Ⅱ(第2版)[M].北京:北京航空航天大学出版社,2003.
    [10] Honeywell.用于低价位的罗盘系统的磁传感器的应用[EB/OL].http://www.honeywell-sensor.com.cn/prodinfo/sensor_magnetic/applications_notes/apn01.pdf.
    [11] 胡小平.自主导航理论与应用[M].长沙:国防科技大学出版社,2002.
    [12] 朱荣,周兆英.基于MEMS的姿态测量系统[J].测控技术,2002,21(10):6-8.
    [13] Harada T, Uchino H, Mori T, etc. Portable orientation estimation device based on accelerometers, magnetometers and gyroscope sensors for sensor network[A]. IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Tokyo, Japan, 2003:191-196.
    [14] Michael J. Caruso. Applications of Magnetoresistive Sensors in Navigation Systems[EB/OL].http://www.honeywell-sensor.com.cn/prodinfo/sensor_magnetic/applications_notes/apn10.pdf.
    [15] Kottmann M. Implementation of navigation algorithms[R]. International Report at ICS, ETHZ, 1998.
    [16] 张静,金志华.空中平台航姿参考系统的设计[J].2004,12(2):47-52.
    [17] 何秀凤,袁信,汪淑华.Kalman滤波技术在磁航向利捷联惯性组合系统初始对准中的 应用[J].1995,27(3):363-369.
    [18] 傅建国,王孝通,金良安等.基于MARG传感器的自主姿态测量新算法[J].中国惯性技术学报,2004,12(4):51-56.
    [19] 刘瑞华.微机电惯性测量元件在导航系统的应用研究[J].中国民航学院学报,2003,21(3):30-34.
    [20] 许国祯.硅微结构惯性传感器的研制现状及应用前景[J].中国惯性技术学报,1998,6
    [21] ADI. ±300°/s Single Chip Rate Gyro Evaluation Board ADXRS3OOEB[EB/OL].http://www.analog.com/UploadedFiles/Evaluation_Boards/Tools/272463157ADXRS300EB1.pdf, 2003.
    [22] ADI. ±300°/s Single Chip Yaw Rate Gyro with Signal Conditioning ADXRS300[EB/OL].http://www.analog.com/UploadedFiles/Data_Sheets/732884779ADXRS300_b.pdf, 2004.
    [23] 曾庆华,张为华.iMEMS速率陀螺芯片在MAV飞行控制系统中应用研究[J].测控技术,2004,23(2):68-70.
    [24] 沙占友,王彦朋,张永吕.单片偏航角速度陀螺仪的原理与应用[J].传感器世界,2004,(9):31-34.
    [25] ADI. Precision ±1.7g Single/Dual Axis Accelerometer ADXL103/ADXL203[EB/OL].http://www, analog.com/UploadedFiles/Data_Sheets/279349530ADXL103_203_0.pdf,2004.
    [26] 朱俊华,周兆英,叶雄英等.微型隧道效应磁强计的设计和加工工艺研究[J].微细加工技术,2001,(1):53-55.
    [27] Honeywell.单轴和舣轴磁传感器HMC1001/1002 HMC1021/1022[EB/OL].http://honeywell-sensor.com.cn/prodinfo/sensor_magnetic/datasheet/HMC1001_1002.pdf.
    [28] 靳达.单片机应用系统开发实例导航[M].北京:人民邮电出版社出版发行,2003.
    [29] ADI. 8-Channel, 200 Ksps, 12-Bit ADC with Sequencer in 20-Lead TSSOP AD7927[EB/OL].http://www.analog.com/UploadedFiles/Data Sheets/748245523AD7927_0.pdf, 2003.
    [30] TI. 16-Bit, 4-Channel Serial Output Sampling ANALOG-TO-DIGITAL CONVERTER ADS8343[EB/OL]. http://focus.ti.com/lit/ds/sbas183c/sbas183c.pdf, 2003.
    [31] MAXIM. MAX3232 Datasheet[EB/OL].http://pdfserv.maxim-ic.com/en/ds/MAX3222-MAX3241.pdf, 1996.
    [32] 田泽.嵌入式系统开发与应用实验教程[M].北京:北京航空航天大学出版社,2004.
    [33] 胥静.嵌入式系统设计与开发实例详解——基于ARM的应用[M].北京:北京航空航天大学出版社,2005.
    [34] AMD. Am29LV160D Datasheet[EB/OL].http://www.tuxscreen.net/download/schematics/am291v160.pdf, 2000.
    [35] 张学孚,陆怡良.磁通门技术[M].国防工业出版社,1995.
    [36] 杨新勇,黄圣国.智能磁航向传感器的研制及误差补偿算法分析[J].北京航空航天大学学报,2004,30(3):244-248.
    [37] 李秉玺,赵忠,孙照鑫.磁阻传感器的捷联式磁航向仪及误差补偿[J].传感技术学报,2003,(2):191-194.
    [38] 刘歌群,薛尧舜,卢京湖.磁航向传感器在无人机飞行控制系统中的应用[J].传感器技术,2003,22(12):54-56.
    [39] 袁智荣.三轴磁航向传感器的全姿态误筹补偿[J].传感器技术,2003,22(9):34-36.
    [40] 刘诗斌,李宏,冯晓毅.具有自动误差补偿功能的智能磁航向系统[J].传感器技术,2002,21(12):23-25.
    [41] 李珊,范大鹏,张志永等.三轴磁罗盘高精度误差补偿算法研究[J].传感器世界,2005,(9):19-22.
    [42] 宋浩,韩波,李平.微型无人直升机三轴飞行仿真转台[J].机电工程,2006,23(1):22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700