用户名: 密码: 验证码:
船用光纤捷联惯导系统标定与海上对准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤陀螺精度的提高,船用光纤陀螺捷联惯性导航系统正处于产品开发阶段。船用光纤陀螺捷联惯性导航系统涉及的关键技术包括很多方面,主要集中在标定技术、初始对准技术、综合校准技术、阻尼技术等几方面。本文从提高船用光纤陀螺捷联惯导系统的实际需求出发,对系统标定技术和海上对准技术展开研究。主要工作有:
     首先,对光纤陀螺组件和加速度计组件进行误差建模,建立标定误差与载体角速率和比力之间的关系,推导标定误差对捷联惯性导航系统导航误差的影响,并对其进行分析,研究标定误差对捷联惯性导航系统摇摆运动和匀加速直线运动情况下导航误差的影响,对其进行仿真验证。
     其次,对分立式标定方法进行误差分析和计算机仿真,分析三轴惯导测试转台速率误差和定位误差对惯性测量单元标定结果的影响。提出了一种光纤陀螺组件六位置分立式标定方法,降低了转台误差对光纤陀螺组件标定结果的影响,消除了光纤陀螺组件标定参数之间的耦合误差。仿真分析和导航实验证明,六位置分立式标定方法提高了光纤陀螺组件的标定精度。
     第三,设计了光纤陀螺组件和加速度计组件的闭环标定方案。对闭环标定方法展开研究,将开环标定结果作为闭环标定的初始值,利用三轴惯导测试转台提供的姿态修正光纤陀螺组件的标度因数和安装误差,利用三轴惯导测试转台提供的速度修正加速度计组件的标度因数和安装误差,直到两次标定参数之差小于给定值,闭环标定结束。试验结果表明,闭环标定提高了系统的标定精度。
     第四,提出了一种十位置系统级标定方法,将标定误差引入静基座光纤捷联惯导系统速度误差方程和姿态误差方程,利用三轴惯性测试转台提供的速度和姿态,采用Kalman滤波对标定误差进行估计,通过解耦运算实现光纤陀螺组件和加速度计组件标定误差参数的分离,并对其进行仿真和实验验证。利用Kalman滤波器滤波开始一段时间内跟踪速度快的特点,将标定误差分成多次进行估计,并在十位置系统级标定的基础上,设计了光纤陀螺组件多级系统级标定方案,仿真和实验证明多级系统级标定能提高光纤陀螺组件的标定精度。
     最后,本文提出了一种基于混合动态滤波的海上大方位失准角对准方法。采用平台误差角表示理论导航坐标系与计算导航坐标系之间的失准角,推导捷联惯导系统误差方程,并对其进行简化,得到满足船用光纤捷联惯导系统海上大方位失准角对准的误差模型。对混合动态滤波模型进行描述,重点介绍EKF-KF和UKF-KF两种混合动态滤波递推公式,给出了线性估计和非线性估计融合的具体方法,将海上对准误差模型中的线性状念和非线性状态进行分离,采用非线性滤波EKF和UKF估计系统的方位失准角,采用线性滤波KF估计系统的水平失准角,并将方位失准角的估计方差作为修正项反馈到水平失准角的估计中以提高估计的精度。仿真证明采用混合动态滤波方法提高了船用光纤陀螺捷联惯导系统海上对准的精度。
With the precision improvement of the fiber optic gyro (FOG), marine FOG strapdown inertial navigation system (SINS) is at the product development stage. The key technologies of marine FOG strapdown inertial navigation system include the calibration technology, initial alignment technology, comprehensive calibration technology, damping technology et al. According to practical requirements of marine FOG strapdown navigation system, this paper mainly focuses on the research of the calibration technology and offshore initial alignment technology, which can be summarized as follows:
     Firstly, by establishing the FOG unit error model and the accelerometer unit error model, the relationship between the calibration error, the body angular rate and the acceleration are analyzed. The equation between the calibration error and strapdown inertial navigation system error is derived. The navigation error brought by the calibration error under the swaying motion and uniformly accelerated rectilinear motion is derived and the analysis is confirmed by simulation results.
     Secondly, the error analysis of schism calibration method and simulations are performed, which shows the inertial measurement unit (IMU) calibration error brought by the velocity error and orientation error of three-axis turntable. A 6-position discrete calibration method is proposed for FOG unit, which reduces the FOG unit calibration error brought by the three-axis turntable error and eliminats the coupled error among FOG parameters, and finally improves the calibration precision. Simulation and navigation experiments confirm that 6-position discrete calibration method improves the calibration precision.
     Thirdly, FOG unit closed-loop calibration method and accelerometer unit closed-loop calibration are performed, in which the result of open-loop calibration is used as initial value of closed-loop calibration. The attitude provided by the three-axis turntable is used to revise the FOG scale factor and installation error, and the velocity provided by the three-axis turntable is used to revise the accelerometer scale factor and installation error. The calculation of the closed-loop calibration will continue until the difference of parameters between two neighboring revision is smaller than a given value. Experimental results show that the closed-loop calibration method can increase the system calibration precision.
     Fourthly, a 10-poistion systematic calibration is proposed by using the calibration error in the static velocity error equation and attitude error equation. In this method, Kalman filter is used to estimate the calibration error by utilizing the three-axis turntable's velocity and attitude. One property of Kalman filter is that the tracking speed is quick at the beginning. Based on this property of Kalman filter, a multistage systematic calibration method is designed in this paper. The calibration of multistage systematic calibration is the same as 10-poistion systematic calibration, but it reuses the Kalman filter to estimate the calibration error. Simulation and experiment results show that this multistage systematic calibration method can improve the calibration precision of FOG.
     Finally, an offshore initial alignment with large azimuth misalignment method is proposed in this paper, which is based on a mixed dynamic filter algorithm. is applied in the offshore initial alignment with large azimuth misalignment. The misalignment between the theory navigation coordinate frame and the calculated navigation coordinate frame are indicated by Euler platform error angles. Derive the strapdown inertial navigation system error equation under large azimuth misalignment and simplify it to meet the offshore fine initial alignment model of marine fiber optic gyro strapdown inertial navigation system. Describe the mixed dynamic filter model. It described the EKF-KF and UKF-KF in detail and gave the integration of linear estimate and non-linear estimate. Separate the non-linear state from the linear state. The nonlinear filters that are EKF and UKF are used to estimate the nonlinear state which is azimuth misalignment. The linear filters KF is used to estimate the linear state which are horizontal misalignment. The EKF-KF and UKF-KF take the estimate variance of azimuth misalignment as a feed bake to revise the horizontal misalignment estimate. It can improve the estimate precision. The simulation proved the validity of the mixed dynamic filter algorithm.
引文
[1]中国惯性技术学会.2009-2010惯性技术学科发展报告.中国科学技术出版社,2010
    [2]George T, Schmid. INS/GPS Technology Trend.Advances in Navigation Sensors and Integration Technology.2003:18-24 P
    [3]David H, Titterton John L, Weston. Strapdown Inertial Navigation Technology 2nd Edition. UK:The Institution of Electrical Engineers.2004:36-47P
    [4]Vaughn RS. CAINS pointing to the future. Role of Navigation in Airways System Development. Proceedings of ION the National Air Meeting, Institute of Navigation. 1971:65-79P
    [5]Klotz H A Jr, Derbak C B. GPS-aided navigation and unaided navigation on the joint direct attack munition. IEEE Position Location and Navigation Symposium.1998: 412-419P
    [6]Barbour N. Inertial Navigation Sensors. Low-Cost Navigation Sensors and Integration Technology.2008
    [7]Gaetan Menozzi. MEMS in FRANCE An Overview of Trends and Products for Aeronautic & Defense Application. Advances in Navigation Sensors and Integration Technology.2003:10P
    [8]Vicki C, Le Fever. Micro Electro Mechanical Systems (MEMS)-based Inertial Technologies in the Present and Challenges for Inertial Technologies, of the Future. 2008:112-116P
    [9]江红.基于光纤陀螺仪的舰载捷联惯导系统的关键技术研究.上海交通大学博士学位论文.2006
    [10]武凤德.光纤陀螺仪技术发展综述.舰船导航.2002,181(4):31-41页
    [11]张维述.光纤陀螺及其应用.北京:国防工业大学出版社,2008
    [12]张桂才,王巍(译).光纤陀螺仪.北京:国防工业出版社,2002
    [13]张桂才.光纤陀螺原理与技术.国防工业出版社,2008
    [14]许国祯.以市场为导向推动光纤陀螺技术新发展.中国惯性技术学会光电技术专业委员会第三次学术交流会,深圳.2003:120-121页.
    [15]周世勤.光纤陀螺技术的发展.飞航导弹.2000,2:42-45页.
    [16]谭显裕.光纤陀螺的关键技术及其军用研究.航空兵器.2003,2:32-35页
    [17]杜红松,刘晓庆,刘兴章.基于小波分析法的光纤陀螺系统标定方法.中国惯性技术学报.2007,15(6):734-737页
    [18]黄苹.光纤陀螺捷联惯导系统在线组合标定技术研究.哈尔滨工程大学硕士学位论 文.2005
    [19]太松月.光纤陀螺捷联惯性导航系统标定测试技术研究.哈尔滨工程大学硕士学位论文.2007
    [20]林玉荣,邓正隆.激光陀螺捷联惯导系统中惯性器件误差的系统级标定.哈尔滨工业大学学报.2001.33(1):112-115页
    [21]杨孟兴,徐兵华.激光陀螺捷联惯性导航系统的误差参数标定.中国惯性技术学报.2008,16(3):306-309页
    [22]张志鑫,夏金桥,蔡春龙.光纤陀螺标度因数分段标定的工程实现.中国惯性技术学报.2008,16(1):99-103页
    [23]周琪,秦永元,严恭敏,杨鹏翔.激光捷联惯性组件精确标定方法研究.测控技术.2008,27(9):95-98页
    [24]严恭敏,秦永元.激光捷联惯组的双轴位置转台标定仿真.中国惯性技术学报.2007,15(1):123-127页
    [25]杨华波.惯性测量系统误差标定及分离技术研究.国防科学技术大学硕士学位论文.2008
    [26]付强文.光纤陀螺捷联惯导系统中的误差分析与补偿.西北工业大学硕士学位论文.2005
    [27]Friedland B On the calibration problem. IEEE Transactions on Automatic Control, 1977,22(6):899-905P
    [28]Nebot E, IMrrant-Whyte H. Initial calibration and alignment of an inertial navigation. Proceedings of the Forth Internatial Conference on Mechatronics and Machine Vision in Practice. Los Alamitos, USA:IEEE,1997.175-180P
    [29]Camberlein L, Mazzananti F. Calibration technology for laser gyro strapdown inertial navigation systems. Symposium Gyro Technology. Stuttgart, Germany,1985
    [30]Baziw John and Leondes, C.T. In-Flight Alignment and Calibration of Inertial Measurement Unit-Part I:General Formulation. IEEE Transactions on Aerospace and Electronic Systems. July 1972,8(4):439-449P
    [31]L.Vodicheva. INS Initial Alignment and Calibration on Moving Base:Aligned and Reference System Interaction Proceedings of the 9th Saint Petersburg International Conference on Integrated Navigation Systems, May 2002:391-393P
    [32]杨晓霞,黄一.外场标定条件下捷联惯导系统误差状态可观测性分析.中国惯性技术学报.2008,16(6):657-664页
    [33]余凯,郑辛,纪志农,刘保中.捷联惯性测量组合的不指北标定方法研究.战术导弹控制技术.2005,3:60-63页
    [34]蒋效雄,刘雨,苏宝库.高精度加速度计重力场标定试验方法.吉林大学学报:工学版.2010,1:287-292页
    [35]陈雪芹,耿云海,何蕊.基于二阶非线性滤波的星上陀螺在轨标定.哈尔滨工业大学学报.2008,40(11):1690-1695页
    [36]杨常松,徐晓苏.捷联惯导系统加速度计标度因数和安装误差的试验标定.测控技术.2005,24(12):57-59页
    [37]贺杰,黄显林,李学峰.SINS制导工具误差补偿研究.航空学报.2007,28(1):182-186页
    [38]葛文涛,陈明刚,张伟,邓正隆.激光捷联惯性导航系统温度误差建模及补偿.中国惯性技术学报.2007,15(3):290-293页
    [39]万亮,黄新生.陀螺误差现场系统标定方法研究.算机仿真.2008,25(6):50-54页
    [40]杨孟兴,徐兵华.激光陀螺捷联惯性导航系统的误差参数标定.中国惯性技术学报,2008,16(3):306-309页
    [41]周广涛,奔粤阳,高伟,徐博.微机械陀螺惯性测量组件的闭环标定方法.发明专利申请号:200810064149.0
    [42]王岩.机抖激光陀螺捷联惯导系统的标定方法研究.国防科学技术大学硕士学位论文.2004:6-10页
    [43]刘晓庆,高伟,杨萌,陈静媛.光纤陀螺捷联式惯导的综合标定方案研究.东北大学学报.2007:220-223页.
    [44]杜建福,吕恬生,张亚欧,赵志刚.单轴速率陀螺标定系统设计.计算机工程.2006,32(21):235-237页
    [45]张志鑫,夏金桥,蔡春龙.光纤陀螺标度因数分段标定的工程实现.中国惯性技术学报.2008,16(1):99-203页
    [46]孙平,肖凯,刘昆.光纤陀螺组件标定测试系统设计.传感器与微系统.2008,27(5):97-98页
    [47]曹华,刘建业,祝燕华,赖际舟.光纤陀螺组件误差标定ARLS算法.光电工程.2008,35(6):48-53页
    [48]刘建业,华冰,赖际舟,王松.基于安装方式激励的捷联惯导在线标定算法研究及仿真分析.仪器仪表学报.2008,29(12):2515-2520页
    [49]祝燕华,刘建业,孙永荣.导弹射前惯测组件误差在线标定方案研究.系统工程与电子技术.2007,4:618-621页
    [50]Goshen-Meskin, D. and Bar-Itzhack, I.Y., Observability Analysis of Piece-Wise Constant System-Part I:Application to Inertial Navigation in-flight Alignment. IEEE Transaction on Aerospace and Electronic Systems. October 1992,28(4):1068-1075P
    [51]Lee, J.G., Park, C.G. and Park, H.W., Multiposition Alignment of Strapdown Inertial Navigation System. IEEE Transactions on Aerospace and Electronic Systems. October 1993,29(4):1323-1328P
    [52]Dmitriyev, S.P., Stepanov, O.A. and Shepel, S.V. Nonlinear Filtering Methods Application in INS Alignment. IEEE Transaction on Aerospace and Electronic Systems. October 1997,33(1):260-271P
    [53]Fang J C, Wan D J. A Fast Initial Alignment Method for Strapdown Inertial Navigation System on Stationary Base. IEEE Transactions on Aerospace and Electronic Systems, 1996,32(4):1501—1505P
    [54]Jiang Y F. Lin Y P Error Estimation of INS Ground Alignment through Observability Analysis. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1): 92-96P
    [55]Nebot E, IMrrant-Whyte H. Initial calibration and alignment of an inertial navigation. Proceedings of the Forth International Conference on Mechatronics and Machine Vision in Practice. Los Alamitos, USA:IEEE,1997,175-180P
    [56]Rogers, R.M. IMU in-motion alignment without benefit of attitude initialization.J. Inst. Navigation,1997,44, (3):301-311P
    [57]Dmitriyev, S.P., and Stepanov, O.A. Nonlinear filtering methods application in INS alignment, IEEE Trans. Aerosp. Electron. Syst.,1997,33, (1):260-271P
    [58]Hong H S, Lee J G, and G.park C. Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error. IEEE Proceedings:Radar, Sonar and Navigation, vol.151, pp.55,2004.
    [59]Wan D, Huang Y, and Ren T. Study on new Kalman filter mechanization for initial alignment of INS in random rocking vehicles, Stuttgart, West Ger,1989
    [60]Lian J, Wu Y, Wu W, et al.A Novel Strapdown INS Alignment Method for Swaying Vehicles. PP13th International Conference on Integrated Navigation System, Saint Petersburg, Russia,2006
    [61]Kain and Cloutier. Rapid Transfer Alignment for Tactical Weapon Application. AIAA89-3581.
    [62]Baziw John and Leondes, C.T. In-Flight Alignment and Calibration of Inertial Measurement Unit-Part I:General Formulation. IEEE Transactions on Aerospace and Electronic Systems. July 1972,8(4):439-449.
    [63]谈振藩,李东明,郝颖.一种低成本的捷联惯导系统的初始对准方法.中国惯性技术学报.2005,13(6):28-32页
    [64]高伟.捷联惯导系统的数据采集技术及初始对准研究.哈尔滨工程大学博士学位论文.2002
    [65]王丹力,张洪钺.惯导系统初始对准的非线性滤波算法.中国惯性技术学报.1999,7(3):17-21页
    [66]万德钧,房建成.惯性导航初始对准.南京:东南大学出版社,1998
    [67]李东明.捷联式惯导系统初始对准方法研究.哈尔滨工程大学工学博士学位论文.2006
    [68]何秀凤,袁信,汪淑华Kalman滤波技术在磁航向和捷联惯性组合系统初始对准中的应用.南京航空航天大学学报.1995,27(3):363-369页
    [69]张卫明,张继惟,范子杰,钟山.UKF方法在惯性导航系统初始对准中的应用研究.系统工程与电子技术.2007,29(4):589-592页
    [70]丁杨斌,申功勋Unscented粒子滤波在静基座捷联惯导系统大方位失准角初始对准中的应用研究.航空学报.2007,28(2):397-401页
    [71]马建军,郑志强.基于插值非线性滤波的SINS静基座初始对准.系统仿真学报.2007,9(12):2782-2789页
    [72]丁杨斌,王新龙,王缜,申功勋Unscented卡尔曼滤波在SINS静基座大方位失准角初始对准中的应用研究.宇航学报.2006,27(6):1201-1204页
    [73]J.L.Crassidis and F.L.Markley. Unscented filtering for spacecraft attitude estimation. Journal of Guidance Control and Dynamics.2003,26(4):536-542P
    [74]李涛.非线性滤波方法在导航系统中的应用研究.国防科学技术大学博士学位论文.2003
    [75]李璞.舰载武器惯导系统传递对准技术研究.哈尔滨工程大学硕士学位论文.2006
    [76]侯永利,万彦辉.惯导系统传递对准技术综述.导航与控制.2005,4(2):65-68页
    [77]王司.战术制导武器捷联惯导系统快速传递对准研究.哈尔滨工业大学博士学位论文.2008
    [78]卞鸿巍.联合直接攻击弹药JDAM传递对准技术分析.弹箭与制导学报.2003,34(4):68-71页
    [79]顾冬晴,秦永元.姿态匹配传递对准的H∞滤波器设计.空军工程大学学报.2005,6(2):32-35页
    [80]孙昌跃.捷联惯导系统传递对准研究.哈尔滨工业大学博士学位论文.2009:22-25页
    [81]高青伟,赵国荣,王希彬,吴芳.传递对准中载舰挠曲变形和杆臂效应一体化建模与仿真.航空学报.2009,30(11):2172-2177页
    [82]Tarrant D, Roberts C, Jones D, et al. Rapid and robust transfer alignment. IEEE Proceedings of Aerospace ControlSystems,1993:758-762P
    [83]Kevin J. Shortelle, William R. Graham. F-16 flight tests of a rapid transfer alignment procedure. IEEE Position Location and Navigation Symposium.1998:379-386P
    [84]D. Tarrant, C. Roberts, D. Jones et al. Rapid and Robust Transfer Alignment. IEEE Proceedings of Aerospace Control Systems,1993:758-762P
    [85]D. Jones, C. Roberts, D. Tarrant et al. Transfer Alignment Design and Evaluation Environment. IEEE Proceedings of Aerospace Control Systems.1993:753-757P
    [86]You-Chol Lim, Joon Lyou. An Error Compensation Method for Transfer Alignment. Proceedings of IEEE Conference on Electrical and Electronic Technology. TENCON, 2001,Vol.2:850-855P
    [87]You-Chol Lim, Joon Lyou. Transfer Alignment Error Compensator Design Using H∞ filter. American Control Conference.2002:1460-1465P
    [88]K. Spalding, S. L. Missouri. An Efficient Rapid Transfer Alignment Filter. AIAA-92-4598
    [89]Hao Y, Xiong Z, Wang W, et al. Rapid Transfer Alignment Based on Unscented Kalman Filter. Proceedings of the 2006 American Control Conference, Minneapolis USA,2006:2215-2220P
    [90]高伟,陆强,曹洁,孙枫.水下潜器捷联惯导系统初始对准技术研究.中国航海.2003,3:5-8
    [91]周丽弦,崔中兴.系泊状态下舰载导弹自主式初始对准研究.北京航空航天大学学报.2002,28(1):86-89
    [92]杨剑宏,施红兵,陆恺.舰载弹用捷联系统初始对准时陀螺误差的估计.中国惯性技术学报.1999,7(4):30-33
    [93]郭振西,缪玲娟,沈军.里程计组合的捷联惯导系统运动基座对准研究.北京理工大学学报.2005,1:54-58
    [94]徐晓苏.舰载捷联式航向姿态基准系统的研究与设计.东南大学博士学位论文.1991
    [95]A.A.Fomitehev, A.B.Koltehev, K.Yu.Schastlyvets, and V.B.Uspensky Estimation of Gyrocompassing Accuracy and Techniques of Course and Gyro Drift Correction in Integrated Navigation System, Presented at 9th Saint Petersburg International Conference on Integrated Navigation Systems, Saint Petersburg, Russia,2002.
    [96]N.Asaoka, M.Ooiwa, M.Tanikawara, T.N.t, Y.Kubo, and S.Sugimoto. Nonlinear Filtering Methods for INS/DGPS In-Motion Alignment.Presented at IONGPS/GNSS 2003, Portland, OR,2003
    [97]X.Kong, E.M.Nebot, and H. Durrant-Whyte. Development of anon-linear Psi-angle model for large misalignment errors and its application in INS alignment and calibration. Presented at Proceedings-IEEE International Conference on Robotics and Automation. Detroit, Ml, USA,1999
    [98]H.S.Hong, J.G.Lee, and C.Gpark. Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error. IEEE Proceedings:Radar, Sonar and Navigation, vol.151, pp.55,2004
    [99]T. Gaiffe, Y. Cottreau, N. Faussot, P. Simonpietri, H.Lefevre and H. Arditty. Marine Fiber-Optic Gyrocompass with Integral motion Sensor.1999, Symposium Gyro Technology (DGON 99), Stuttgart
    [100]D.N. Soo, P. Vuilleumier and M. Weinberger. New European Gyroscope for Space. Preparing for the Future (ESA/ESTEC monthly journal), March 98:5-6
    [101]赵文芳.旋转方位和大失准角下的捷联惯导初始对准算法研究.南京航空航天大学硕士论文.2008
    [102]柏猛,赵晓光,侯增广.一种自适应滤波方法在捷联惯导系统大失准角初始对准中的应用.传感技术学报.2008,21(6):1066-1069页
    [103]练军想,汤永刚,吴美平,胡小平.捷联惯导惯性系动基座对准算法研究.国防科技大学学报.2007,29(5):95-99页
    [104]王进.捷联惯导系统罗经对准方法研究.国防科学技术大学硕士学位论文.2005:11页
    [105]R.E. Kalman.A new approach to linear fitering and prediction problems.Transactions of the ASME, Journal of Basic Engineering.1960,82:34-45P
    [106]M.Athans, R.P.Wishner, and A.Bertolini.Suboptimal state estimation for continuous time nonlinear systems from discrete noisy measurements.IEEE Transactions on Automatic Control.1968,13:504-514P
    [107]H.Tanizaki and R.S.Mariano.Nonlinear filters based on Taylor series expansion. Commu. Statist.Theory and Methods.1996,25(6):1261-1282P
    [108]V.E. Benes.Exact finite-dimensional for certain diffusions with nonlinear drift. Stochastics.1981,5(1/2):65-92P
    [109]V.E. Benes.New exact nonlinear filters with large Lie algebras.Syst.Contr.Lett.1985,5: 217-222P
    [110]F.E.Daum. Exact finite dimensional nonlinear filters.IEEE Transactions on Automatic Control.1986,31(7):612-622P
    [111]F.E.Daum. New exact nonlinear filters in Bayesian Analysis of Time Series and Dynamic Models. New York:Marcel Dekker.1988:199-226P
    [112]F.E.Daum. Industrial strength nonlinear filters. Estimation, Tracking and Fusion Workshop:A Tribute to Prof.Yaakov Bar-Shalom.2001
    [113]F.E.Daum. Solution of the Zakai equation by separation of variables. IEEE Transactions on Automatic Control.1987,32(10):941-943P
    [114]D.Brigo. Filering by projection on the manifold of exponential densities. PhD thesis, Free university of Amsterdam. the Netherland.1996
    [115]P.J. Harrisons and C.F.Stevens.Bayesian forecasting (with discussion). Journal of Roy.Statist.Soc.Ser.B.1976,38:205-247P
    [116]H.J.Kushner. On the differential equations statisfied by conditional probability densities of Markov processes with applications. SIAM J.Contr.1965,2:106-119P
    [117]H.J.Kushner.Dynamical equations for optimal nonlinear filtering. J.Differential Equations.1967,3:179-190P
    [118]H.J.Kushner.Probability Methods for Approximations in Stochastic Control and for Elliptic Equations. New York:Acdemic Press.1997
    [119]W.M.Wonham.Some applications of Stochastic differential equations to optimal nonlinear filtering. SIAM J.Contr.1965,2:347-369P
    [120]W.M.Wonham.Random differential equations in control theory in Probabilistic Methods in Applied Mathematics. A.T.Bharucha-Reid, ED.New York:Academic Press.1970:131-212P
    [121]K.Ito.Approximation of the Zakai equation for nonlinear filtering. SI AM J.Contr:Optim.1996,34:620-634P
    [122]S.V.Lotosky, R.Mikulevicius and B.L.Rozovskii. Nonlinear filtering revisited:A spectral approach.SIAM J.Contr.Optim.1997,35:435-461P
    [123]S.Julier and J.K.Uhlmann. A new extension of the Kalman filter to nonlinear systems. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE). 1997:182-193P
    [124]S.Julier, J.Uhlmann and H.F.Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control.2000,45(3):477-482P
    [125]R.v.d.Merwe and Eric Wan. Sigma-Point Kalman filters for Probabilistic Inference in Dynamic State-Space Models. In Proceedings of Workshop on Advances in machine Learning. Montreal.2003
    [126]J.M.Hammersley and K.W.Morton. Poor Man's Monte Carlo. Journal of the Royal Statistical Society B.1954,16:23-38P
    [127]M.N.Rosebluth and A.Rosenbluth. Monte Carlo Calulation of the Average Extension of Molecular Chains. Journal of Chemical Physics.1955,23:356-359PN
    [128]J.E.Handschin and D.Q.Mayne. Monte Carlo Techniques to Estimate the Conditional Expectation in Multi-Stage Nonlinear Filtering. International Journal of Control.1969, 9(5):547-559P
    [129]J.E.Handschin. Monte Carlo Techniques for Prediction and Filtering of Nonlinear Stochastic Processes. Automatica.1970,6:555-563P
    [130]张建秋.线性/非线性系统的混合动态滤波理论及应用.上海复旦大学博士学位论文.2008:10-12页
    [131]Brock L. D. Statistical estimation in inertial navigation systems. Journal of Spacecraft and Rockets.1968,5(2):146-153P
    [132]Bellantoni J F and Dodge K W. A Square Root Formulation of the Kalman-Schmidt Filter. Journal of AIAA.1967,5(7):1309-1314P
    [133]Dmitriyev S P, Stepanov O A. Shepel S V. Nonlinear filtering methods applications in INS alignment. IEEE Trans.on AES.1997,33(1):268-276P
    [134]刘立恒.鲁棒滤波及其在导航系统中的应用.哈尔滨工业大学博士学位论文.2002:52-106页
    [135]Wang Ya-feng, Sun Fu-chun, Zhang You-an. A Method for Rapid Transfer Alignment Based On UKF.IMACS Multiconference on Computational Engineering in Systems Applications.2006:809-813P
    [136]Eun-Hwan Shin, El-Sheimy N. An unscented Kalman filter for in-motion alignment of low-cost IMU. Position Location and Navigation Symposium.2004:824-836P
    [137]熊凯,张洪钺.粒子滤波在惯导系统非线性对准中的应用.中国惯性技术学报.2003,11(3):20-26页
    [138]聂琦.非线性滤波及其在导航系统中的应用.哈尔滨工程大学博士学位论文.2008,5-11页
    [139]Farhan A. Faruqi, Kenneth J. Turner.Non-Linear Mathematical Model for Integrated Global Positioning/Inertial Navigation System.Applied Mathematics and Computation. 2000,115:213-227P
    [140]Christopher Hide,Terry Moore and Martin Smith. Adaptive Kalman Filtering for Low-cost INS/GPS.Journal of Navigation.2003,56:143-152P
    [141]Santiago Alban. An Inexpensive and Robust GPS/INS Attitude System for Automobiles. PhD thesis. Stanford University.
    [142]Sueo Sugimoto, Yukihiro Kubo.Static Carrier Phase Differential Positioning by Applying the H∞ Filter. Proceedings of ION GPS.1999,1241-125OP
    [143]姜雪原,马广富.基于平方根Unscented卡尔曼滤波的无陀螺卫星的姿态估计.南京理工大学学报.2005,29(4):399-402页
    [144]Zhenhua Li, Henry Leung.GPS/INS Integration Based Navigation with Multipath Mitigatioon for Intelligent Vehicles. Proceedings of International Conference on Mechatronic. Japan.2007:1-5P
    [145]P.J.Nordlund, F.Gustafsson. Sequential Monte Carlo Filtering Techniques Applied to Integrated Navigation Systems. Proceedings of the American Control Conference. Arlington.2001,6:56-62P
    [146]H.Carvalho, P.Kelmoral, et al. Optimal Nonlinear Filtering in GPS/INS Integration. IEEE Trans.on AES.1997,33(3):835-849P
    [147]Giremus A., Tourneret J. et al.An improved regularized particle filter for GPS/INS integration. IEEE 6th Workshop on Signal Processing Advances in Wireless Communication.2005:1013-1017P
    [148]刘晓庆.捷联式惯导系统误差标定方法研究.哈尔滨工程大学硕士学位论文.2008
    [149]黄德鸣,程禄.惯性导航系统.国防工业出版社,1999
    [150]罗超.FOG捷联惯导系统标定和误差补偿技术研究.哈尔滨工程大学硕士学位论文.2006,1:21-24页
    [151]袁保伦,饶谷音,一种新的激光陀螺惯性测量组合标定方法.中国惯性技术学报.2007,15(1):31-34页
    [152]Freitas N. Rao-Blackwellised particle filtering for fault diagnosis[A]. In IEEE Aerospace Conference Proceedings.2002:1767-1772.
    [153]Andrieu, C. and Doucet. A. Particle filtering for partially observed Gaussian state space models[J]. Journal of the Royal Statistical Society,2002,64(4):827-836P.
    [154]严恭敏.捷联惯导系统东基座初始对准及其它相关问题研究.西北工业大学博士后研究工作报告.2008,60-66页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700